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Agenda

● Quick review from lecture
○ Neural Networks
○ Motivation for backprop

● Goal: Deepen your understanding of backprop
○ Math
○ Computation graph
○ Code



Review



Biological Motivation



In practice

● We use matrix operations instead of computing each neuron separately
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x ∈ R3, W ∈ R3x2, b ∈ R2 
→ f(WTx + b) ∈ R2



Motivation

● Gradient descent is a general method for optimizing parameters of a 
function

○ Goal: Minimize some loss (cost) function
● Update parameters with the gradient 

1. Calculate gradient of loss ∇θ J wrt parameters
2. Update parameters with learning rate α

■ θ -= α∇θ J
3. Repeat 1-2 until done training

Credit: zitaoshen.rbind.io/project/optimization/1-min-of-machine-learning-gradient-decent/



Math Review

● Chain rule from calculus
● Neural networks contain a LONG string of operations

○ Backprop ← → Applying chain rule over and over again 



Math Review

● Chain rule from calculus
● Neural networks contain a LONG string of operations

○ Backprop ← → Applying chain rule over and over again 

df/dx = df/dg * dg/dx
Fraction notation (can “cancel” terms to simplify)

df/dx = dg/dx * df/dg

For vector-valued functions, chain rule goes right to 
left (only way dimensions match).  We use this 
order for backprop



Understanding Backprop



Goal of this section

Math of Backprop

Computation GraphPython Code



A Simple Use-Case:

● Train a Neural Network classifier on 2D input data
1. Describe model
2. Math
3. Computation graph
4. Code



Simple 2-layer Neural Network 
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Parameters (weights) of the model
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More rigorously:
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W1 ∈ R2x100 W2 ∈ R100x1

Sigmoid function:
σ(z) = 1/(1+e-z)

ŷ = σ(hW2)
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Goal: Minimize cross-entropy loss
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ŷ = σ(hW2)

Given a ground truth label 
y and model prediction ŷ, 
the cross entropy loss is:

L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]
x1



High level method
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1. Randomly initialize weights 
2. Calculate the gradient of the 

loss wrt parameters W1 and W2
3. Update parameters via gradient 

descent
4. Repeat 2-3 until done training

Neural Network Training Procedure
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Introducing: the computation graph

Model Architecture
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Introducing: the computation graph

Model Architecture

Model weights

Data
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h Sigmoid ŷ Loss
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L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]



Math of backpropagation

● Gradient descent optimization strategy:
○ Choose learning rate α
○ Randomly initialize W1 and W2
○ Calculate ∇W1 = ∂L/∂W1 and ∇W2 = ∂L/∂W2
○ Update weights:

■ W1 -= α ∇W1 
■ W2 -= α ∇W2 

● How to calculate ∂L/∂W1  and ∂L/∂W2?
○ Answer: Backprop (chain rule)



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● The neural network can be represented as a series of computations
● f(x; W1, W2) = σ( (σ(xW1) W2 )

○ h = σ(xW1)
○ ŷ = σ(hW2)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● First step: calculate ∂L/∂ŷ
○ L = -[y ln(ŷ) + (1-y)ln(1-ŷ)]
○ → ∂L/∂ŷ = - [y/ŷ - (1-y)/(1-ŷ)]



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂z2
○ ŷ = σ(z2)
○ → ∂L/∂z2 =  ∂ŷ/∂z2 *  ∂L/∂ŷ
○ Fact:

■ σ’(x) = σ(x) (1 - σ(x))
○ → ∂ŷ/∂z2 = ŷ (1 - ŷ)

*



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂W2
○ Just calculated: ∂L/∂z2
○ ∂L/∂W2 =  ∂z2/∂W2 * ∂L/∂z2 
○ Since z2 = hW2
○ Order for vector chain rule is left to right

■ Only way the dims match!



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂h
○ Previously calculated: ∂L/∂z2
○ ∂L/∂h = ∂z2/∂h * ∂L/∂z2
○ ∂z2/∂h = W2
○ ∂L/∂z2 is a scalar



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Next step: calculate ∂L/∂z1
○ Previously calculated: ∂L/∂h
○ ∂L/∂z1 = ∂h/∂z1 * ∂L/∂h
○ Fact:

■ σ’(x) = σ(x) (1 - σ(x))
○ Since h=σ(z1), ∂h/∂z1= h (1 - h)

*



Calculating ∂L/∂W1 and ∂L/∂W2 (with code)

● Broken down even more:
○ z1 = xW1
○ h = σ(z1)
○ z2 = hW2
○ ŷ = σ(z2)

● Final step: calculate ∂L/∂W1
○ Previously calculated: ∂L/∂z1
○ ∂L/∂W1 = ∂z1/∂W1 * ∂L/∂z1



Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph

Model Architecture

Model weights

Data

*

 x ∈ R2

x0

x1

W1 ∈ R2x100

Sigmoid *

W2 ∈ R2x100

h Sigmoid ŷ Loss

 y ∈ R
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→ ∂L/∂ŷ = - [y/ŷ - (1-y)/(1-ŷ)]



Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph
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Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph
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Calculating ∂L/∂W1 and ∂L/∂W2 + computation graph
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Running code + visualizing training

Model outputs better match data as loss 
decreases



Recap

● Review of Neural Nets
● Showed math for analytically calculating gradients

○ Related to steps in computation graph
○ Provided code snippets for each part

● Questions?


