Lecture 12:
Self-Supervised Learning
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Administrative

- Good job on finishing the midterm :)

- Assignment 3 will be out (due 5/28; submit code often and early)

- Projects milestone (due 5/19; no late days)

- Final Project Report (due 6/5; no late days)

- Poster session 6/12

- Please check Ed posts regarding the final project report and
poster session logistics
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Lots of Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
“ VAN SKY VERN Y
Y Y Y
No spatial extent No objects, just pixels Multiple Object This inage - Cooublic dorain
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https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Last Week: Visualizing and Understanding

schooner
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Last Week: Visualizing and Understanding

Testimage L2 Nearest neighbors in feature space 4096- d|m vector
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Recall: Nearest neighbors in
pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Learned Representations

Testimage L2 Nearest neighbors in feature space 4096- d|m vector
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Recall: Nearest neighbors in
pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Learned Representations

4096-dim vector
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What is the problem with large-scale training?

- We need a lot of labeled data

Is there a way we can train neural networks without
the need for huge manually labeled datasets?

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Self-Supervised Learning Pretext Task

- Define a task based on
I the dataitself
- No manual annotation
- Could be considered
an unsupervised task;
- but we learn with
supervised learning
objectives, e.g.,

. classification or
_'l;rg_lg_le_d_Egg_o_c_lgr_ — — = regression.

— - O e . T S S S S EE o s O T B o o e O O g, e S Sam mms S RS

Pretext
Objective

Downstream Task

I
|
Downstream |I - The application you
Objective I careabout
" -Youdo not have large
: datasets
| - The dataset is labeled
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Self-Supervised Learning - Pretext Task

dataset (no labels)

Decoder, Labels/outputs
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Self-Supervised Learning - Downstream Task

dataset (with labels)

Labels
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Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images
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image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.
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How to evaluate a self-supervised learning method?

e Pretext Task Performance
o Measure how well the model performs on the task it was trained on without labels.

e Representation Quality
o Evaluate the quality of the learned representations
m Linear Evaluation Protocol: Train a linear classifier on the leaerned representations;
m Clustering: Measure clustering performance;
m t-SNE: Visualize the representations to assess their separability.)
e Robustness and Generalization
o Test how well the model generalizes to different datasets and is robust to variations.

e Computational Efficiency
o Assess the efficiency of the method in terms of training time and resource requirements.

e Transfer Learning and Downstream Task Performance
o Assess the utility of the learned representations by transferring them to a downstream
supervised task.
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How to evaluate a self-supervised learning method?

feature

@ I:> self-supervised I:> extractor
learning (e.g.,a

convnet)

lots of

unlabeled
data . .
90
H_H—/

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations
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How to evaluate a self-supervised learning method?

feature
self-supervised extractor supervised evaluate on the
E> learning E> (e.g.,a = learning = [ target task }
convnet)
lots of e.g. classification, detection
unlabeled

data
R, A it
small amount of

labeled data on

conv the target task conv llnear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data
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Broader picture

Today’s lecture
computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

Fei-Fei Li, Ehsan Adeli

language modeling

GPT-4 Technical Report

OpenAI*

Abstract

We report the development of GPT-4, a large-scale, multimodal model which can
accept image and text inputs and produce text outputs. While less capable than
humans in many real-world sccndnos GPT 4 cxhxbus human level performance
on various professional and acad: by ding passing a simulated
bar exam with a score around the top 10% of lcsl takers. GPT-4 is a Transformer-
based model pre-trained to prcdlc( the ncxl token in a document. The post-training
alignment process results in imp d on of f lity and
adhcrcncc to desired bchavmr A core componcnt of this pl’OJCCI was developing
..... e and i ds that behave p ly across a wide
range of scales. This allowed us to accurately prcdlc\ some aspects of GPT-4’s
performance based on models trained with no more than 1/1,000th the compute of
GPT4.

GPT-4 (OpenAl 2023)

Lecture 12 -
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speech synthesis
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Wavenet (van den Oord et al.,
2016)
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Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring
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Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if
it has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

» g(X,y=0) ﬁ‘ >
Rotate 0 degrees

Rotated image: X° Self-SU perV|Sed
learning by rotating
> (X, y=1) —»ﬁw the entire input
Rotate 90 degrees | ma ge S
Rotated image: X' '
e . ‘@ - The model learns to
Image X Rotate 180 degrees prediCt WhiCh rOtatlon

Rotated image: X

is applied (4-way

- classification
—» g(X,y=3) —»% )

Rotate 270 degrees

Rotated image: X°
(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

» g(X,y=0)

Rotate 0 degrees

Rotate 90 degrees

)
f\/

> g(Xx,y=2)

Image X Rotate 180 degrees

Rotate 270 degrees

ﬁ‘»ﬂ

Rotated image: X*

—»Xyl—»%

Rotated image: X'

> & >

("

Rotated image: X

—» g(X,y=3) —»%

Rotated image: X~

| Objectives:

ConvNet ‘ Maximize prob.
model F(.) 0

‘ Predict 0 degrees rotation (y=0)

‘ Self-supervised

|
|
|
. learning by rotating
|
|
|

ConvNet | » Maximize prob.

the entire input

model F(.) ‘ F'(x")
‘ Predict 90 degrees rotation (y=1) |mages.
|
ConvNe axlmlze rob.
o - The r.nodel.learns to
‘ Predict 180 def:,rees rotation (y=2) | predICt WhICh rOtatlon
‘ . isapplied (4-way
ConvNet S . classification)
model F(.) F(x?) |

‘ Predict 270 degrees rotation (y—3)

(Image source: Gidaris et al. 2018)

Fei-Fei Li, Ehsan Adeli
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https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

100
90 ///‘
w0l ; / ] Self-supervised learning on
/ CIFAR10 (entire training set).
701 7
: gl ] Freeze convl + conv2
K / Learn conv3 + linear layers with
50/ subset of labeled CIFAR10 data
w0l (classification).
20 Ours - Semi-supervised
— Supervised
20 ‘ B ‘ ‘ ‘ E—
20 100 400 1000 5000

# Training examples

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification  Detection Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | fc6-8  all all all Pretrained with full ImageNet
ImageNet labels | 789 799 56.8 48.0 supervision
Random 53.3 434 19.8 N traini
Random rescaled Krihenbiihl et al. (2015) | 392  56.6  45.6 326 |° O pretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346 565 44.5 29.7 ] ]
Tracking (Wang & Gupta, 2015) 556 63.1 474 Self-su perVISed learni ngon
Context (Doersch et al., 2015) 55.1 65.3 51.1 . .
Colorization (Zhang et al., 2016a) 615 656 469 35.6 ImageNet (entire training
BIGAN (Donahue et al., 2016) 523  60.1 46.9 34.9 with AlexN
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6 Set) t le et.
NAT (Bojanowski & Joulin, 2017) 567 653 494
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 514 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 7297 544 39.1 |

Self-supervised learning with rotation prediction source: Gidaris et al. 2018
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https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv313 x 13 Conv56 X 6 Convl 27 x 27 Conv313 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)
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https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)
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https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

shuffled

N

DR
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Permutation Set

index permutation Reorder patches according to
the selected permutation

~N

(o 0]

64 9.4,68325,1,7
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J v AN

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

(Image source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)
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https://arxiv.org/abs/1603.09246

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction
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wn . s | »
: N |2
: R *13
‘ ® | Channel-wise | @

Encoder) | & Fully W |[Decoder C

: & Connected b = ’ 4

|

§ " - -§ -

c @ ,

(i} > + D |

|

J * * J :

:

|

Learning to reconstruct the missing pixels
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al., 2016

Fei-Fei Li, Ehsan Adeli Lecture12- 29 May 14, 2024


https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction
(We will talk about adversarial learning in the next lecture)

Loss = reconstruction + adversarial learning

L(CE) — Lrecon (m) + Ladv (CE)
Lyceon () = ||M * (z — Fp((1 — M) x z))||5
Lqdy = maxp Ellog(D(z))] + log(1 — D(F((1 — M) * z)))]

Adversarial loss between “real” images and inpainted images

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction adversarial recon + adv

Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Transfer learned features to supervised learning

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Self-supervised learning on ImageNet training set, transfer to classification
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic

segmentation (Pascal VOC 2012)
Source: Pathak et al., 2016
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https://arxiv.org/pdf/1604.07379.pdf

Pretext task: image coloring

BN
Grayscale image: L channel Color information: ab channels
X ¢ RExWx1 ?G]RHxWx2

e

Source: Richard Zhang/ Phillip Isola
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Pretext task: image coloring

F
’ : ”}2. " b : “’i} "‘ e X F
Grayscale image: L channel Concatenate (L,ab) channels
X € RHXWXI (X,Y)

e

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola
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Learning features from colorization:
Split-brain Autoencoder
ldea: cross-channel predictions

><)

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola

Fei-Fei Li, Ehsan Adeli Lecture12- 36 May 14, 2024



Learning features from colorization:
Split-brain Autoencoder

RGB channels HHA depth channels

Input e - o : = ey Predicted
RGB-HHA ) . RGB-HHA
image image

HHA depth channels RGB channels
Source: Richard Zhang / Phillip Isola
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Transfer learned features to supervised learning

@@ Places-labels ©-@ Pathak et al.
50 _|IHE ImageNet-labels @-@® Zhang et al.
@-@® Kraehenbuehletal. O-O Owens et al.
Gauss onahue et al. . .
45 ||60 Dovmenetal 6 spivaman Autlcich Self-supervised learning on
@-® Wang & Gupta o « e
: ImageNet (entire training set).
a0l supervised
>
£ 35 .o - Use concatenated features
g oo & {— thispaper fromF;andF
= 30 . - :8\\0 ——o g ! 2
= 7 @ o
25| O‘ ¢ . | Labeled data is from the
. 7 Places (Zhou 2016).
(/0(\\{1, QOO\’L Co(\\\’b Co(\\‘ . (’0(\\‘6 QOO\6

Source: Zhang et al., 2017
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https://arxiv.org/abs/1611.09842

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: image coloring

Source: Richard Zhang / Phillip Isola
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Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Pretext task: video coloring

ldea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

o ‘ Learning objective:
j‘"'*f’;? % | Establish mappings

@ " between reference and
target framesina
learned feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference A

P Reference
Frame

[ Lo @ Colors

-

Target

Vi Predicted
Frame | @ A

o Afj ® Ag}j Colors

attention map on the reference
frame

exp (fI f5)

A =
’ ZkeXp( Efj)

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A fi A peference
Frame ® I ® Colors

I\

Emmmmn
Target

Predicted
Frame | @ A

[
o Afj ® Ag)j Colors

attention map on the reference predicted color = weighted
frame sum of the reference color

exp (f; f) _
A = = Ajjc;
’ Zk exp (fgfj) % ; I

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A fi A peference
Frame = © ® I ® Colors

1

Target Ji Predicted
Frame  © A ® Afj ® Ay Colors
J
attention map on the reference predicted color = weighted loss between predicted color
frame sum of the reference color and ground truth color

exp (fi' f;) - . minZE( i, Cj)
A;: = — Az ) Yir €
TS cexp (FEf5) 7 ; i ° 5

Source: Vondrick et al., 2018
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https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog post

Fei-Fei Li, Ehsan Adeli Lecture12- 49 May 14,2024


https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

Source: Google Al blog post
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https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e We often do not care about the performance of these pretext tasks, but
rather how useful the learned features are for downstream tasks
(classification, detection, segmentation).
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Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e We often do not care about the performance of these pretext tasks, but
rather how useful the learned features are for downstream tasks
(classification, detection, segmentation).

e Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.
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Pretext tasks from image transformations

F ¥

s - ' N
b iy |
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l

image completion rotation prediction “jigsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?
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A more general pretext task?

same object
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A more general pretext task?

same object

Fei-Fei Li, Ehsan Adeli Lecture 12- 55 May 14, 2024



Contrastive Representation Learning

attract
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Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC
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Contrastive Representation Learning

attract
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Contrastive Representation Learning

€T reference

aj+ positive

&I  negative
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A formulation of contrastive learning

What we want;:

score(f(z), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x” negative sample

Given a chosen score function, we aim to learn an encoder
function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z™))
exp(s(f(@), f(z)) + 3,0, exp(s(f (=), f(z}))

L=—-Ex log
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(fv+))
exp(s(f(), f(z+)) + 3,2, exp(S(f(flt) f( i)

L=—-Ex log
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(fL'*))

L=—-Ex log —
exp(s(f(), f(a+)) + 3,2 exp(s(f(x), f(z;))_
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...

Fei-Fei Li, Ehsan Adeli Lecture 12- 63 May 14, 2024



A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f($+))

L=—-Ex log —
exp(s(f(z), f(z*)) + 0, exp(s(f (2), F (&)
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples
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A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z*))
exp(s(f(z), f(z 1)) + 3, exp(s(f(z), f(z;))_

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(x), f(z")] —log(N) = —L

L=-Ex log

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019
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SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function: 2 . Maximize agreement | z;
T
(4 2) = o 0| o0
Ul |v
h; <— Representation —> h;

Use a projection network g(-) to project
features to a space where contrastive ) F()
learning is applied

Generate positive samples through data VPN ool
augmentation:
e random cropping, random color
distortion, and random blur.

Source: Chen et al., 2020
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SimCLR: generating positive samples from data

augmentation
Sy, I R b

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (§) Sobel filtering
Source: Chen et al., 2020
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Algorithm 1 SimCLR’s main learning algorithm.
Si m C L R input: batch size IV, constant 7, structure of f, g, 7.

for sampled minibatch {z;}_, do
forallk e {1...., N} do

draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair _—~

hor—1 = J(@2k—1) # representation
by sampling data Zop—1 = g(hok_1) # projection
augmentation functions # the second augmentation
| &gy, =t ()
hoi = f(Zaxk) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; =z, zi/ |zl %]) # pairwise similarity
end for

exp(s;,5/7)
1 Liksi) exp(ss,/T)
L= 30 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)

define £(z, j) as £(z,7)=—log 2N
k=

*We use a slightly different
formulationin the
assignment. You should follow
the assignment instructions.

Source: Chen et al., 2020
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SimCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

..Nldo

draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

/

Pok—1 = [ (®2k—1)

zok—1 = g(hak—1)

# the second augmentation

i:gk = t’(a;k)

hop = f(T2r)
zok = g(hak)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do

Si,j = ZZTZJ/(“zz””zJ”)

end for
define (3, j) as

# pairwise similarity

exp(s;,5/7)

K(i,j) =—log SN

1 ki) exp(s;,k/T)

L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

*We use a slightly different
formulationin the
assignment. You should follow
the assignment instructions.

InfoNCE loss:

Use all non-positive
samples in the batch
as X~

Source: Chen et al., 2020
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SimCLR

Generate a positive pair
by sampling data
augmentation functions

Iterate through and use
each of the 2N sample
as reference, compute
average loss

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

..Nldo

draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

/

Pok—1 = [ (®2k—1)

zok—1 = g(hak—1)

# the second augmentation

i:gk = t’(a;k)

hop = f(T2r)
zok = g(hak)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do

Si,j = ZZTZJ/(“zz””zJ”)

end for
define (3, j) as

# pairwise similarity

exp(s;,5/7)

K(i,j) =—log SN

1 ki) exp(s;,k/T)

— L= 0 [6(2k—1,2k) + £(2k, 2k—1)]

update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

*We use a slightly different
formulationin the
assignment. You should follow
the assignment instructions.

InfoNCE loss:

Use all non-positive
samples in the batch
as X~

Source: Chen et al., 2020

Fei-Fei Li, Ehsan Adeli

Lecture12- 70

May 14, 2024


https://arxiv.org/pdf/2002.05709.pdf

SimCLR: mini-batch training si; = %%
Bzl

“Affinity matrix”

= R2N><D

——  encoder \4
list of positive pairs I —

encoder —/

Each 2k and 2k + 1 element is
a positive pair 2N

*We use a slightly different formulation in the assignment.
You should follow the assignment instructions.

—
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SimCLR: mini-batch training 5i; = %%
Bzl

“Affinity matrix”

= R2N><D

—  encoder \
list of positive pairs I —

encoder —/

Each 2k and 2k + 1 element is
a positive pair 2N

*We use a slightly different formulation in the assignment. . = classification label for each row
You should follow the assignment instructions.

—
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Training linear classifier on SImCLR features

%Supervised . % SimCLR (4x)
— 75} — .
= .- *SImCLR (2x) Train feature encoder on ImageNet
& T eCPCv2-L (entire training set) using SimCLR.
5 ’OF %SimCLR wome dMoCo (4
< q :':/:E'&)Cé); ) AMDIM Freeze feature encoder, train a
g; | qCPCv2 PIRL-ens. linear classifier on top with labeled
L PIRL . d
53 eBigBiGAN ata.
%, 60k QMoCo
= LA
g
£ - eRotation
o9 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)
Source: Chen et al., 2020
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Semi-supervised learning on SimCLR features

Label fraction

Method Architecture 1% 10%

Top 5
Supervised baseline ResNet-50 48.4 80.4 Train feature encoder on Ima ge Net
Methods using other label-propagation: ; % ; ;
P ooy A si6 824 (entire training set) using SimCLR.
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5 . . 0 0
FixMatch (w. RandAug) ResNet.50 ] 20,1 Finetune the encoder with 1% / 10%
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 of labeled data on ImageNet.
Methods using representation learning only:
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 55.2  78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912

SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels. Source: Chen et al.. 2020
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SimCLR design choices: projection head

70

60 I II II Linear / non-linear projection heads improve
— . .
250 | Projection representation learning.
= B Linear
40 |mmm Non-linear . . .
== Hone A possible explanation:

0 S me e o e contrastive learning objective may discard
> v ) 1 I . .
ST 9 S g0 useful information for downstream tasks
Projection output dimensionality . . .
® representation space zis trained to be

Miaimize agreement 4 invariant to data transformation.
[ 0] o0 ] e by leveraging the projection head g(*), more
hi  « Represenation—  h; information can be preserved in the h
f(ég éf@ representation space
t“?‘ 7 (_)ff

Source: Chen et al., 2020
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SimCLR design choices: large batch size

70 Large training batch size is crucial for

67.5

SImCLR!
65.0
62.5 .
- Large batch size causes large memory
8600 oat iz footprint during backpropagation:
57.5 e requires distributed training on TPUs
55.0 | 1024 (ImageNet experiments)
2048
52.5 4096
8192
500 ENEEEN EeEEee

100 200 300 400 500 600 700 800 900 1000

Training epochs [ (CU) f(a;"‘ )] log( ) —L
Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '

Source: Chen et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss g grad Key differences to SimCLR:
similérity / e Keep arunning queue of keys (negative
| | samples).
q kO kl k2 e Compute gradients and update the
| queue encoder only through the queries.
e Decouple min-batch size with the
encoder m;ﬂiﬁfrm number of keys: can support a large
, number of negative samples.
] |
ke ke ke
query Yy Yy Yy
X Lo~ Ty1° Tg~ ...

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss g grad Key differences to SimCLR:
similérity / e Keep arunning queue of keys (negative
| | samples).
q kO kl k2 e Compute gradients and update the
‘ queue encoder only through the queries.
e Decouple min-batch size with the
encoder m;ﬂiﬁfrm number of keys: can support a large

, number of negative samples.
! | e The key encoderis slowly progressing
pduery xl(;ey xlfey 3;12{63’ through the momentum update rules:

Ok < mbx + (1 —m)bq

Source: He et al., 2020
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_qg, f_k: encoder networks for query and key
MOCO # queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_g.params # initialize
141 1 for x in loader: # load a minibatch x with N samples
Generate a pOS|t|Ve palr X_gq = aug(x) # a randomly augmented version
. x_k = aug(x) # another randomly augmented version
by sampling data
N . g = f_qg.forward(x_qg) # queries: NxC
augmentat|on functions k = f k.forward(x k) # kevs: NxC
k = k.detach() # no gradient to keys]
# positive logits: Nx1 H
. h h 1l_pos = bmm(g.view(N,1,C), k.view(N,C,1)) Use the runnlng
No gradient throug } FeEs o R «——— queue of keys as the
the key l_neg = mm(g.view(N,C), queue.view(C,K)) negatlve SampleS

# logits: Nx(1+K)
logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, Egn. (1)

labels = zeros(N) # positives are the 0-th
: D —— n
loss = CrossEntropyLoss (logits/t, labels) I fONCE IOSS

# SGD update: query network
loss.backward ()
update (f_g.params)

# momentum update: key network Update f_k through
f_k.params = mxf_k.params+ (1-m)«f_g.params | €——
: PR—— momentum
update dictionary

Update the FlFO negatlve > enqueue (queue, k) # enqueue the current minibatch

dequeue (queue) # dequeue the earliest minibatch |
sample queue

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. Source: He et al., 2020
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“MoCo V2”

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data

augmentation.
e From MoCo: momentum-updated queues that allow training on
a large number of negative samples (no TPU required!).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:
unsup. pre-train ImageNet VOC detection
case |MLP augt cos epochs| acc. |APso AP APss e Non-linear projection head and strong
o — data augmentation are crucial for
MoCo v1 200 | 606 |85 559 626 g
(a) v 200 | 662 | 820 564 626 contrastive learning.
(b) o 200 | 634 |822 568 632
©) W o 200 | 673 | 825 572 639
) v v v 200 675 | 824 570 63.6
() v v v 800 | 711 |825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet Key ta keawayS:

case MLP aug+ cos epochs batch acc. . . .

MoCo vi [6] 00 256 | 606 e Non-linear projection head and strong

SimCLR [2] | v v v 200 256 | 619 data augmentation are crucial for

SimCLR [2] v v v 200 8192 66.6 . .

MoCo v2 T 200 256 | 675 contrastive learning.

results of longer unsupervised training follow: . L. . .

SimCLR [2] v v v 1000 4096 69.3 e Decou pllng mini-batch size with

MoCo v2 v o v 800 256 | 711 negative sample size allows MoCo-V2 to
Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy outperform SimCLR with smaller batch
(ResNet-50, 1-crop 224 x224), trained on features from unsuper- size (2 56 vs. 8 192).

vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Source: Chen et al., 2020
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MoCo vs. SImCLR vs. MoCo V2

Key takeaways:

e Non-linear projection head and strong

mechanism  batch memory /GPU  time /200-ep. data augmentatlon are crucial for

MoCo 256 5.0G 53 hrs contrastive learning.
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0G n/a e Decoupling mini-batch size with
Table 3. Memory and time cost in 8 V100 16G GPUs, imple- negative sample size allows MoCo-V2 to
mented in PyTorch. ': based on our estimation. Outperform SimCLR with smaller batch

size (256 vs. 8192).

e ...all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al., 2020
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Instance vs. Sequence Contrastive Learning

Predictions

‘ ‘T Zt+2 \t 243 ? Zt44
\ 3\»812\%1\ $t|1t+1|$t+2|$t+3\1t+4\
W‘\l.\l‘ ‘\ e s M il ——
Source: van den Qord et al., 2018
Instance-level contrastive learning;: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.
Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Predictions

. . \>\-\, . e . .
¢ R my Contrastive: contrast between “right”
@ and “wrong” sequences using
‘?Zt+1 *zt+2 +Zt+3 *zt-m COﬂtFaStive lea rning.

/genc\ /g\ /genc\ /genc\ /g\ /genc\ /genc\ /g\ Predictive: the model has to predict

future patterns given the current

| Tt-3 | Te—2 | Tr-1 | Te | T4 Tiy2 | Tpq3 | Tpya |

cyBR
= Coding: the model learns useful
: positive « )
. ‘ feature vectors, or “code”, for

context VS Y | . downstream tasks, similar to other
oL m | self-supervised methods.
negative
Figure source Source: van den Oord et al., 2018,
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Contrastive Predictive Coding (CPC)

S
] S 1. Encode all samples in a sequence into

[]
; - 3 vectors Zt = genc(xt)
T REREN

/\/\/\/\/\/\/\/\

| Te—3 | T2 | Te—1 | X | T $t+2\xt+3\fﬂt+4\

EEEE
et 15

negative

- J
Figure source Source: van den Oord et al., 2018,

——re-
2 m(s)
——re
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Contrastive Predictive Coding (CPC)

Predictions

] S i 1. Encode all samplesin a sequence into
‘ ) h ' vectors z, = g...(X,)

. %43 ' Zres 2. Summarize context (e.g., half of a
sequence) into a context code ¢, using an

¥ Zt4+1 Zt4+2
1 1 1 — ?
/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ aUto_regreSSive mOdel (gar)' The Original
paper uses GRU-RNN here.
| Zt—3 | Tt—2 | Te—1 | Xt | T Tev2 | T3 | Tega |
e 0 ER

4 S Pooe

context VEL & ‘) | .

negative

Source: van den Oord et al., 2018,

Figure source
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Contrastive Predictive Coding (CPC)

Predictions

mzemstO 1. Encode all samples in a sequence into
. i '\_\ .\\. VeCtOrS Zt = genC(Xt)

\ N * » éms ézw 2. Summarize context (e.g., half of a
, sequence) into a context code c, using an

genc genc genc /genc\ /genc\ /genc\ /genc\ /genc\ aUto_regreSSive mOdel (gar)

\ T3 \ To \ T-1 | T | T | Tz | Tes | T 3. Compute InfoNCE loss between the
context ¢, and future code z,,, using the
K b - . followingtime—dependentscore
3 : pos|t|ve fUﬂCtiO?:
4 A il ) = 27, Wie
context VS ﬁ )‘ | .
e ? , where W, is a trainable matrix.

negative

Source: van den Oord et al., 2018,

Figure source
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CPC example: modeling audio sequences

Predictions

M () ;
* 2t+1 * 2t42 + 2t+3 Zt4+4
genc genc genc / genc \ / genc \ / genc \ / genc \ genc

i3 Tt—1 Ti4+1 Ti42 Zt+3 Ti+a |

e e o

Source: van den Oord et al., 2018,
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CPC example: modeling audio sequences

Method | ACC

Phone classification
Random initialization 27.6

MEFCC features 39.7
CPC 64.6
Supervised 74.6

Speaker classification
Random initialization 1.87

MEFCC features 17.6
Figure 2: t-SNE visualization of audio (speech) (Sjllflirvise d g;g

representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Linear classification on trained
representations (LibriSpeech dataset)

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

|dea: splitimage into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.

Genc - output

— — _ =~ //’//__|_|
=z 7
- - i A
P A
64 px -7 -
7 7
7| rd Vi
S e
_ —
e N s
7
-7 at Ct44|  leel-
L
50% overlap |
256px: :
v input image |

4 -

Gar - Output

_/’
_/‘

/-

(°,-'—
id

Y]
/ .

-~/

_-~ Predictions

Source: van den Oord et al., 2018,
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CPC example: modeling visual context

Method | Top-1ACC e Compares favorably with other pretext task-
Using AlexNet conv5 based self-supervised learning method.
Video [28] 29.8 )
Relative Position [11] 304 ° F)oesn t do as well com pa red to newer
BiGan [35] 34.8 instance-based contrastive learning methods
Colorization [10] 35.2 . :
Vigsaw [29] * o on image feature learning.
%Supervised . SIMCLR (4x)
Using ResNet-V2 s T _XSimCLR (2x)
Motion Segmentation [36] 27.6 > o
Exemplar [36] 31.5 € 70F wsimCLR some dMoCo @)
Relative Position [36] 36.2 8 °PIRL-c2x AMDIM
Colorization [36] 39.6 v 65 'Jgr—%?,ﬁ\ e o0
CpPC 48.7 e eBigBIGAN
g sob qMoCo 9
Table 3: ImageNet top-1 unsupervised classifi- > 5
cation results. *Jigsaw is not directly compa- E 5} g eRotation
rable to the other AlexNet results because of . . . . P
25 50 100 200 400 626

architectural differences.

Number of Parameters (Millions)

Source: van den Oord et al., 2018,
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning;:

score(f(x), f(z")) >> score(f(z), f(z7))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f (), f(z™))

L =—-Ex |log N1 —
exp(s(f(z), f(z1)) + 22,21 exp(s(f(2), f(z;))

Commonly known as the InfoNCE l0ss (van den 0ord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI|[f(z), f(z")] — log(N) = —L
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Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive 2 . Maximizeagreement
representation learning
) : S g9(-) 9(-)
e Keyideas: non-linear projection head to allow
h; <— Representation — h;

flexible representation learning
e Simple to implement, effective in learning visual £0)
representation
e Requires large training batch size to be effective;
large memory footprint
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum contrastive loss
sample encoder similarity
e Decouples negative sample size from minibatch
size; allows large batch training without TPU q ko k1 ko ...
e MoCo-v2 combines the key ideas from SimCLR, queue
i.e., nonlinear projection head, strong data t
. . . momentum
augmentation, with momentum contrastive encoder encoder
learning ‘
ey Tp Y kY kY
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Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”

sequence.
e InfoNCE loss with a time-dependent score
function. g
e Can beapplied to a variety of learning - o
problems, but not as effective in learning uf V . .
image representations compared to instance- . ‘ positive
level methods. context ’5 Q .
negative
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Other examples: MoCo v3

“This paper does not describe a

novel method.”

, Ehsan Adeli

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen* Saining Xie* Kaiming He
Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

Abstract

This paper does not describe a novel method. Instead,
it studies a straightforward, incremental, yet must-know
baseline given the recent progress in computer vision: self-
supervised learning for Vision Transformers (ViT). While
the training recipes for standard convolutional networks
have been highly mature and robust, the recipes for ViT are
yet to be built, especially in the self-supervised scenarios
where training becomes more challenging. In this work, we
go back to basics and investigate the effects of several fun-
damental components for training self-supervised ViT. We
observe that instability is a major issue that degrades accu-
racy, and it can be hidden by apparently good results. We
reveal that these results are indeed partial failure, and they
can be improved when training is made more stable. We
benchmark ViT results in MoCo v3 and several other self-
supervised frameworks, with ablations in various aspects.
We discuss the currently positive evidence as well as chal-
lenges and open questions. We hope that this work will pro-
vide useful data points and experience for future research.

framework model params acc. (%)
linear probing:

iGPT [9] iGPT-L 1362M 69.0
iGPT [9] iGPT-XL 6801IM 72.0
MoCo v3 ViT-B 86M 76.7
MoCo v3 ViT-L 304M 71.6
MoCo v3 ViT-H 632M 78.1
MoCo v3 ViT-BN-H 632M 79.1
MoCo v3 ViT-BN-L/7 304M 81.0
end-to-end fine-tuning:

masked patch pred. [16] ViT-B 86M 79.9
MoCo v3 ViT-B 86M 832
MoCo v3 ViT-L 304M 84.1

Table 1.  State-of-the-art Self-supervised Transformers in
ImageNet classification, evaluated by linear probing (top panel)
or end-to-end fine-tuning (bottom panel). Both iGPT [9] and
masked patch prediction [16] belong to the masked auto-encoding
paradigm. MoCo v3 is a contrastive learning method that com-
pares two (224x224) crops. ViT-B, -L, -H are the Vision Trans-
formers proposed in [16]. ViT-BN is modified with BatchNorm,
and “/7” denotes a patch size of 7x7. T: pre-trained in JFT-300M.

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR
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Other examples: Masked Autoencoder

method pre-train data ViT-B  ViT-L ViT-H ViT-Hy4g
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] INIK 82.8 - - -
MoCo v3 [9] INIK 83.2 84.1 - -
BEIT [2] INIK+DALLE  83.2 85.2 - -
MAE INIK 83.6 85.9 86.9 87.8

He et al., Masked Autoencoders Are Scalable Vision Learners, FAIR
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Other examples: Dense Object Net

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (e) Direct Multi Object

Dense Object Net, Florence et al., 2018
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Other examples Dense Object Net

Dense Object Net, Florence et al., 2018
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Other examples: Dense Object Net

Dense Object Net, Florence et al., 2018
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Other examples: DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?>  Hugo Touvron!®  Ishan Misra! = Hervé Jegou!
Julien Mairal>  Piotr Bojanowski! ~ Armand Joulin®

! Facebook Al Research 2 Inria* 3 Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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Other examples: DINO v2

Figure 1: Visualization of the first PCA components. We compute a PCA between the patches of the
images from the same column (a, b, ¢ and d) and show their first 3 components. Each component is matched
to a different color channel. Same parts are matched between related images despite changes of pose, style
or even objects. Background is removed by thresholding the first PCA component.
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Other examples: CLIP

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text

Text
Encoder Text
Encoder
T ) T3 Tn
— I I;'T, I, T, I,'T; I,Ty
— L T Iyl IyTy - Iy 3. Use for zero-shot prediction
T, T, T3 Tn
Image
Encoder. T I3 I3T, I3T, I3Ts IzTy
. Image
. . . . . ) . N o, L s | gy | i ey
— Iy Iyt InTy IyTs - InTy {

a photo of
adog.

CLIP (Contrastive Language-Image Pre-training) Radford et al., 2021
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Next time: Generative Models
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