What’s the Point: Semantic Segmentation with Point Supervision

Amy Bearman\(^1\) Olga Russakovsky\(^2\) Vittorio Ferrari\(^3\) Li Fei-Fei\(^1\)

\(^1\)Stanford University \(^2\)Carnegie Mellon University \(^3\)University of Edinburgh

Contributions

Goal: Obtain the most annotation cost-effective supervision for semantic image segmentation.

- Novel, cost-efficient supervision regime for semantic segmentation based on humans pointing to objects.
- Extensive human study to collect point annotations for PASCAL VOC 2012, and released annotation interfaces.
- A generic objectness prior incorporated directly in the loss to guide the training of a CNN.

Novel supervision regime

Problem: Assign one class label to every pixel in an image.

Training: Standard regime = costly per-pixel annotations

Levels of supervision

- full supervision
- image-level labels
- points
- squiggles

Key insight: Annotating one pixel per training image significantly improves segmentation annotation and only marginally increases the annotation cost as compared to image-level labels.

Loss function for point-level supervision: We have a small set of supervised pixels, and other pixels just belong to some class in \(L\).

Model: Fully convolutional network [Long 2015].

Crowdsourcing point annotations

AMT annotation UI

Example points collected

Measuring the annotation times:

- Points and squiggles: measured directly during data collection.
- Other types of supervision: we rely on times from literature.

Reported annotation times:

- Image-level labels: 20.0 sec/image
- Points: 22.1 sec/image
- Squiggles: 34.9 sec/image
- Full supervision: 239.7 sec/image

Objectness prior in CNN loss

Purpose of the objectness prior: Helps correctly infer the spatial extent of objects for models trained with very few supervised pixels.

Results on PASCAL VOC 2012 dataset [Everingham 2010]

Effects of point supervision + objectness: The combined effect results in a +13% mIOU over image-level labels.

Point supervision variations: Multiple object instances and multiple annotators achieve only modest improvements over single points.

Segmentation on an annotation budget: Point supervision provides the best trade-off between annotation time and segmentation accuracy.

Bibliography