Backpropagation

TA: Zane Durante
CS 231n April 14, 2023

Some slides taken from lecture, credit to: Fei-Fei Li, Yunzhu Li, Ruohan Gao

Agenda

- Quick review from lecture
- Neural Networks
- Motivation for backprop
- Goal: Deepen your understanding of backprop
- Math
- Computation graph
- Code

Review

Impulses carried toward cell body

In practice

- We use matrix operations instead of computing each neuron separately

$$
\begin{aligned}
& x \in R^{3}, W \in R^{3 \times 2}, b \in R^{2} \\
& \rightarrow f\left(W^{\top} x+b\right) \in R^{2}
\end{aligned}
$$

Motivation

- Gradient descent is a general method for optimizing parameters of a function
- Goal: Minimize some loss (cost) function
- Update parameters with the gradient

1. Calculate gradient of loss ∇_{θ} J wrt parameter
2. Update parameters with learning rate α

- $\quad \theta-=\alpha \nabla_{\theta}$ J

3. Repeat 1-2 until done training

Math Review

- Chain rule from calculus
- Neural networks contain a LONG string of operations
- Backprop $\leftarrow \rightarrow$ Applying chain rule over and over again

$$
\begin{gathered}
\frac{d}{d x}\left[(f(x))^{n}\right]=n(f(x))^{n-1} \cdot f^{\prime}(x) \\
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
\end{gathered}
$$

Math Review

- Chain rule from calculus
- Neural networks contain a LONG string of operations
- Backprop $\leftarrow \rightarrow$ Applying chain rule over and over again

$$
\begin{gathered}
\frac{d}{d x}\left[(f(x))^{n}\right]=n(f(x))^{n-1} \cdot f^{\prime}(x) \\
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)
\end{gathered}
$$

$d f / d x=d f / d g$ * $d g / d x$

For vector-valued functions, chain rule goes right to left (only way dimensions match). We use this order for backprop

$$
d f / d x=d g / d x x^{*} d f / d g
$$

Understanding Backprop

Goal of this section

A Simple Use-Case:

- Train a Neural Network classifier on 2D input data

1. Describe model
2. Math
3. Computation graph
4. Code

Visualization of dataset

Simple 2-layer Neural Network

Parameters (weights) of the model

More rigorously:

Sigmoid function:
$\sigma(\mathrm{z})=1 /\left(1+\mathrm{e}^{-\mathrm{z}}\right)$

$$
\begin{aligned}
& x \in R^{2} \\
& \hline x_{0} \\
& \hline x_{1}
\end{aligned}
$$

$$
W_{1} \in R^{2 \times 100}
$$

$$
W_{2} \in R^{100 \times 1}
$$

\square $\hat{y}=\boldsymbol{\sigma}\left(\mathrm{hW}_{2}\right)$

Goal: Minimize cross-entropy loss

High level method

Introducing: the computation graph

Math of backpropagation

- Gradient descent optimization strategy:
- Choose learning rate α
- Randomly initialize W_{1} and W_{2}
- Calculate $\nabla \mathrm{W}_{1}=\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\nabla \mathrm{W}_{2}=\partial \mathrm{L} / \partial \mathrm{W}_{2}$
- Update weights:
- $W_{1}=\alpha \nabla W_{1}$
- $W_{2}=\alpha \nabla W_{2}$
- How to calculate $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$?
- Answer: Backprop (chain rule)

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- The neural network can be represented as a series of computations
- $f\left(x ; W_{1}, W_{2}\right)=\sigma\left(\left(\sigma\left(x W_{1}\right) W_{2}\right)\right.$

$$
\text { - } \mathrm{h}=\sigma\left(x \mathrm{~W}_{1}\right)
$$

$$
0 \quad \hat{y}=\sigma\left(\mathrm{hW}_{2}\right)
$$

- Broken down even more:

```
class Classifier():
    def __init__(self):
        self.w1, self.w2 = get_weights()
    def forward(self, x):
        self.x = x
        z1 = self.x @ self.w1
        self.h = sigmoid(z1)
        z2 = self.h @ self.w2
        y_pred = sigmoid(z2)
        return y_pred
```


Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:

$$
\begin{array}{cc}
\circ & z_{1}=x W_{1} \\
\circ & h=\sigma\left(z_{1}\right) \\
\circ & z_{2}=h W_{2} \\
\circ & \hat{y}=\sigma\left(z_{2}\right)
\end{array}
$$

- First step: calculate $\partial \mathrm{L} / \partial \hat{y}$
- $L=-[y \ln (\hat{y})+(1-y) \ln (1-\hat{y})]$
- $\rightarrow \partial L / \partial \hat{y}=-[y / \hat{y}-(1-y) /(1-\hat{y})]$
def backward(self, v pred, v): grad_y_pred $=-\left(n p . d i v i d e\left(y, y _p r e d\right) ~-~ n p . d i v i d e\left(1-y, ~ 1-y _p r e d\right)\right) ~$ grad_w2 = self.h.T @ (y_pred * (1-y_pred) * grad_y_pred) grad_h $=$ self.w2.T * (grad_y_pred * y_pred * (1-y_pred)) grad_w1 = self.x.T @ (self.h * (1-self.h) * grad_h)
\# Update parameters self.w1 -= 1e-4 * grad_w1 self.w2 -= 1e-4 * grad_w2

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:
$\begin{array}{cc}\circ & z_{1}=x W_{1} \\ \circ & h=\sigma\left(z_{1}\right) \\ \circ & z_{2}=h W_{2} \\ \circ & \hat{y}=\sigma\left(z_{2}\right)\end{array}$
- Next step: calculate $\partial \mathrm{L} / \partial z_{2}$
- $\hat{y}=\sigma\left(z_{2}\right)$
- $\rightarrow \partial L / \partial z_{2}=\partial \hat{y} / \partial z_{2}{ }^{*} \partial L / \partial \hat{y}$
- Fact:
- $\quad \sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$
- $\rightarrow \partial \hat{y} / \partial z_{2}=\hat{\mathbf{y}}(1-\hat{y})$
def backward(self, y_pred, y):
grad_y_pred $=-(n p . d i v i d e(v, y$ pred) $-n p$.divide(1-y, 1-y_pred)) grad_w2 = self.h.T @ y_pred * (1-y_pred) * grad_y_pred) grad_h $=$ self.w2.T * (grad_y_pred * y_pred * (1-y_pred)) grad_w1 = self.x.T @ (self.h * (1-self.h) * grad_h)
\# Update parameters self.w1 -= 1e-4 * grad_w1 self.w2 -= 1e-4 * grad_w2

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:
- $z_{1}=x W_{1}$
- $h=\sigma\left(z_{1}\right)$
- $\mathrm{z}_{2}=\mathrm{hW} \mathrm{H}_{2}$
- $\hat{y}=\sigma\left(z_{2}\right)$
- Next step: calculate $\partial \mathrm{L} / \partial \mathrm{W}_{2}$
- Just calculated: $\partial \mathrm{L} / \partial \mathrm{z}_{2}$
- $\partial L / \partial W_{2}=\partial z_{2} / \partial W_{2} * \partial L / \partial z_{2}$
- Since $z_{2}=h W_{2}$
- Order for vector chain rule is left to right
- Only way the dims match!

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:
- $z_{1}=x W_{1}$
- $h=\sigma\left(z_{1}\right)$
- $z_{2}=h W_{2}$
- $\hat{y}=\sigma\left(z_{2}\right)$
- Next step: calculate $\partial \mathrm{L} / \partial \mathrm{h}$
- Previously calculated: $\partial \mathrm{L} / \partial z_{2}$
- $\partial \mathrm{L} / \partial \mathrm{h}=\partial \mathrm{z}_{2} / \partial \mathrm{h} * \partial \mathrm{~L} / \partial \mathrm{z}_{2}$
- $\partial z_{2} / \partial h=W_{2}$
- $\partial L / \partial z_{2}$ is a scalar
def backward(self, y_pred, y): grad_y_pred $=-\left(n p . d i v i d e\left(y, y _p r e d\right) ~-~ n p . d i v i d e\left(1-y, 1-y _p r e d\right)\right)$ grad_w2 = self.h.T @ (y_pred * (1-y_pred) * grad_y_pred) grad_h $=$ self.w2.T ${ }^{*}$ grad_y_pred * y_pred * (1-y_pred)) grad_w1 = self.x.T @ (self.h * (1-self.h) * grad_h)
\# Update parameters self.w1 -= 1e-4 * grad_w1 self.w2 -= 1e-4 * grad_w2

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:
- $z_{1}=x W_{1}$
- $h=\sigma\left(z_{1}\right)$
- $z_{2}=h W_{2}$
- $\hat{y}=\sigma\left(z_{2}\right)$
- Next step: calculate $\partial \mathrm{L} / \partial \mathrm{z}_{1}$
- Previously calculated: $\partial \mathrm{L} / \partial \mathrm{h}$
def backward(self, y_pred, y): grad_y_pred $=$-(np.divide(y, y_pred) - np.divide(1-y, 1-y_pred)) grad_w2 = self.h.T @ (y_pred * (1-y_pred) * grad_y_pred)
* grad_h $=$ self.w2.T * (grad_y_pred * y_pred * (1-y_pred)) grad_w1 $=$ self.x.T @ (self.h * (1-self.h) ${ }^{*}$ grad_h
\# Update parameters
self.w1 -= 1e-4 * grad_w1 self.w2 -= 1e-4 * grad_w2
- $\partial L / \partial z_{1}=\partial h / \partial z_{1} * \partial L / \partial h$
- Fact:
- $\quad \sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$
- Since $h=\sigma\left(z_{1}\right), \partial h / \partial z_{1}=h(\mathbf{1}-\mathrm{h})$

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}$ (with code)

- Broken down even more:

$$
\begin{array}{cl}
\circ & \mathbf{z}_{1}=x W_{1} \\
\circ & h=\sigma\left(z_{1}\right) \\
\circ & z_{2}=h W_{2} \\
\circ & \hat{y}=\sigma\left(z_{2}\right)
\end{array}
$$

- Final step: calculate $\partial \mathrm{L} / \partial \mathrm{W}_{1}$
- Previously calculated: $\partial L / \partial z_{1}$
- $\partial L / \partial W_{1}=\partial z_{1} / \partial W_{1}{ }^{*} \partial L / \partial z_{1}$
def backward(self, y_pred, y): grad_y_pred = -(np.divide(y, y_pred) - np.divide(1-y, 1-y_pred)) grad_w2 = self.h.T @ (y_pred * (1-y_pred) * grad_y_pred) grad_h $=$ self.w2.T * (grad_y_pred * y_pred * (1-y_pred)) grad_w1 = self.x.T@ (self.h * (1-self.h) * grad_h)
\# Update parameters
self.w1 -= 1e-4 * grad_w1 self.w2 -= 1e-4 * grad_w2

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}+$ computation graph

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}+$ computation graph

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}+$ computation graph

Calculating $\partial \mathrm{L} / \partial \mathrm{W}_{1}$ and $\partial \mathrm{L} / \partial \mathrm{W}_{2}+$ computation graph

Running code + visualizing training

```
class Classifier():
    def __init__(self):
        self.w1, self.w2 = get_weights()
    def forward(self, x):
        self.x = x
        z1 = self.x @ self.w1
        self.h = sigmoid(z1)
        z2 = self.h @ self.w2
        y_pred = sigmoid(z2)
        return y_pred
    def backward(self, y_pred, y):
        grad_y_pred = -(np.divide(y, y_pred) - np.divide(1-y, 1-y_pred))
        grad_w2 = self.h.T @ (y_pred * (1-y_pred) * grad_y_pred)
        grad_h = self.w2.T * (grad_y_pred * y_pred * (1-y_pred))
        grad_w1 = self.x.T @ (self.h * (1-self.h) * grad_h)
        # Update parameters
        self.w1 -= 1e-4 * grad_w1
        self.w2 -= 1e-4 * grad_w2
```

for t in range(10000):
\# Visualize classifier
if $t==5$ or $t==20$ or $t==100$ or $t \% 1000==0$:
plot = plot_decision_boundary(clf, x)
visualize_dataset(x, y, title="Loss = \{\}".format(round(loss, 4)))
\# Predict on data (forward)
y_pred $=$ clf.forward (x)
\# Backpropogate errors
clf.backward(y_pred, y)
\# Calculate loss for next plot
loss $=$ cross_entropy (y_pred, y)

Model outputs better match data as loss decreases

Recap

- Review of Neural Nets
- Showed math for analytically calculating gradients
- Related to steps in computation graph
- Provided code snippets for each part
- Questions?

