
Backpropagation
TA: Zane Durante

CS 231n April 14, 2023

Some slides taken from lecture, credit to: Fei-Fei Li, Yunzhu Li, Ruohan Gao

Agenda

● Quick review from lecture
○ Neural Networks
○ Motivation for backprop

● Goal: Deepen your understanding of backprop
○ Math
○ Computation graph
○ Code

Review

Biological Motivation

In practice

● We use matrix operations instead of computing each neuron separately

w0

w1

w2

x0

x1

x2

∑ + b
f

w0

w1

w2

x0

x1

x2

∑ + b
f

x ∈ R3, W ∈ R3x2, b ∈ R2
→ f(WTx + b) ∈ R2

Motivation

● Gradient descent is a general method for optimizing parameters of a
function

○ Goal: Minimize some loss (cost) function
● Update parameters with the gradient

1. Calculate gradient of loss ∇θ J wrt parameters
2. Update parameters with learning rate α

■ θ -= α∇θ J
3. Repeat 1-2 until done training

Credit: zitaoshen.rbind.io/project/optimization/1-min-of-machine-learning-gradient-decent/

Math Review

● Chain rule from calculus
● Neural networks contain a LONG string of operations

○ Backprop ← → Applying chain rule over and over again

Math Review

● Chain rule from calculus
● Neural networks contain a LONG string of operations

○ Backprop ← → Applying chain rule over and over again

df/dx = df/dg * dg/dx
Fraction notation (can “cancel” terms to simplify)

df/dx = dg/dx * df/dg

For vector-valued functions, chain rule goes right to
left (only way dimensions match). We use this
order for backprop

Understanding Backprop

Goal of this section

Math of Backprop

Computation GraphPython Code

A Simple Use-Case:

● Train a Neural Network classifier on 2D input data
1. Describe model
2. Math
3. Computation graph
4. Code

Simple 2-layer Neural Network

x1

x0

x0

x1

“Hidden” layer
dim=100

Output

ŷ Give probability of
being class = 1

Input data

Parameters (weights) of the model

x1

x0

x0

“Hidden” layer
(N, 100)

Output
(N, 1)

ŷ Give probability of
being class = 1

Input data
(N, 2)

W1
(2,100)

W2
(100,1)

Parameters to learn for
the model!

x1

More rigorously:

x1

x0

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1

Sigmoid function:
σ(z) = 1/(1+e-z)

ŷ = σ(hW2)

x1

Goal: Minimize cross-entropy loss

x1

x0

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1
ŷ = σ(hW2)

Given a ground truth label
y and model prediction ŷ,
the cross entropy loss is:

L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]
x1

High level method

x1

x0

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1
ŷ = σ(hW2)

1. Randomly initialize weights
2. Calculate the gradient of the

loss wrt parameters W1 and W2
3. Update parameters via gradient

descent
4. Repeat 2-3 until done training

Neural Network Training Procedure

x1

Introducing: the computation graph

Model Architecture

Model weights

Data

x1

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1 ŷ = σ(hW2)

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

Introducing: the computation graph

Model Architecture

Model weights

Data

x1

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1 ŷ = σ(hW2)

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

Introducing: the computation graph

ŷ = σ(hW2)

Model Architecture

Model weights

Data

x1

x0

h = σ(xW1)

ŷ

 x ∈ R2

W1 ∈ R2x100 W2 ∈ R100x1

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

Introducing: the computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]

Math of backpropagation

● Gradient descent optimization strategy:
○ Choose learning rate α
○ Randomly initialize W1 and W2
○ Calculate ∇W1 = ∂L/∂W1 and ∇W2 = ∂L/∂W2
○ Update weights:

■ W1 -= α ∇W1
■ W2 -= α ∇W2

● How to calculate ∂L/∂W1 and ∂L/∂W2?
○ Answer: Backprop (chain rule)

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● The neural network can be represented as a series of computations
● f(x; W1, W2) = σ((σ(xW1) W2)

○ h = σ(xW1)
○ ŷ = σ(hW2)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● First step: calculate ∂L/∂ŷ
○ L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]
○ → ∂L/∂ŷ = - [y/ŷ - (1-y)/(1-ŷ)]

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂z2
○ ŷ = σ(z2)
○ → ∂L/∂z2 = ∂ŷ/∂z2 * ∂L/∂ŷ
○ Fact:

■ σ’(x) = σ(x) (1 - σ(x))
○ → ∂ŷ/∂z2 = ŷ (1 - ŷ)

*

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂W2
○ Just calculated: ∂L/∂z2
○ ∂L/∂W2 = ∂z2/∂W2 * ∂L/∂z2
○ Since z2 = hW2
○ Order for vector chain rule is left to right

■ Only way the dims match!

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂h
○ Previously calculated: ∂L/∂z2
○ ∂L/∂h = ∂z2/∂h * ∂L/∂z2
○ ∂z2/∂h = W2
○ ∂L/∂z2 is a scalar

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂z1
○ Previously calculated: ∂L/∂h
○ ∂L/∂z1 = ∂h/∂z1 * ∂L/∂h
○ Fact:

■ σ’(x) = σ(x) (1 - σ(x))
○ Since h=σ(z1), ∂h/∂z1= h (1 - h)

*

Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Final step: calculate ∂L/∂W1
○ Previously calculated: ∂L/∂z1
○ ∂L/∂W1 = ∂z1/∂W1 * ∂L/∂z1

Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]

→ ∂L/∂ŷ = - [y/ŷ - (1-y)/(1-ŷ)]

Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

∂L/∂W2 = ∂z2/∂W2* ∂L/∂z2

Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

∂L/∂h = ∂z2/∂h * ∂L/∂z2

Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R

∂L/∂W1 = ∂z1/∂W1* ∂L/∂z1

Running code + visualizing training

Model outputs better match data as loss
decreases

Recap

● Review of Neural Nets
● Showed math for analytically calculating gradients

○ Related to steps in computation graph
○ Provided code snippets for each part

● Questions?

