Administrative

- **A1** is due Today (midnight). You can use up to 3 late days
- **A2** will be up this Friday, it’s due next next Wednesday (Feb 4)
- **Project Proposal** is due next Friday at midnight (~one paragraph (200-400 words), send as email)
Lecture 5:

Backprop
and intro to
Neural Nets
Linear Classification

SVM:

\[
L = \frac{1}{N} \sum_i \sum_{j \neq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) \right] + \lambda \sum_k \sum_l W_{k,l}^2
\]

Softmax:

\[
L = \frac{1}{N} \sum_i - \log \left(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}} \right) + \lambda \sum_k \sum_l W_{k,l}^2
\]
Optimization Landscape
Gradient Descent

\[
\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

Numerical gradient: slow :(?), approximate :(?), easy to write :)

Analytic gradient: fast :), exact :), error-prone :(?

In practice: Derive analytic gradient, check your implementation with numerical gradient
This class:

Becoming a backprop ninja
\[f(x, y) = xy \quad \rightarrow \quad \frac{\partial f}{\partial x} = y \quad \frac{\partial f}{\partial y} = x \]

\[\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

\[f(x + h) = f(x) + h \frac{df(x)}{dx} \]
f(x, y) = xy \quad \rightarrow \quad \frac{\partial f}{\partial x} = y \quad \frac{\partial f}{\partial y} = x

\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

f(x + h) = f(x) + h \frac{df(x)}{dx}

Example: x = 4, y = -3. \quad \Rightarrow f(x, y) = -12

\frac{\partial f}{\partial x} = -3 \quad \frac{\partial f}{\partial y} = 4

\nabla f = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}]
Example: \(x = 4, \ y = -3 \). \(\Rightarrow f(x,y) = -12 \)

\[
\frac{\partial f}{\partial x} = -3 \quad \frac{\partial f}{\partial y} = 4
\]

Question: If I increase \(x \) by \(h \), how would the output of \(f \) change?
Compound expressions:

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f(x, y, z) = (x + y)z \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]
Compound expressions: \[f(x, y, z) = (x + y)z \]

\[
q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1
\]

\[
f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q
\]

Chain rule:
\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
\]
Compound expressions:

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f(x, y, z) = (x + y)z \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Chain rule:

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]

set some inputs
\[x = -2; \ y = 5; \ z = -4 \]

perform the forward pass
\[q = x + y \quad \# \ q \ becomes \ 3 \]
\[f = q * z \quad \# \ f \ becomes \ -12 \]

perform the backward pass (backpropagation) in reverse order:
first backprop through \(f = q * z \)
\[dfdz = q \quad \# \ df/dz = q, \ so \ gradient \ on \ z \ becomes \ 3 \]
\[dfdq = z \quad \# \ df/dq = z, \ so \ gradient \ on \ q \ becomes \ -4 \]
now backprop through \(q = x + y \)
\[dfdx = 1.0 \ast dfdq \quad \# \ dq/dx = 1. \ And \ the \ multiplication \ here \ is \ the \ chain \ rule! \]
\[dfdy = 1.0 \ast dfdq \quad \# \ dq/dy = 1 \]
Compound expressions:

\[f(x, y, z) = (x + y)z \]

\[q = x + y \quad \frac{\partial q}{\partial x} = 1, \quad \frac{\partial q}{\partial y} = 1 \]

\[f = qz \quad \frac{\partial f}{\partial q} = z, \quad \frac{\partial f}{\partial z} = q \]

Chain rule:

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \]

set some inputs
\[x = -2; \ y = 5; \ z = -4 \]

perform the forward pass
\[q = x + y \quad \# \ q \ becomes \ 3 \]
\[f = q \times z \quad \# \ f \ becomes \ -12 \]

perform the backward pass (backpropagation) in reverse order:
first backprop through \(f = q \times z \)
\[dfdz = q \quad \# df/dz = q, \ so \ gradient \ on \ z \ becomes \ 3 \]
\[dfdq = z \quad \# df/dq = z, \ so \ gradient \ on \ q \ becomes \ -4 \]
now backprop through \(q = x + y \)
\[dfdx = 1.0 \times dfdq \quad \# dq/dx = 1. \ And \ the \ multiplication \ here \ is \ the \ chain \ rule! \]
\[dfdy = 1.0 \times dfdq \quad \# dq/dy = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[f(x) = e^x \quad \rightarrow \quad \frac{df}{dx} = e^x \]

\[f_a(x) = ax \quad \rightarrow \quad \frac{df}{dx} = a \]

\[f_c(x) = c + x \quad \rightarrow \quad \frac{df}{dx} = 1 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[-1/(1.37^2) = -0.53 \]

\[
\begin{align*}
 f(x) &= e^x \
 \frac{df}{dx} &= e^x \\
 f_a(x) &= ax \
 \frac{df}{dx} &= a
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x} \
 \frac{df}{dx} &= -1/x^2 \\
 f_c(x) &= c + x \
 \frac{df}{dx} &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] x [its gradient] = \[1\] x [-0.53] = -0.53

\[
\begin{align*}
 f(x) &= e^x & \rightarrow & \quad \frac{df}{dx} &= e^x & \quad f(x) &= \frac{1}{x} & \rightarrow & \quad \frac{df}{dx} &= -\frac{1}{x^2} \\
 f_a(x) &= ax & \rightarrow & \quad \frac{df}{dx} &= a & \quad f_c(x) &= c + x & \rightarrow & \quad \frac{df}{dx} &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

[local gradient] x [its gradient]

\[[e^x(-1)] x [-0.53] = -0.20 \]

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax \\
 f_c(x) &= c + x
\end{align*}
\]

\[
\begin{align*}
 \frac{df}{dx} &= e^x \\
 \frac{df}{dx} &= a \\
 \frac{df}{dx} &= \frac{1}{x^2}
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[
\text{[local gradient]} \times \text{[its gradient]}
\]

\[[-1] \times [-0.2] = 0.2 \]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[[\text{local gradient}] \times [\text{its gradient}] \]
\[[1] \times [0.2] = 0.2 \]
\[[1] \times [0.2] = 0.2 \] (both inputs!)

\[
\begin{align*}
 f(x) &= e^x \\
 f_a(x) &= ax \\
 f_c(x) &= c + x \\
 f(x) &= \frac{1}{x} \\
 g(x) &= e^x \\
 g_a(x) &= a \\
 g_c(x) &= c + x \\
 f(x) &= -\frac{1}{x^2} \\
 g(x) &= 1
\end{align*}
\]
Another example:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

[local gradient] \times [its gradient]

\begin{align*}
 x_0: \ 2 \times 0.2 &= 0.4 \\
 w_0: \ -1 \times 0.2 &= -0.2
\end{align*}
Every gate during backprop computes, for all its inputs:

\[\text{[LOCAL GRADIENT]} \times \text{[GATE GRADIENT]} \]

Can be computed right away, even during forward pass

The gate receives this during backpropagation
The sigmoid function is defined as:

\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]

The derivative of the sigmoid function is given by:

\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x)) \sigma(x)
\]
The sigmoid function is defined as:

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

and its derivative is:

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x)) \sigma(x) \]

For the example calculation:

\[(0.73) \times (1 - 0.73) = 0.2\]
sigmoid function

\[f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} \]

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1}{1 + e^{-x}} - 1 \right) \left(\frac{1}{1 + e^{-x}} \right) = (1 - \sigma(x))\sigma(x) \]

\\
\[w = [2, -3, -3] \quad \# \text{assume some random weights and data} \]
\[x = [-1, -2] \]

\[\# \text{forward pass} \]
\[\text{dot} = w[0]x[0] + w[1]x[1] + w[2] \]
\[f = 1.0 / (1 + \text{math.exp}(-\text{dot})) \quad \# \text{sigmoid function} \]
\[
f(w, x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}
\]
\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

\[
\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x))\sigma(x)
\]

```
w = [2, -3, -3]  # assume some random weights and data
x = [-1, -2]

# forward pass
dot = w[0]*x[0] + w[1]*x[1] + w[2]
f = 1.0 / (1 + math.exp(-dot))  # sigmoid function

# backward pass through the neuron (backpropagation)
ddot = (1 - f) * f  # gradient on dot variable, using the sigmoid gradient derivation
dx = [w[0] * ddot, w[1] * ddot]  # backprop into x
dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot]  # backprop into w
# we're done! we have the gradients on the inputs to the circuit
```
We are ready:

\[f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]
We are ready:

\[f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]

\[
x = 3 \quad \# \text{example values}
\]
\[
y = -4
\]

\[
\text{# forward pass}
\]
\[
sigy = 1.0 / (1 + \text{math.exp}(-y)) \quad \# \text{sigmoid in numerator} \quad \#(1)
\]
\[
num = x + sigy \quad \# \text{numerator} \quad \#(2)
\]
\[
sigx = 1.0 / (1 + \text{math.exp}(-x)) \quad \# \text{sigmoid in denominator} \quad \#(3)
\]
\[
xpy = x + y \quad \#(4)
\]
\[
xpysqr = xpy**2 \quad \#(5)
\]
\[
den = sigx + xpysqr \quad \# \text{denominator} \quad \#(6)
\]
\[
invden = 1.0 / den \quad \#(7)
\]
\[
f = num * invden \quad \# \text{done!} \quad \#(8)
\]
The forward pass was:

```python
# example values
x = 3
y = -4

# forward pass
sigy = 1.0 / (1 + math.exp(-y))  # (9)
num = x + sigy  # numerator
sigx = 1.0 / (1 + math.exp(-x))  # (9)
xpy = x + y
xpysqr = xpy**2
den = sigx + xpysqr  # denominator
invden = 1.0 / den
f = num * invden  # done!
```
The forward pass was:

\[f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]

Example values:

\[x = 3 \quad \text{(example values)} \]
\[y = -4 \]

Forward pass:

```python
# forward pass
sigy = 1.0 / (1 + math.exp(-y))  # numerator
num = x + sigy  # numerator
sigx = 1.0 / (1 + math.exp(-x))  # numerator
xpy = x + y
xpsyqr = xpy**2
den = sigx + xpsyqr  # denominator
invden = 1.0 / den
f = num * invden  # done!
```
The forward pass was:

\[
f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2}
\]

\[
x = 3 \quad \text{# example values}
\]
\[
y = -4
\]

\[
\text{# forward pass}
\]
\[
sigy = 1.0 / (1 + \text{math.exp}(-y)) \quad \text{#}
\]
\[
num = x + sigy \quad \text{# numerator}
\]
\[
sigx = 1.0 / (1 + \text{math.exp}(-x)) \quad \text{#}
\]
\[
xpy = x + y
\]
\[
xpysqr = xpy**2
\]
\[
den = sigx + xpysqr \quad \text{# denominator}
\]
\[
invden = 1.0 / den
\]
\[
f = num * invden \quad \text{# done!}
\]
The forward pass was:

\[f(x,y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]

```plaintext
# forward pass
sigy = 1.0 / (1 + math.exp(-y))  #
num = x + sigy  # numerator
sigx = 1.0 / (1 + math.exp(-x))  #
xpy = x + y
xpysqr = xpy**2
den = sigx + xpysqr  # denominator
invden = 1.0 / den
f = num * invden  # done!
```

Example values
x = 3
y = -4
The forward pass was:

\[f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]

\[
x = 3 \quad \text{# example values}
\]
\[
y = -4
\]

forward pass

\[
sigy = 1.0 / (1 + \text{math.exp}(-y)) \quad \text{# numerator}
\]
\[
sigx = 1.0 / (1 + \text{math.exp}(-x)) \quad \text{# numerator}
\]

\[
xpy = x + y
\]
\[
xpysqr = xpy**2
\]
\[
den = sigx + xpysqr \quad \text{# denominator}
\]
\[
invden = 1.0 / den
\]
\[
f = num * invden \quad \text{# done!}
\]
\[f(x,y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2} \]

forward pass was:

\[x = 3 \] # example values
\[y = -4 \]

\[\text{# forward pass} \]
\[\text{sigx} = 1.0 / (1 + \text{math.exp}(-x)) \] # numerator
\[\text{num} = x + \text{sigx} \] # numerator
\[\text{den} = \text{sigx} + \text{xpysqr} \] # denominator
\[\text{invden} = 1.0 / \text{den} \]
\[f = \text{num} \times \text{invden} \] # done!

```text
# backprop f = num * invden
dnum = invden # gradient on numerator # (8)
dinvden = num # (8)
# backprop invden = 1.0 / den
dden = (-1.0 / (den**2)) * dinvden # (7)
# backprop den = sigx + xpysqr
dsigx = (1) * dden # (6)
dxpysqr = (1) * dden # (6)
# backprop xpysqr = xpysqr**2
dxpy = (2 * xpy) * dxpysqr # (5)
# backprop xpy = x + y
dx = (1) * dxpy # (4)
dy = (1) * dxpy # (4)
# backprop sigx = 1.0 / (1 + math.exp(-x))
dx += ((1 - sigx) * sigx) * dsigx # Notice += !!! See notes below # (3)
```
The forward pass was:

\[
f(x,y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2}
\]

\[
x = 3 \quad \text{# example values}
\]
\[
y = -4
\]

\[
\# forward pass
\]
\[
sigy = 1.0 / (1 + \text{math.exp(-y))) # numerator
\]
\[
sigx = 1.0 / (1 + \text{math.exp(-x)) # numerator
\]
\[
dx += ((1 - sigx) * sigx) * dsigy # Notice += !!! See notes below #3
\]
\[
\# backprop num = x + sigy # numerator
\]
\[
dx += (1) * dnum #2
\]
\[
dsigy = (1) * dnum #2
\]
\[
\# backprop x = x + y
\]
\[
dx = (1) * dxpy #4
\]
\[
dy = (1) * dxpy #4
\]
\[
\# backprop sigx = 1.0 / (1 + \text{math.exp(-x)) # numerator
\]
\[
\text{num} = x + sigy # numerator
\]
\[
\# backprop dnum = invden # done!
\]
backprop f = num * invden
gradient on numerator
#(8)
dnum = invden

dinvc = num # backprop invden = 1.0 / den
dden = (-1.0 / (den**2)) * dinvc # (7)
den = sigx + xpysqr

dsigx = (1) * dden # (6)
dxypysqr = (1) * dden # (6)
backprop xpysqr = xpy**2
backprop xpy = x + y
#(5)
dxy = (2 * xpy) * dxypysqr # (4)
dx = (1) * dxpy # (4)
dy = (1) * dxpy # (4)
backprop num = x + sigy
Notice += !! See notes below #(3)
dx += ((1 - sigy) * sigx) * dsigx
backprop num = x + sigy
#(2)
dx += (1) * dnum # (2)
dsigy = (1) * dnum # (2)
backprop sigy = 1.0 / (1 + math.exp(-y))
dy += ((1 - sigy) * sigy) * dsigy # (1)

done! printf

\[
x = 3 \quad \text{# example values}
y = -4
\]

\[
f(x, y) = \frac{x + \sigma(y)}{\sigma(x) + (x + y)^2}
\]

forward pass was:

\[
\text{sigy} = 1.0 / (1 + \text{math.exp}(-y))
\]

\[
\text{num} = x + \text{sigy} \quad \text{# numerator}
\]

\[
\text{sigx} = 1.0 / (1 + \text{math.exp}(-x))
\]

\[
\text{xpy} = x + y
\]

\[
\text{xpysqr} = \text{xpy}**2
\]

\[
\text{den} = \text{sigx} + \text{xpysqr} \quad \text{# denominator}
\]

\[
\text{invden} = 1.0 / \text{den}
\]

\[
f = \text{num} \times \text{invden} \quad \text{# done!}
\]
Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient... “switcher”?

![Diagram with values](image-url)
Gradients for vectorized code

forward pass
W = np.random.randn(5, 10)
X = np.random.randn(10, 3)
D = W.dot(X)

now suppose we had the gradient on D from above in the circuit
dD = np.random.randn(*D.shape) # same shape as D
Gradients for vectorized code

```python
# forward pass
W = np.random.randn(5, 10)
X = np.random.randn(10, 3)
D = W.dot(X)

# now suppose we had the gradient on D from above in the circuit
dD = np.random.randn(*D.shape)  # same shape as D

X is [10 x 3], dD is [5 x 3]
dW must be [5 x 10]
dX must be [10 x 3]
```
Gradients for vectorized code

```python
# forward pass
W = np.random.randn(5, 10)
X = np.random.randn(10, 3)
D = W.dot(X)

# now suppose we had the gradient on D from above in the circuit
dD = np.random.randn(*D.shape)  # same shape as D
dW = dD.dot(X.T)  # .T gives the transpose of the matrix
dX = W.T.dot(dD)
```
In summary

- in practice it is rarely needed to derive long gradients of variables on pen and paper
- structured your code in stages (layers), where you can derive the local gradients, then chain the gradients during backprop.
- caveat: sometimes gradients simplify (e.g. for sigmoid, also softmax). Group these.
NEURAL NETWORKS
Impulses carried toward cell body

Dendrites

Nucleus

Cell body

Branches of axon

Axon

Impulses carried away from cell body

Axon terminals
sigmoid activation function

\[
\frac{1}{1 + e^{-x}}
\]
class Neuron:
 # ...
 def neuron_tick(inputs):
 """ assume inputs and weights are 1-D numpy arrays and bias is a number """
 cell_body_sum = np.sum(inputs * self.weights) + self.bias
 firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum)) # sigmoid activation function
 return firing_rate
A Single Neuron can be used as a binary linear classifier

Regularization has the interpretation of “gradual forgetting”
Be very careful with your Brain analogies:

Biological Neurons:
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]
Activation Functions

\[
\begin{align*}
&x_0 \\
&\text{axon from a neuron} \\
&w_0 \\
&\text{synapse} \\
&\text{dendrite} \\
&w_0x_0 \\
&w_1x_1 \\
&w_2x_2 \\
&\sum_i w_ix_i + b \\
&f(\sum_i w_ix_i + b) \\
&\text{output axon} \\
&\text{activation function}
\end{align*}
\]
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

2 BIG problems:
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

2 BIG problems:

1. Saturated neurons “kill” the gradients
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

2 BIG problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(\mathbf{w} \)?
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?

Always all positive or all negative :(

(this is also why you want zero-mean data!)
Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(
Activation Functions

- Computes $f(x) = \max(0,x)$
- Does not saturate
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- Just one annoying problem…

hint: what is the gradient when $x < 0$?
DATA CLOUD

active ReLU

dead ReLU
will never activate
=> never update
Activation Functions

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- Will not “die”.

Leaky ReLU
Maxout “Neuron”
- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

\[
\max(w_1^T x + b_1, w_2^T x + b_2)
\]

Problem: doubles the number of parameters :(
TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout
- Try out tanh but don’t expect much
- Never use sigmoid
NEURAL NETWORKS
Neural Networks: Architectures

“Fully-connected” layers
Neural Networks: Architectures

“Fully-connected” layers

“2-layer Neural Net”, or “1-hidden-layer Neural Net”

“3-layer Neural Net”, or “2-hidden-layer Neural Net”
Neural Networks: Architectures

Number of Neurons: ?
Number of Weights: ?
Number of Parameters: ?
Neural Networks: Architectures

Number of Neurons: 4+2 = 6
Number of Weights: [4x3 + 2x4] = 20
Number of Parameters: 20 + 6 = 26 (biases!)

Number of Neurons: ?
Number of Weights: ?
Number of Parameters: ?
Neural Networks: Architectures

Number of Neurons: $4 + 2 = 6$
Number of Weights: $[4 \times 3 + 2 \times 4] = 20$
Number of Parameters: $20 + 6 = 26$ (biases!)

Number of Neurons: $4 + 4 + 1 = 9$
Number of Weights: $[4 \times 3 + 4 \times 4 + 1 \times 4] = 32$
Number of Parameters: $32 + 9 = 41$
Neural Networks: Architectures

Modern CNNs: ~10 million neurons
Human visual cortex: ~5 billion neurons
Example Feed-forward computation of a Neural Network

```
class Neuron:
    ...
    def neuron_tick(inputs):
        """ assume inputs and weights are 1-D numpy arrays and bias is a number """
        cell_body_sum = np.sum(inputs * self.weights) + self.bias
        firing_rate = 1.0 / (1.0 + math.exp(-cell_body_sum))  # sigmoid activation function
        return firing_rate
```

We can efficiently evaluate an entire layer of neurons.
Example Feed-forward computation of a Neural Network

```python
# forward-pass of a 3-layer neural network:
f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
x = np.random.randn(3, 1) # random input vector of three numbers (3x1)
h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)
out = f(np.dot(W3, h2) + b3) # output neuron (1x1)
```
What kinds of functions can a Neural Network represent?

\[f(x) \]

[http://neuralnetworksanddeeplearning.com/chap4.html]
What kinds of functions can a Neural Network represent?

[http://neuralnetworksanddeeplearning.com/chap4.html]
Setting the number of layers and their sizes

- 3 hidden neurons
- 6 hidden neurons
- 20 hidden neurons

more neurons = more capacity
Do not use size of neural network as a regularizer. Use stronger regularization instead:

\[
\lambda = 0.001 \quad \lambda = 0.01 \quad \lambda = 0.1
\]

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)
Summary

- we arrange neurons into fully-connected layers
- the abstraction of a layer has a nice property in that it allows us to use efficient vectorized code (matrix multiplies)
- neural networks are universal function approximators but this doesn’t mean much.
- neural networks are not *neural*
- neural networks: bigger = better (but might have to regularize more strongly)
Next Lecture:

More than you ever wanted to know about Neural Networks and how to train them