Lecture 4: Neural Networks and Backpropagation

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 1

AWS credit: create an account, submit the number ID using google form by **4/13**.

Assignment 1 due Fri 4/21 at 11:59pm

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 2

Administrative: Project Proposal

Due Mon 4/24

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 3

Administrative: Discussion Section

Discussion section tomorrow:

Backpropagation

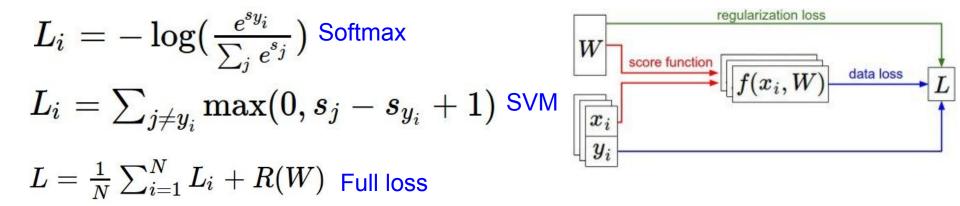
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 4

Recap

- We have some dataset of (x,y)
- We have a **score function**: *s*
- We have a loss function:

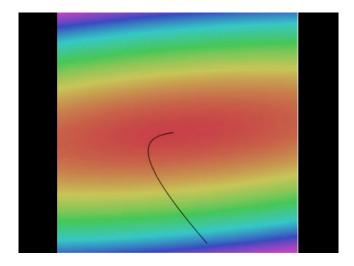
$$s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 5

Finding the best W: Optimize with Gradient Descent



April 13, 2023

Vanilla Gradient Descent

while True:

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain weights grad = evaluate gradient(loss fun, data, weights)

weights += - step size * weights grad # perform parameter update

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 7

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

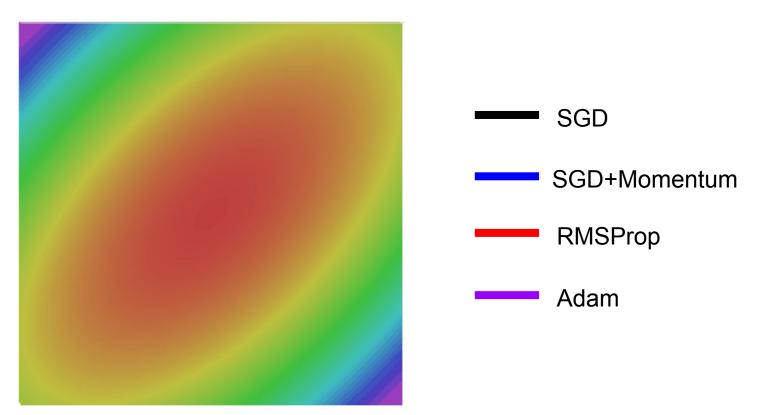
Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

April 13, 2023

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Fei-Fei Li, Yunzhu Li, Ruohan Gao

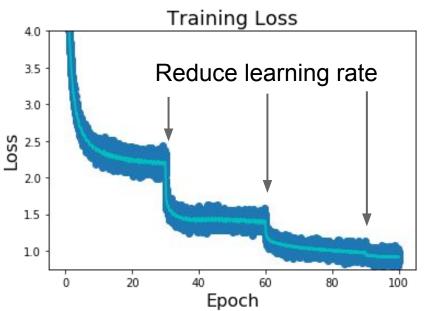
Last time: fancy optimizers



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 9

Last time: learning rate scheduling



Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$

inverse sqrt:
$$lpha_t=lpha_0/\sqrt{t}$$

 α_0 : Initial learning rate α_t : Learning rate at epoch t T : Total number of epochs

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 10

Today:

Deep Learning

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 11

Dall-E 2

"Teddy bears working on new AI research on the moon in the 1980s." "Rabbits attending a college seminar on human anatomy."

"A wise cat meditating in the Himalayas searching for enlightenment."

April 13, 2023

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

Fei-Fei Li, Yunzhu Li, Ruohan Gao

vibrant portrait painting of Salvador Dalí with a robotic half face

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation panda mad scientist mixing sparkling chemicals, artstation

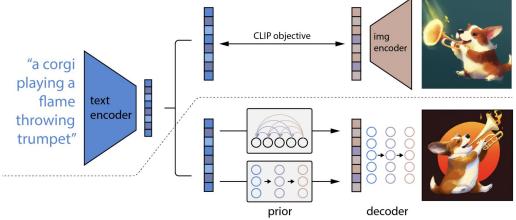
a corgi's head depicted as an explosion of a nebula

a dolphin in an astronaut suit on saturn, artstation

Fei-Fei Li, Yunzhu Li, Ruohan Gao

napoleon holding a piece of cheese

a teddybear on a skateboard in times square



Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.

Lecture 4 - 13

GPT-4

User What is unusual about this image?

Source: Barnorama

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing board attached to the roof of a moving taxi.

User Can you explain this meme? Sometimes I just look at pictures of the earth from space and I marvel at how beautiful it all is.

GPT-4 This meme is a joke that combines two unrelated things: pictures of the earth from space and chicken nuggets.

The text of the meme suggests that the image below is a beautiful picture of the earth from space. However, the image is actually of chicken nuggets arranged to vaguely resemble a map of the world.

The humor in this meme comes from the unexpected juxtaposition of the text and the image. The text sets up an expectation of a majestic image of the earth, but the image is actually something mundane and silly.

April 13, 2023

Image source: https://openai.com/research/gpt-4

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Segment Anything Model (SAM)

Kirillov et al., Segment Anything, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 15

Neural Networks

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 16

Neural networks: the original linear classifier

(**Before**) Linear score function: f=Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 17

Neural networks: 2 layers

(Before) Linear score function: $egin{array}{cc} f = Wx \ ({f Now})$ 2-layer Neural Network $egin{array}{cc} f = W_2\max(0,W_1x) \ x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H} \end{array}$

(In practice we will usually add a learnable bias at each layer as well)

April 13, 2023

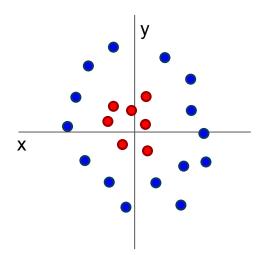
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Why do we want non-linearity?

Lecture 4 -

19

April 13, 2023

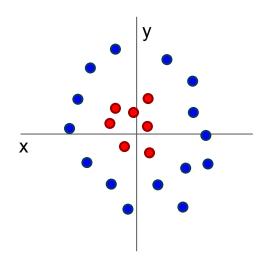


Cannot separate red and blue points with linear classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Why do we want non-linearity?

 $f(x, y) = (r(x, y), \theta(x, y))$



Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 20

r

Neural networks: also called fully connected network

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Neural networks: 3 layers

(**Before**) Linear score function:

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

f = Wx

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

April 13, 2023

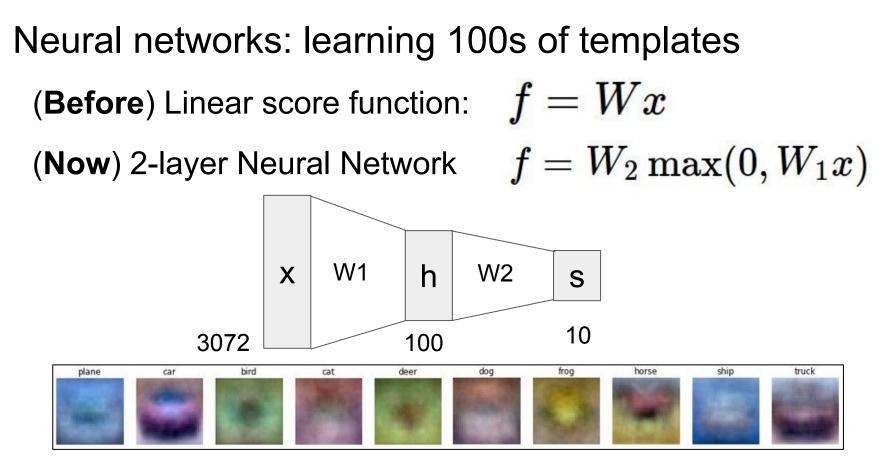
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ W1 h W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 23



Learn 100 templates instead of 10.

Share templates between classes

April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

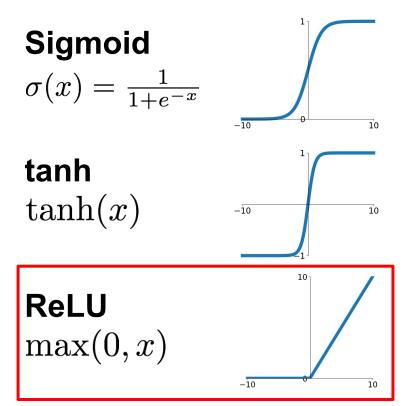
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q:** What if we try to build a neural network without one?

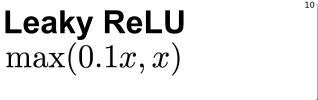
$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

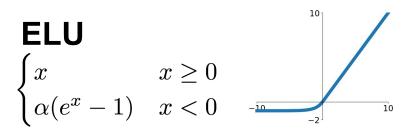


ReLU is a good default choice for most problems



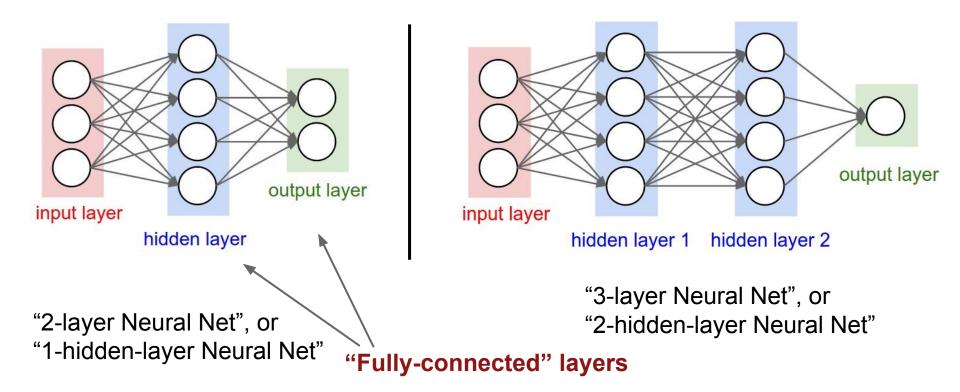
April 13, 2023

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

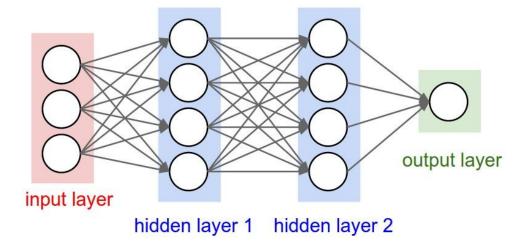
Neural networks: Architectures



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 28

Example feed-forward computation of a neural network



forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 29

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Fei-Fei Li, Yunzhu Li, Ruohan Gao

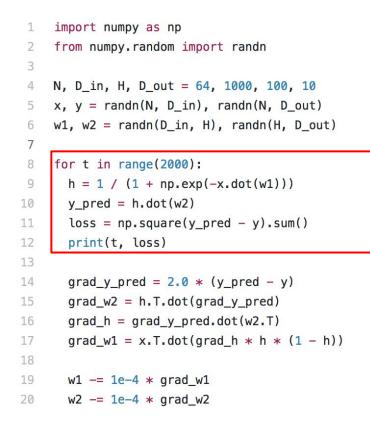
Lecture 4 - 30

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 31



Define the network

Forward pass

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 32

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad_y pred = 2.0 * (y pred - y)
14
       grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Forward pass

Calculate the analytical gradients

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 33

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

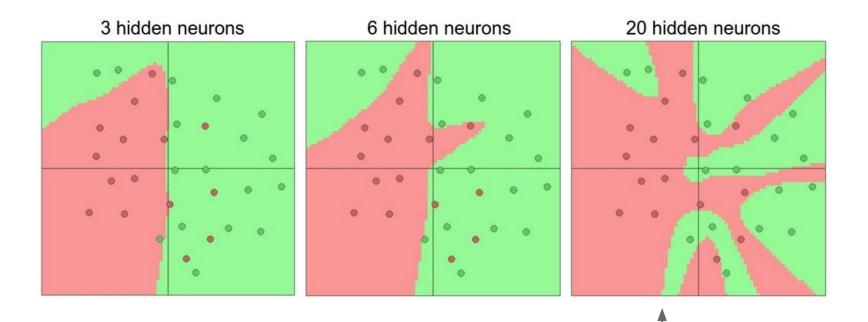
Calculate the analytical gradients

Gradient descent

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 34

Setting the number of layers and their sizes



more neurons = more capacity

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 35 April 07, 2022

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 0 M (Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo /classify2d.html)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

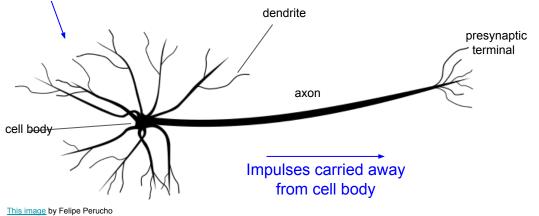
Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 36 April 07, 2022

This image by Fotis Bobolas is licensed under CC-BY 2.0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

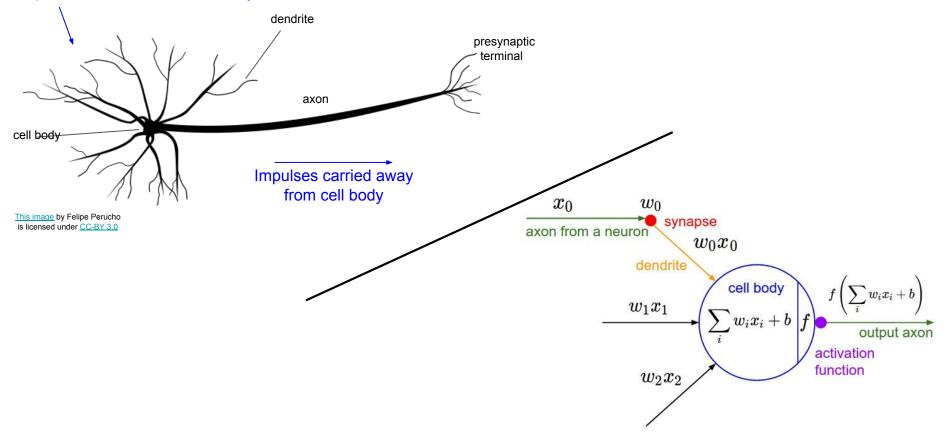
Lecture 4 - 37



is licensed under CC-BY 3.0

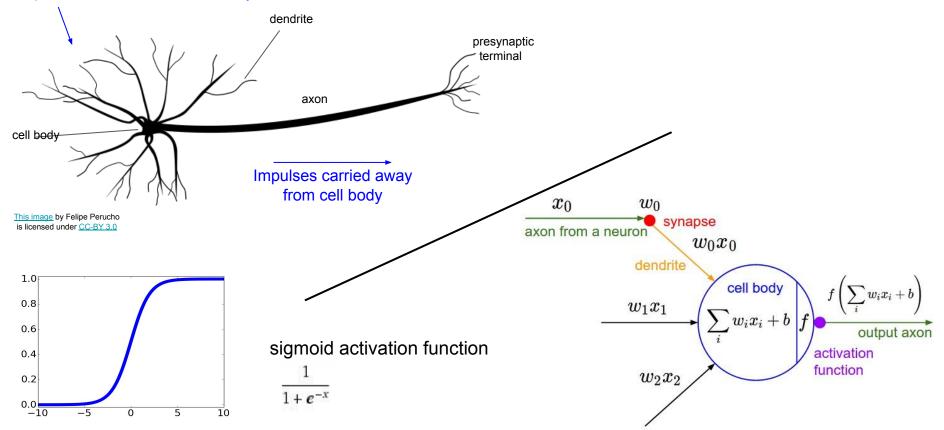
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 38



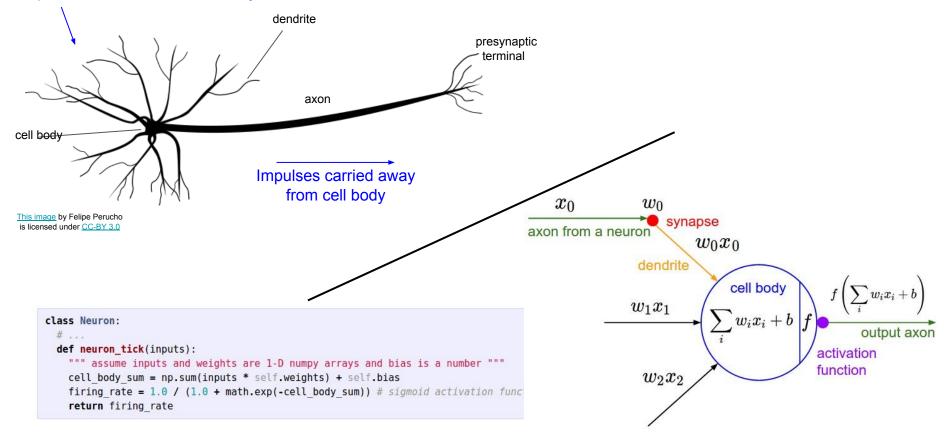
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 39



Fei-Fei Li, Yunzhu Li, Ruohan Gao

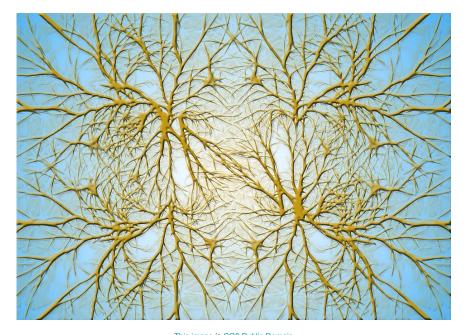
Lecture 4 - 40



Fei-Fei Li, Yunzhu Li, Ruohan Gao

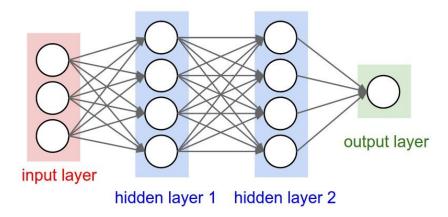
Lecture 4 - 41

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

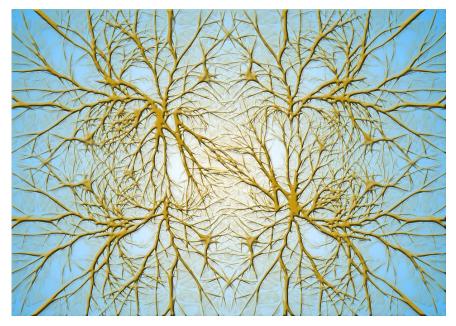


April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

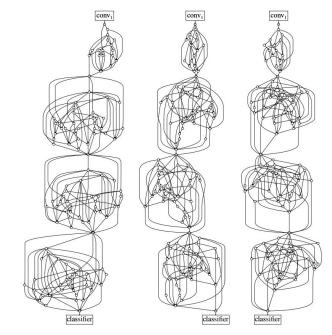
Lecture 4 - 42

Biological Neurons: Complex connectivity patterns



This image is CC0 Public Domain

But neural networks with random connections can work too!



Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 43

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Lecture 4 - 44

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
Nonlinear score function
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
SVM Loss on predictions

$$\begin{split} R(W) &= \sum_k W_k^2 \text{ Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \text{Total loss: data loss + regularization} \end{split}$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 45

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute } \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 46

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

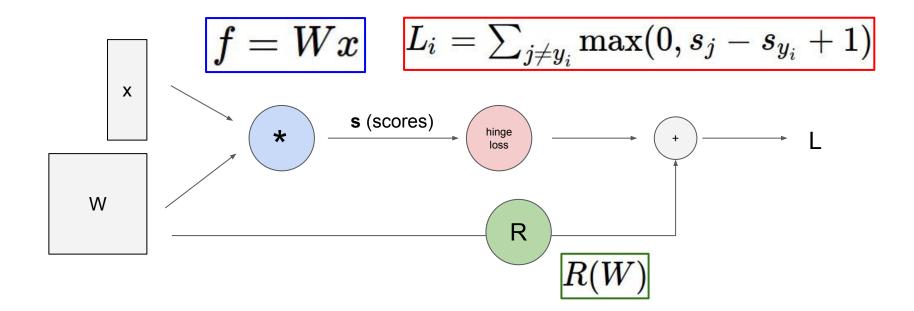
Problem: Not feasible for very complex models!

April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 47

Better Idea: Computational graphs + Backpropagation



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 48

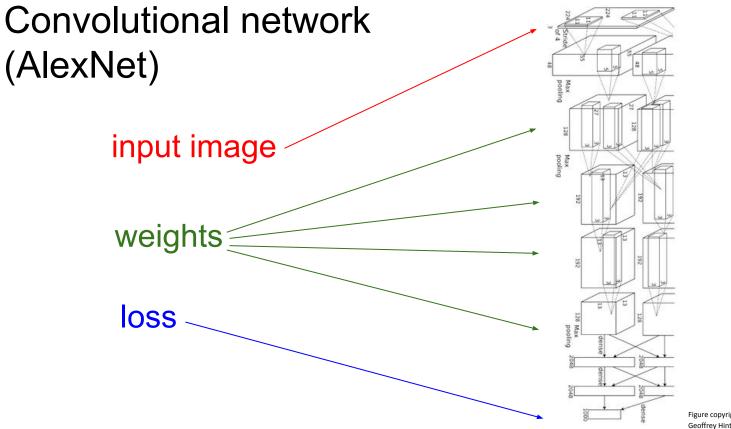


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 49

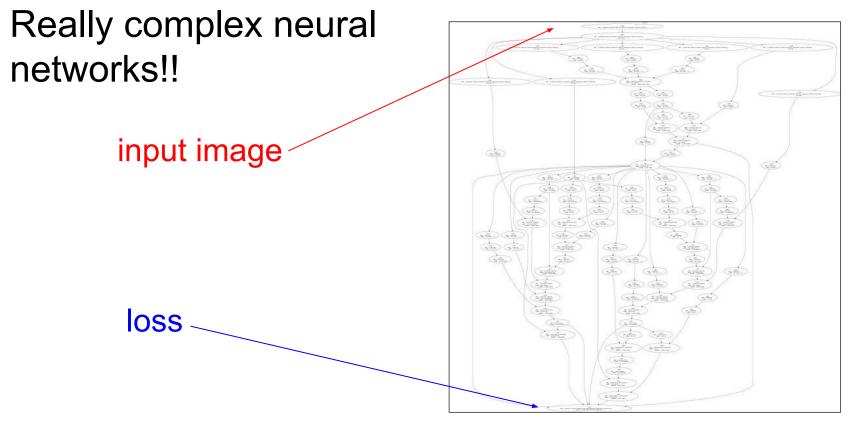
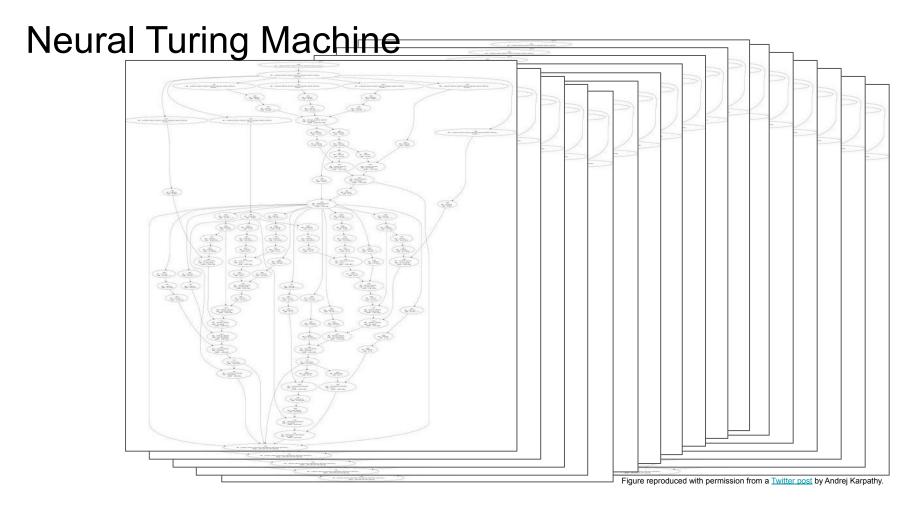


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 50



Lecture 4 -

Solution: Backpropagation

Fei-Fei Li, Yunzhu Li, Ruohan Gao

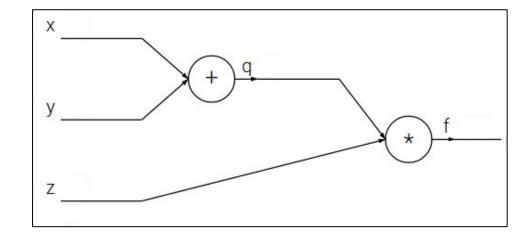
Lecture 4 - 52

$$f(x,y,z) = (x+y)z$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 53

$$f(x,y,z) = (x+y)z$$



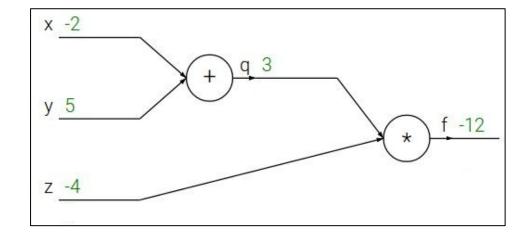
April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 54

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

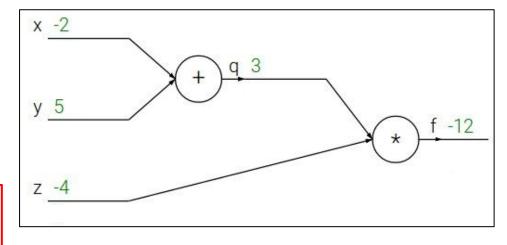


Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 55

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$



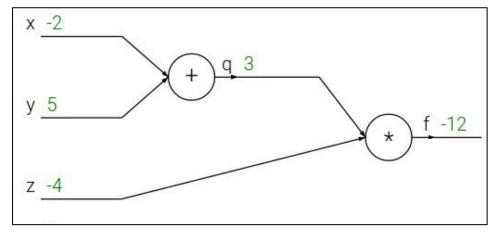
Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 56

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{array}{ll} q=x+y & rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \ f=qz & rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q \end{array}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 57

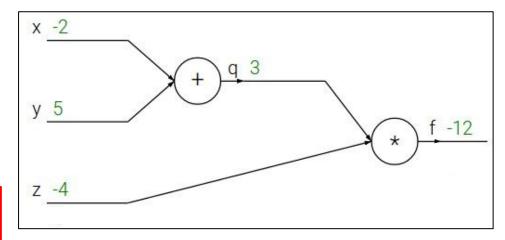
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 58

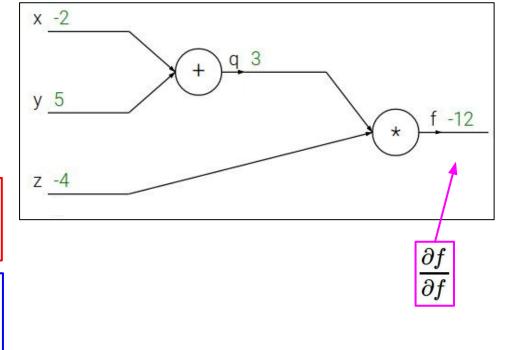
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 59

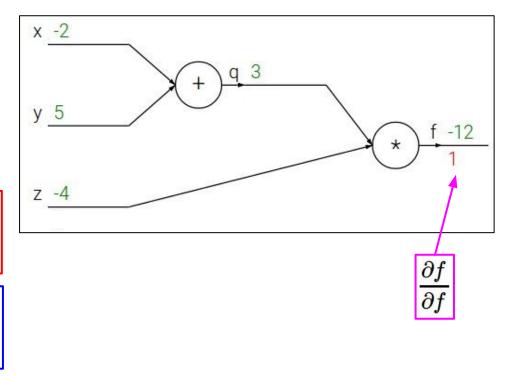
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 60

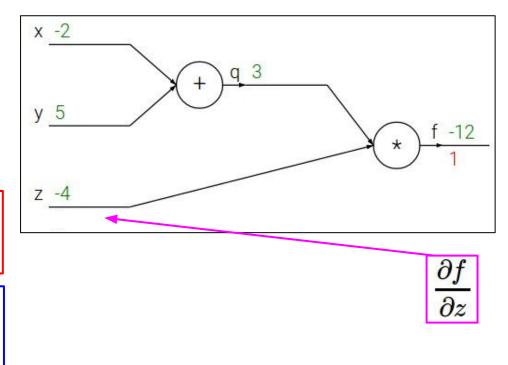
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 61

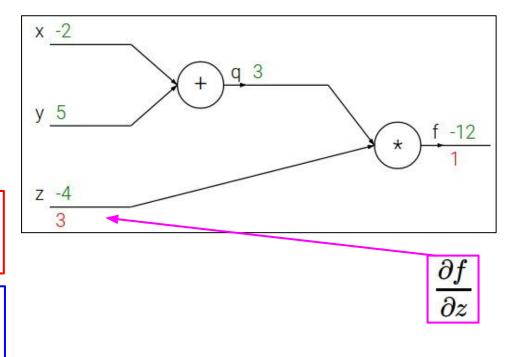
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 62

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

 $\frac{\partial f}{\partial z} = q$

x -2

y 5

z -4

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 63

q 3

April 07, 2022

f -12

 ∂f

*

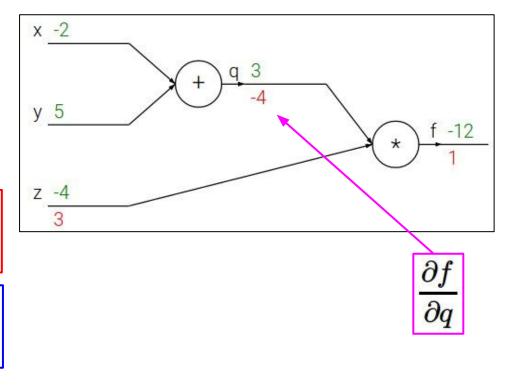
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 64

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

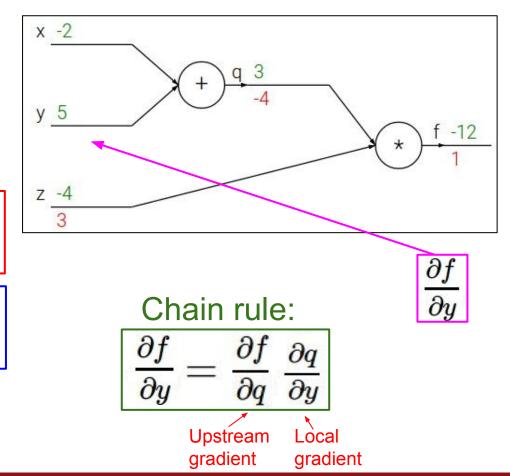
$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 65

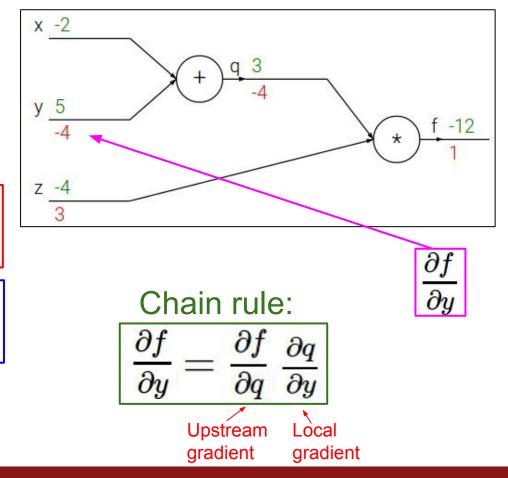
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

 ∂z

Nant:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 66

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

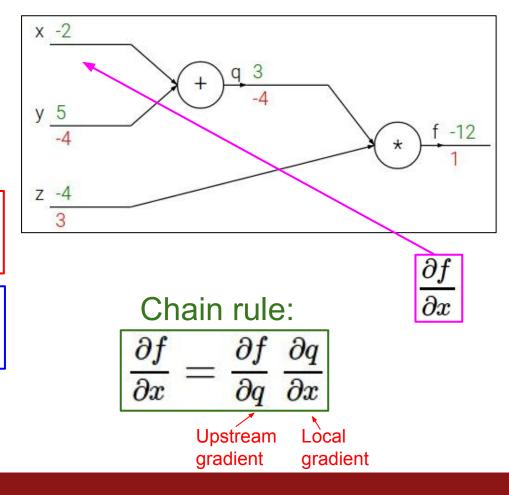
$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 67

$$f(x, y, z) = (x + y)z$$

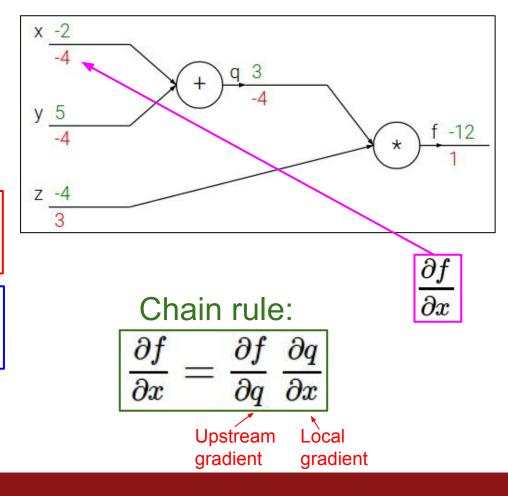
e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

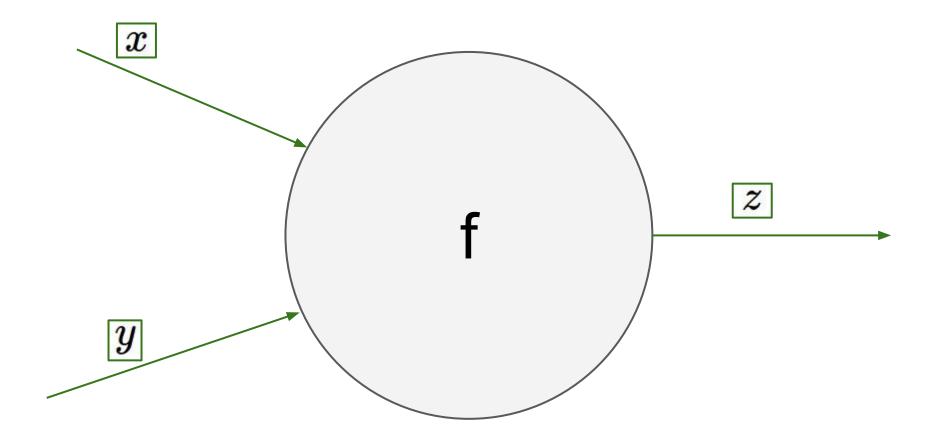
 $\frac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

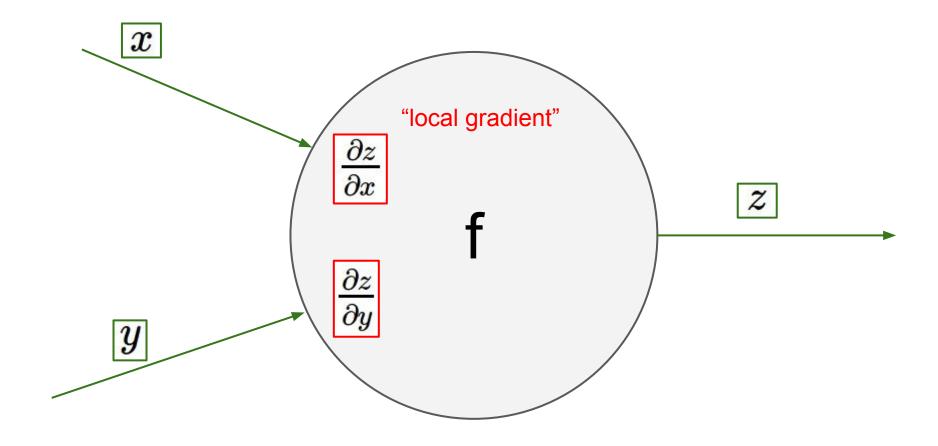


Fei-Fei Li, Jiajun Wu, Ruohan Gao

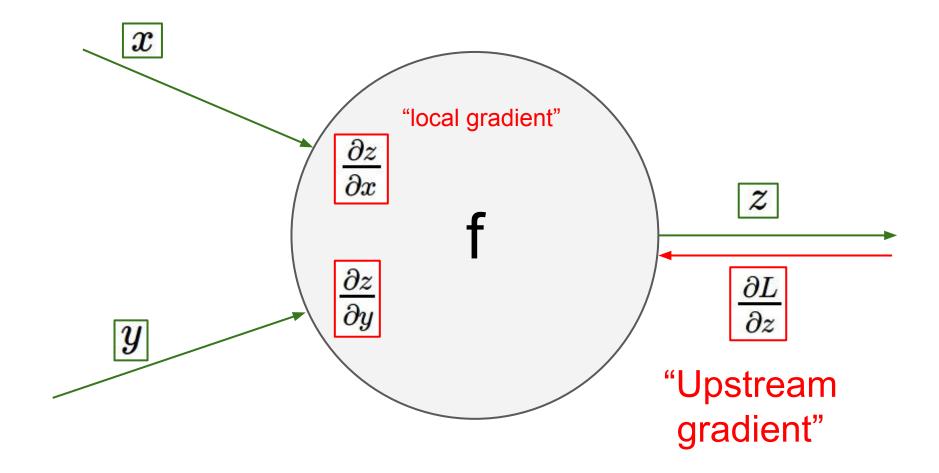
Lecture 4 - 68



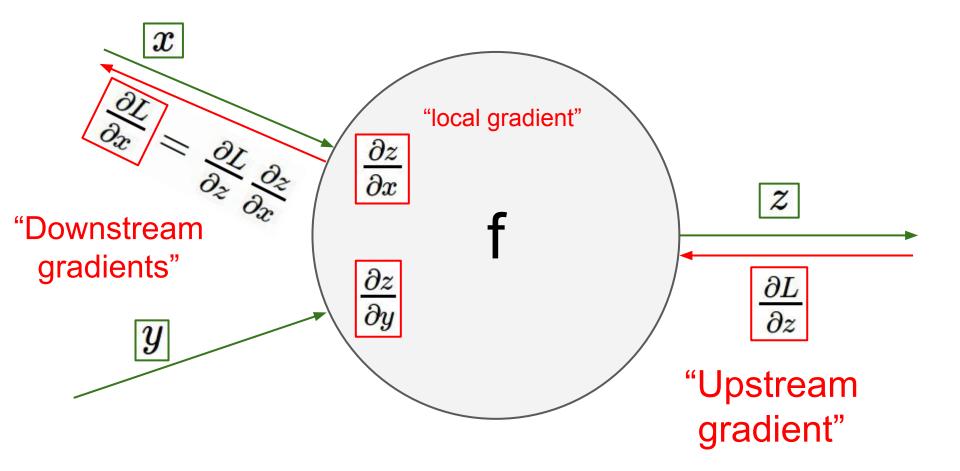
Lecture 4 - 69



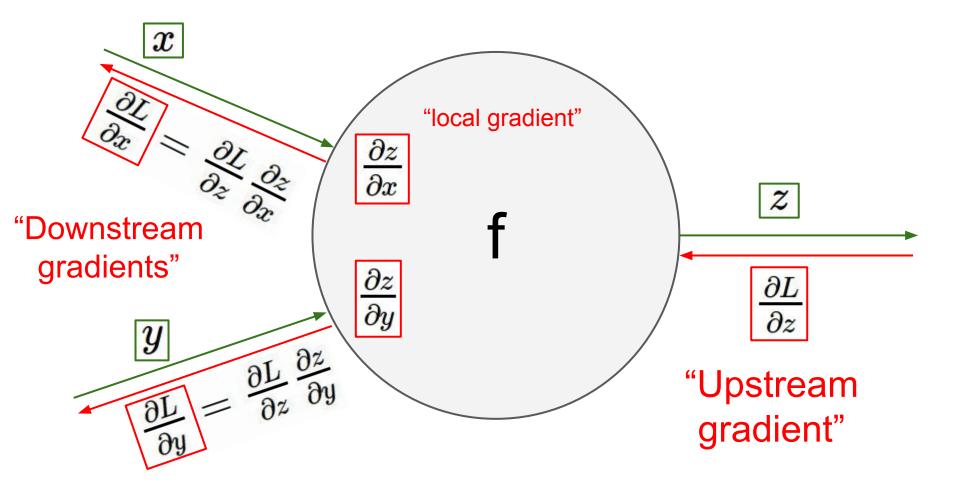
Lecture 4 - 70



Lecture 4 - 71

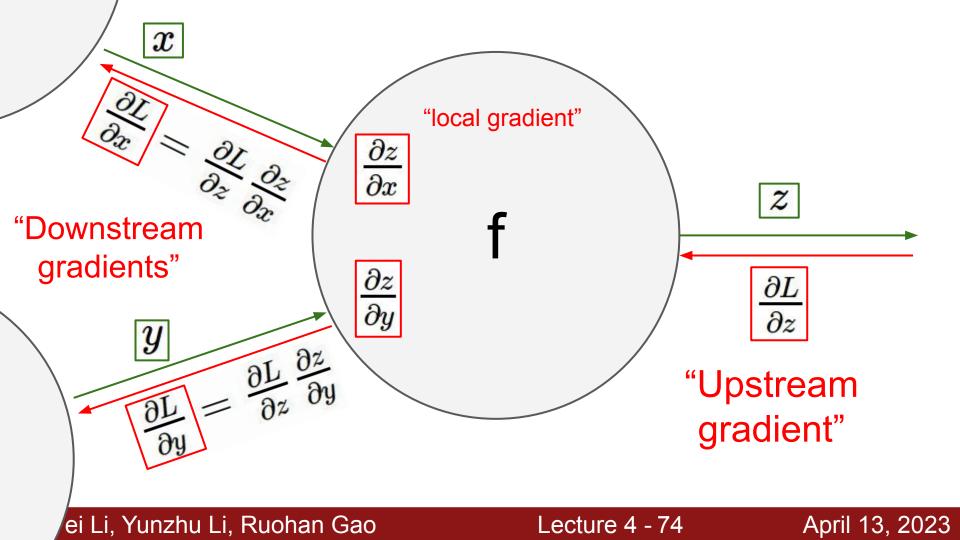


Lecture 4 - 72

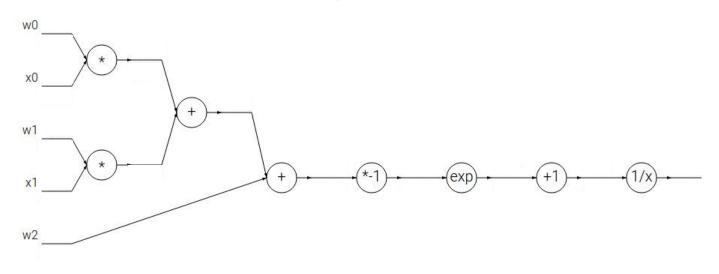


Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 73



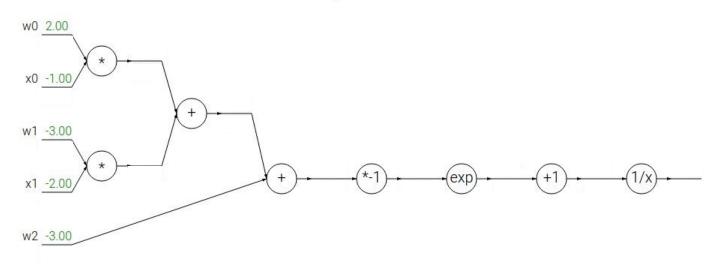
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 75

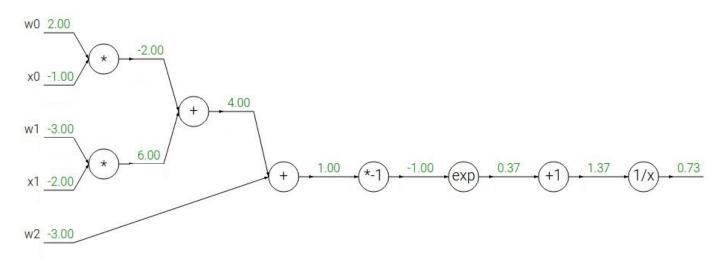
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 76

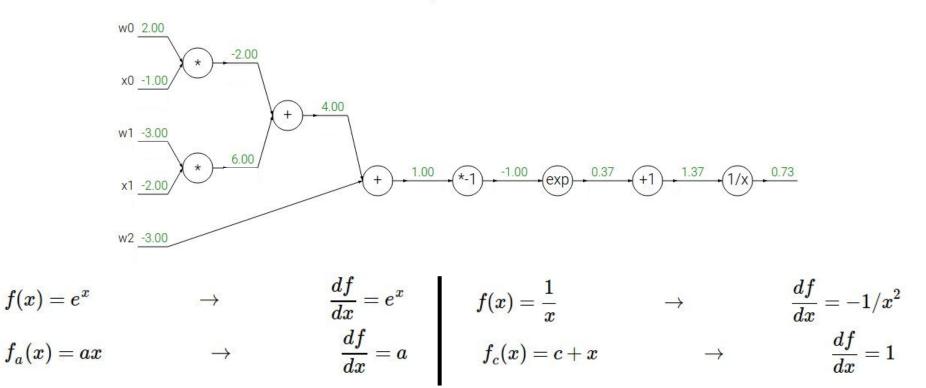
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 77

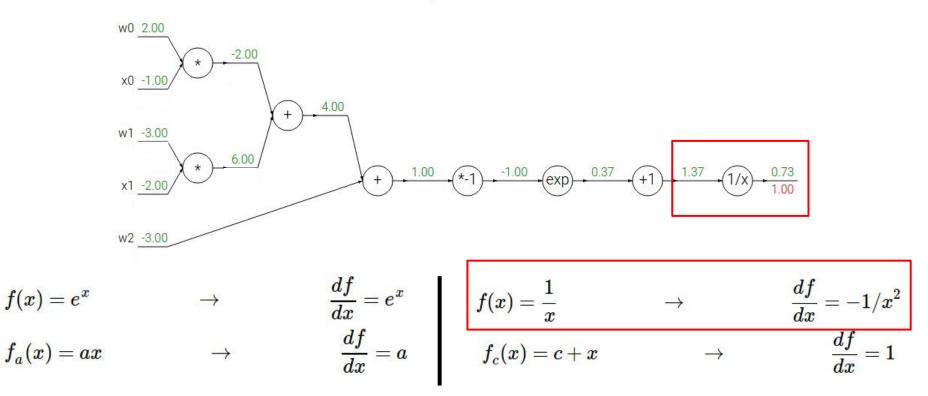
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 78

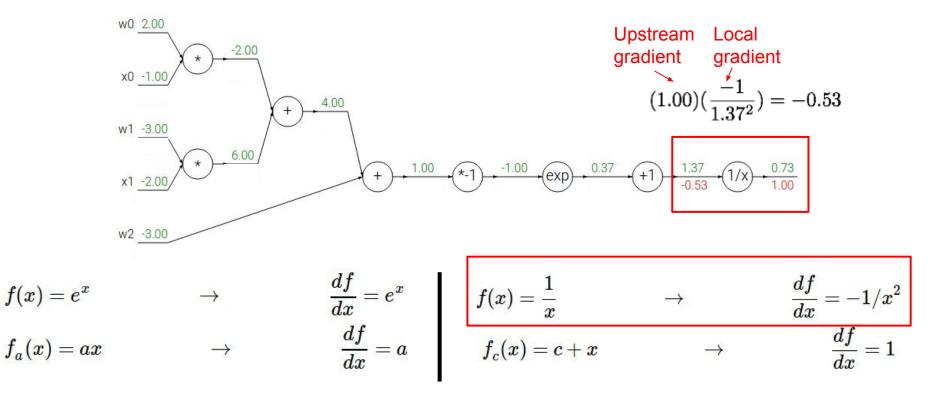
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 79

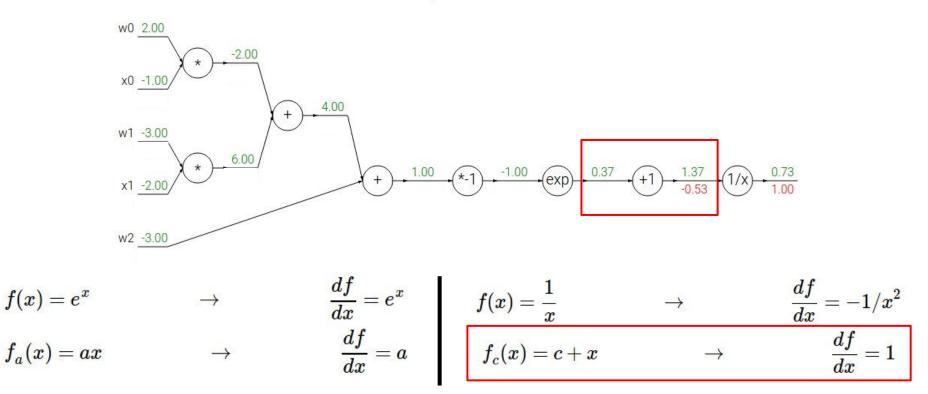
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 80

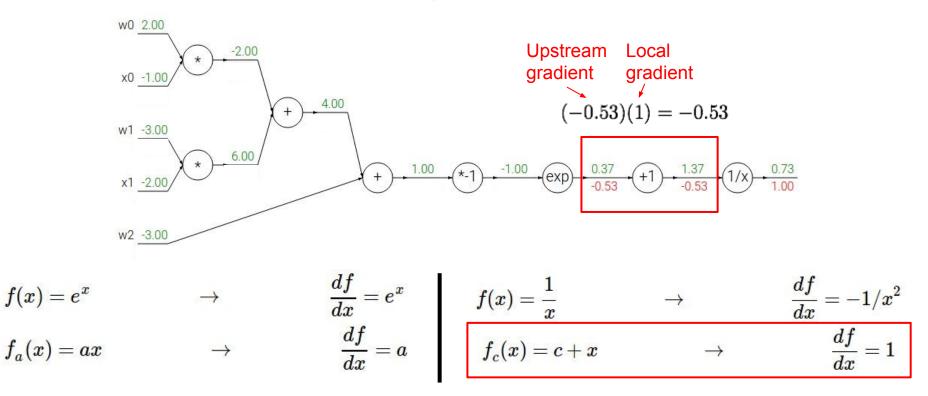
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 81

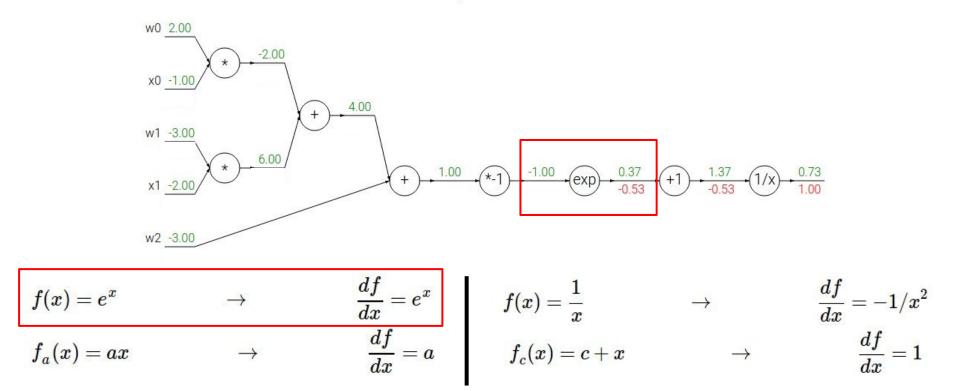
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 82

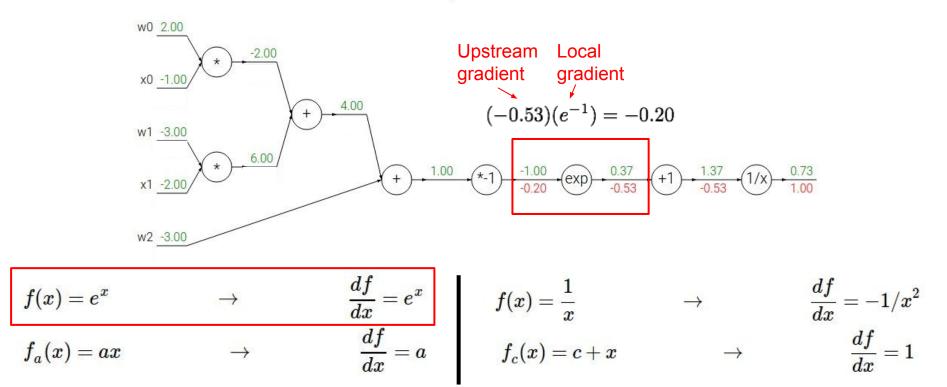
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 83

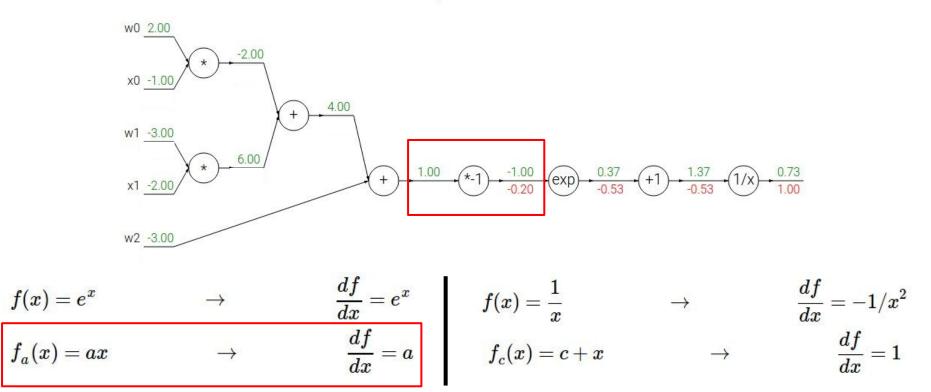
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 84

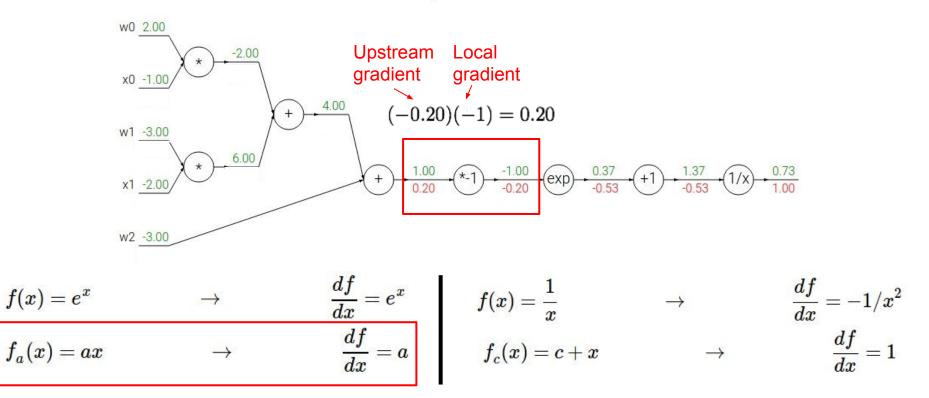
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 85

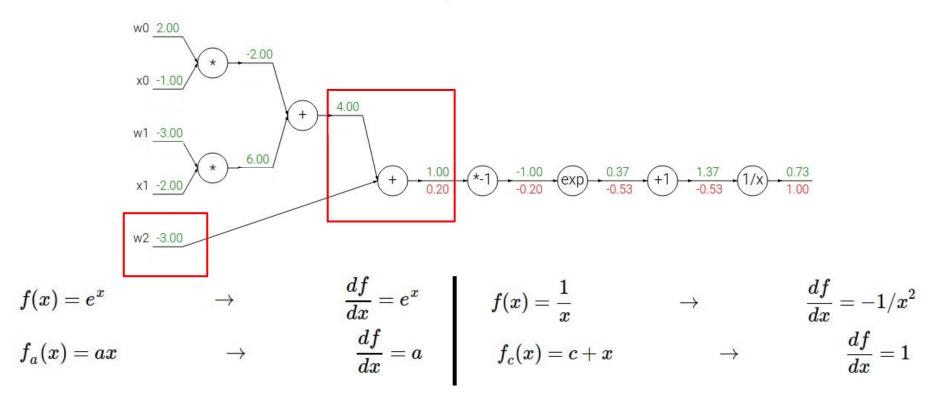
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 86

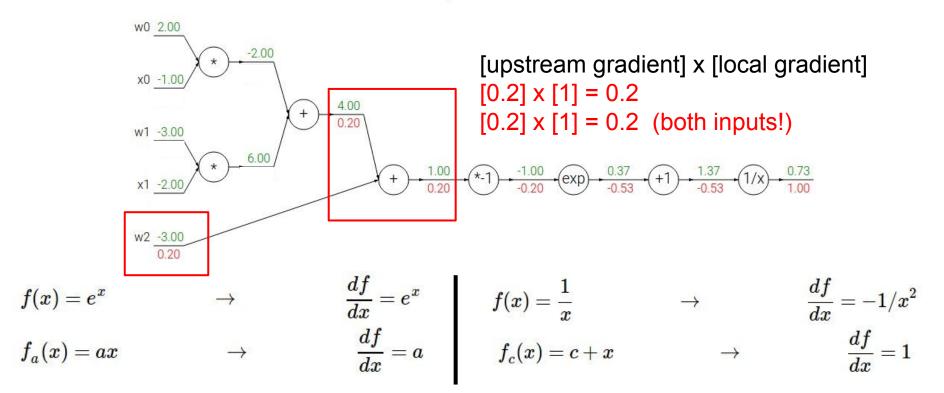
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

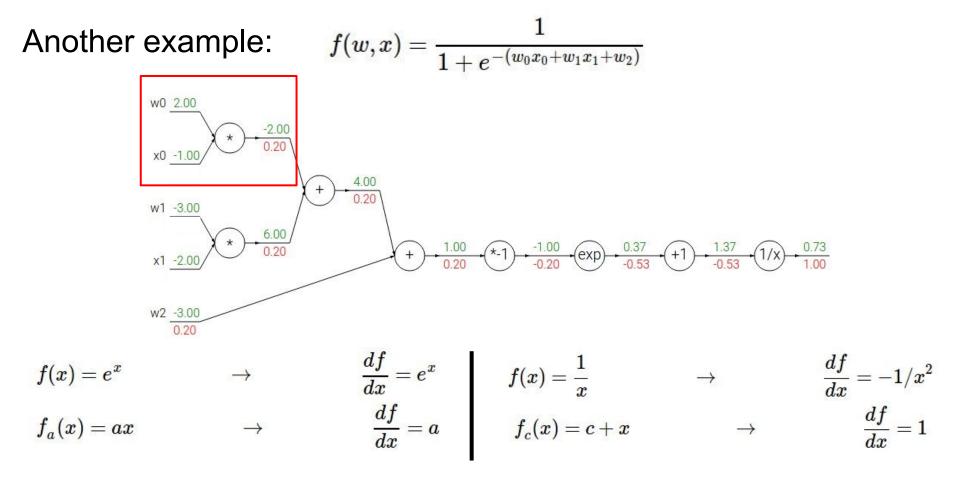
Lecture 4 - 87

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

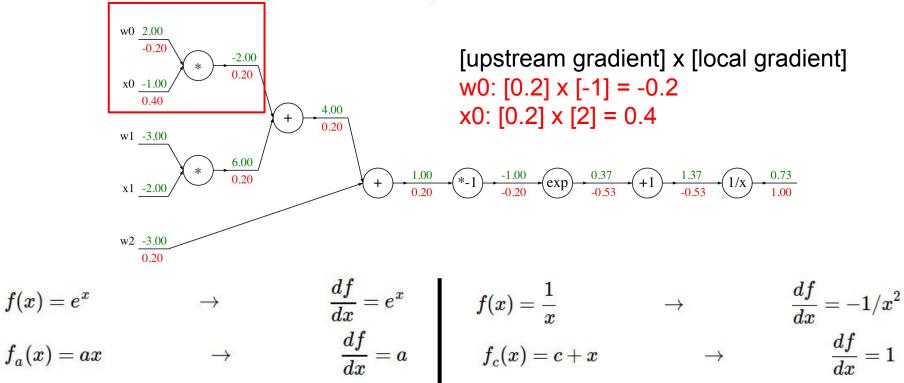
Lecture 4 - 88



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 89

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 90

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}}{\int_{0.20}^{-2.00} function} \sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

1.37

-0.53

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 91

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$
Completing $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$
Sigmoid function $\sigma(x) = \frac{1}{1 + e^{-x}}$
where each expression expres

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

Sigmoid local
$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 92

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

e:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

April 13, 2023

[upstream gradient] x [local gradient] [1.00] x [(1 - $1/(1+e^{-1}))(1/(1+e^{-1}))] = 0.2$

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 93

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

0.40

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

April 13, 2023

1/x

1.37

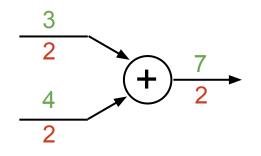
-0.53

 $\frac{w^{2} - 3.00}{0.20}$ [upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2 Sigmoid local dot(x) dot(x) = $\frac{e^{-x}}{(1 + e^{-x})^{2}} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = (1 - \sigma(x)) \sigma(x)$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 94

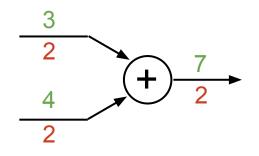
add gate: gradient distributor



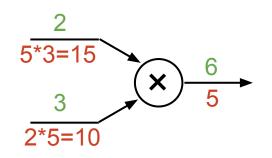
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 95

add gate: gradient distributor



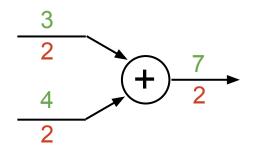
mul gate: "swap multiplier"



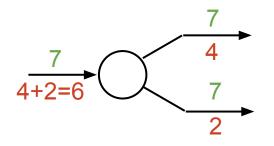
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 96

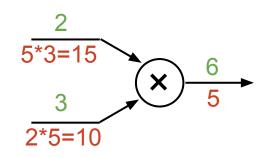
add gate: gradient distributor



copy gate: gradient adder



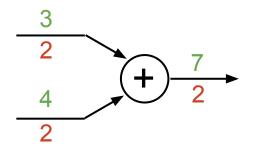
mul gate: "swap multiplier"



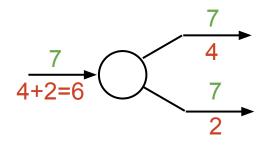
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 97

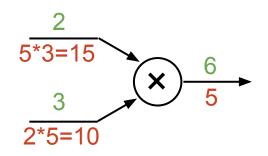
add gate: gradient distributor



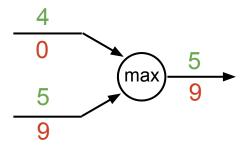
copy gate: gradient adder



mul gate: "swap multiplier"



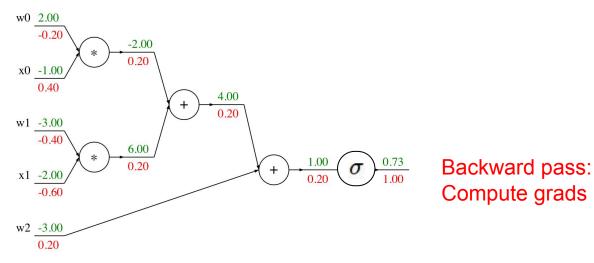
max gate: gradient router



April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 98



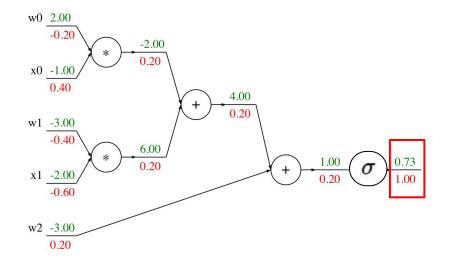
Forward pass:
Compute output

def	f(w	0,	x),	w1,	x1,	w2):
se) =	w0	*	X	0		
s1	=	w1	*	X.	1		
s2	2 =	s0	+	s:	1		
s3	3 =	s2	+	W	2		
L	= s	ign	no	Ĺd	(s3)		

$grad_L = 1.0$
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 99



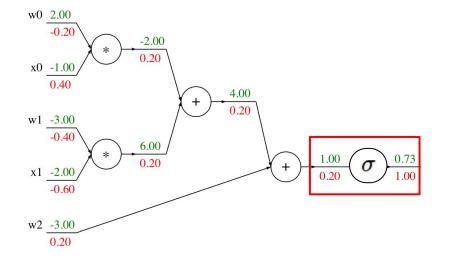
<pre>def f(w0,</pre>	x0, w1, x1,	w2):
s0 = w0	* x0	
s1 = w1		
s2 = s0	+ s1	
s3 = s2 L = sign	+ w2	
L = sign	noid(s3)	

Base case
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 100

Forward pass: Compute output



Forward pass: Compute output s0 = w0s1 = w1s2 = s0s3 = s2

Sigmoid

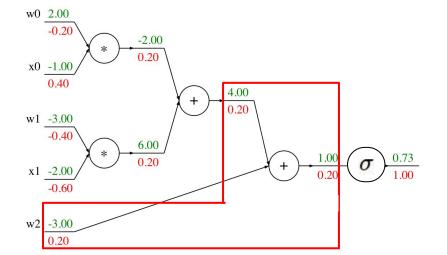
d

ef f(w0,	x0, w1, x	1, w2):
s0 = w0	* x0	
s1 = w1	* x1	
s2 = s0	+ s1	
s3 = s2	+ w2	
L = sig	moid(s3)	

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 101



Forward pass: Compute output

Add gate

d	ef	f(v	w0,	X	Э,	w1,	x1,
	s0) =	w0	*	x٥)	
	s1	=	w1	*	x1	ļ.	
	s2	=	s0	+	s1	L	
	s3	=	s2	+	W2	2	
	L	= 9	sigr	no:	id((s3)	

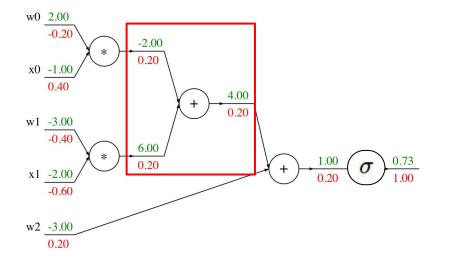
grad_L = 1.0
grad s3 = grad L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 102

April 13, 2023

w2):



	<pre>def f(w0,</pre>	x0, w1,	x1,	w2):
	s0 = w0	* x0		
Forward pass:	s1 = w1	* x1		
Compute output	s2 = s0	+ s1		
Compute output	s3 = s2	+ w2		
	1.1.2 State 2.2			

L

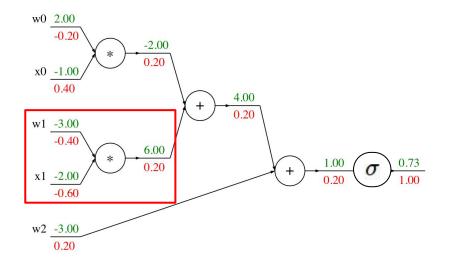
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
$grad_s0 = grad_s2$
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
qrad x0 = qrad s0 * w0

= sigmoid(s3)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 103

Add gate



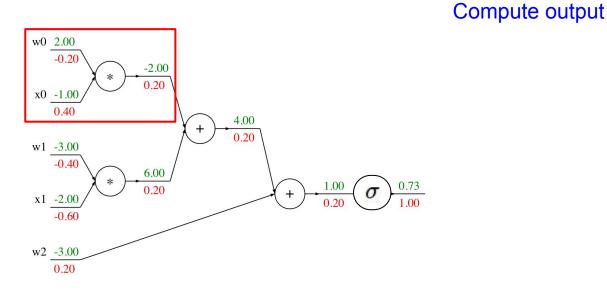
	<pre>def f(w0, x0, w1, x1, w2):</pre>
	s0 = w0 * x0
Forward pass: Compute output	s1 = w1 * x1
	s2 = s0 + s1
	s3 = s2 + w2
	L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 104

Multiply gate



d	<mark>ef</mark> f(w0,	x0, w1,	x1,	w2):
	s0 = w0	* x0		
	s1 = w1			
	s2 = s0	+ s1		
	s3 = s2	+ w2		
	L = sign	noid(s3)		

	grad_L = 1.0
	grad_s3 = grad_L * (1 - L) * L
	grad_w2 = grad_s3
	grad_s2 = grad_s3
	grad_s0 = grad_s2
	grad_s1 = grad_s2
	grad_w1 = grad_s1 * x1
	grad_x1 = grad_s1 * w1
	grad_w0 = grad_s0 * x0
,	grad_x0 = grad_s0 * w0

Multiply gate

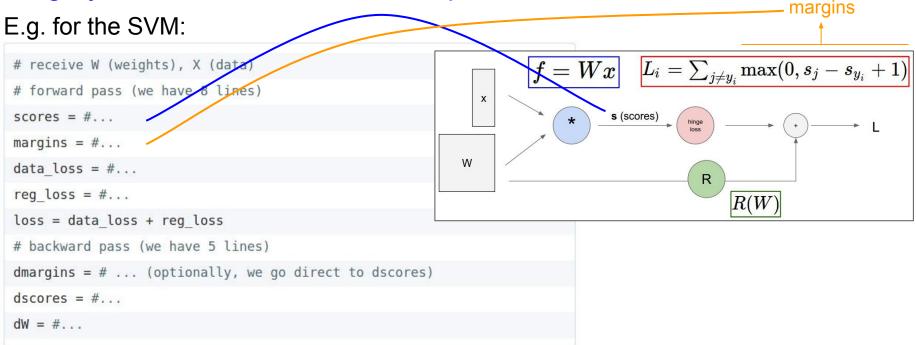
Forward pass:

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 105

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!



Lecture 4 - 106

April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

"Flat" Backprop: Do this for assignment 1!

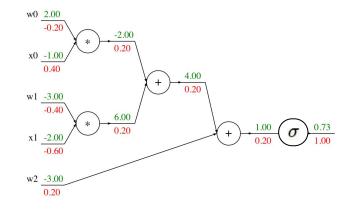
E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

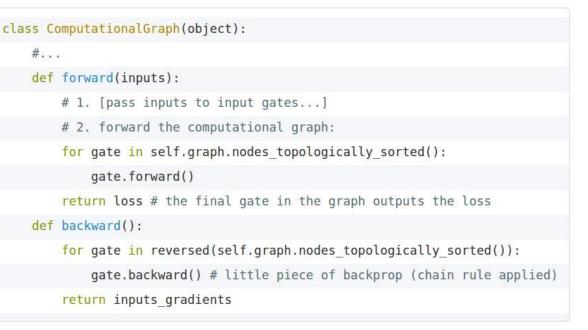
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 107

Backprop Implementation: Modularized API



Graph (or Net) object (rough pseudo code)



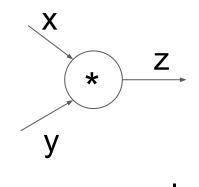
April 13, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 108

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code



(x,y,z are scalars)

<pre>class Multiply(torch.autograd.Function): @staticmethod</pre>	
<pre>def forward(ctx, x, y):</pre>	Need to cache
ctx.save_for_backward(x, y) ┥ 🛶 🛶	some values for
z = x * y	use in backward
return z	
@staticmethod	
<pre>def backward(ctx, grad_z):</pre>	_ Upstream
<pre>x, y = ctx.saved_tensors</pre>	gradient
grad_x = y * grad_z # dz/dx * dL/dz	Multiply upstream
grad_y = x * grad_z # dz/dy * dL/dz	and local gradients
<pre>return grad_x, grad_y</pre>	

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 109

Example: PyTorch operators

pytorch / pytorch		⊙ Watch +	1,221	★ Un	star 26,770	¥ Fork	6,340
↔ Code ① Issues 2,286 11	Pull requests 561	🗉 Wiki 🔄 Ins	ights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	new file	Upload files	Find file	History
ezyang and facebook-github-bot Ca	anonicalize all includes in PyTorch. (#14849)			Late	est commit 517	c7c9 on Dec	8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#1	14849)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#*	14849)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#*	14849)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#*	14849)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#1	14849)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#1	14849)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#	14849)				4 mor	nths ago
SpatialAveragePooling.c	Canonicalize all includes in PyTorch. (#	(4849)				4 mor	nths ago

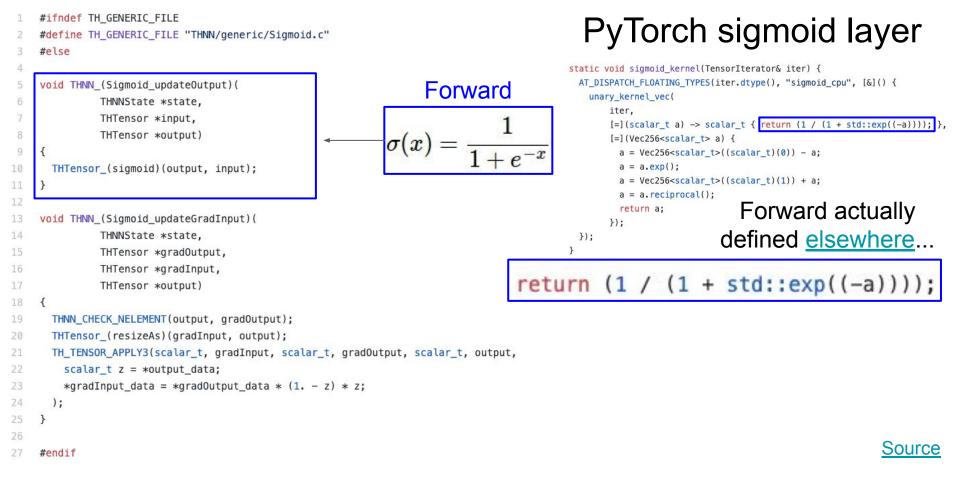
SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
) unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Fei-Fei Li, Yunzhu Li, Ruohan Gao

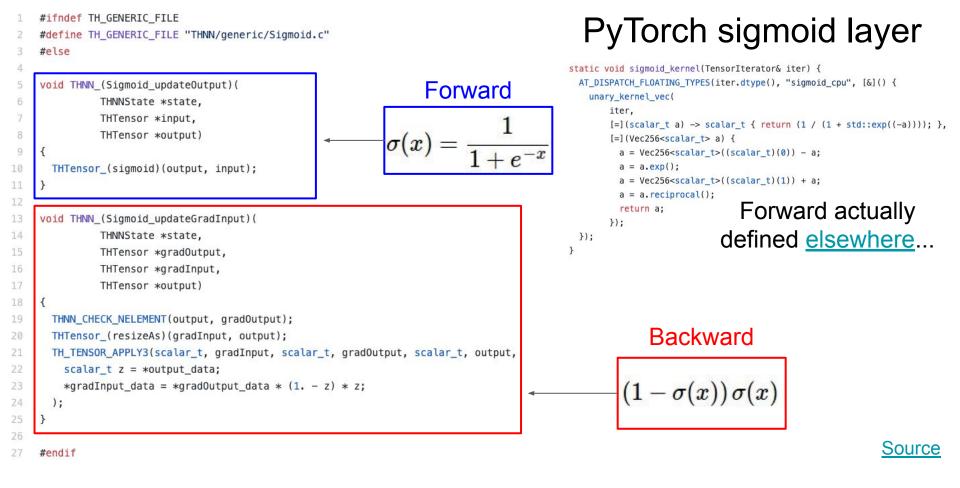
Lecture 4 - 110

```
#ifndef TH GENERIC FILE
                                                                                         PyTorch sigmoid layer
    #define TH GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
    void THNN_(Sigmoid_updateOutput)(
                                                                 Forward
             THNNState *state,
             THTensor *input,
             THTensor *output)
                                                           \sigma(x) =
 9
      THTensor_(sigmoid)(output, input);
    void THNN_(Sigmoid_updateGradInput)(
14
             THNNState *state,
             THTensor *gradOutput,
             THTensor *gradInput,
             THTensor *output)
18
19
      THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
21
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
22
        scalar_t z = *output_data;
        *gradInput_data = *gradOutput_data * (1. - z) * z;
23
      );
24
25
                                                                                                                                        Source
    #endif
```

Lecture 4 - 111



Lecture 4 - 112



Lecture 4 - 113

So far: backprop with scalars

What about vector-valued functions?

Lecture 4 -

114

April 13, 2023

Recap: Vector derivatives

Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 115

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

Derivative is Gradient:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Lecture 4 - 116

April 13, 2023

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

Derivative is **Gradient**:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

Vector to Scalar

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is Jacobian:

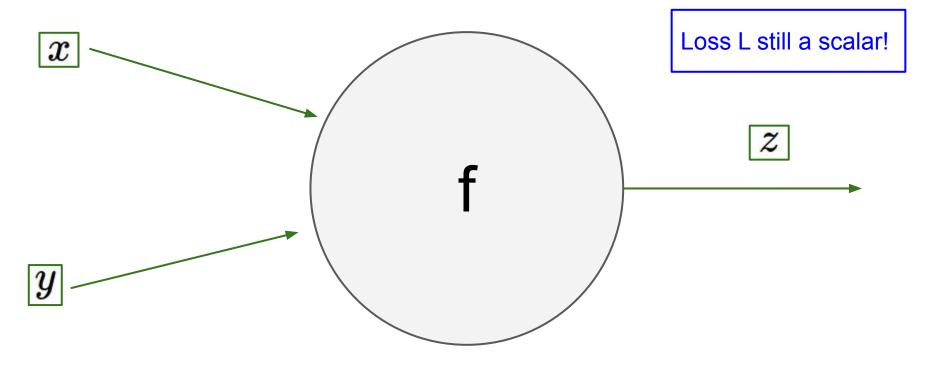
$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change? For each element of x, if it changes by a small amount then how much will each element of y change?

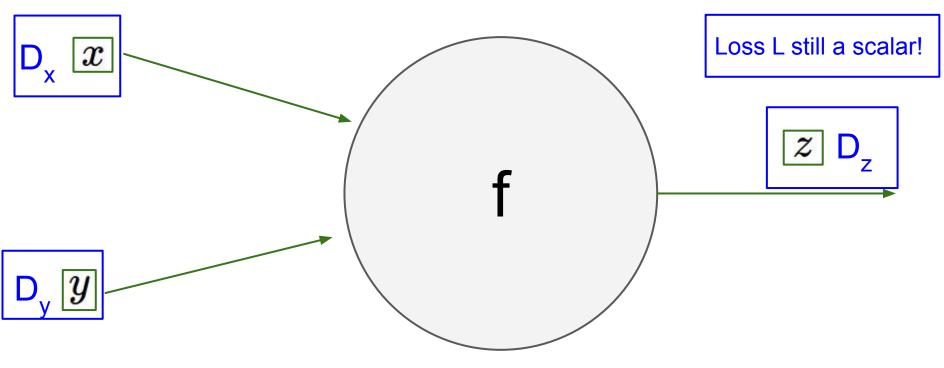
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 117



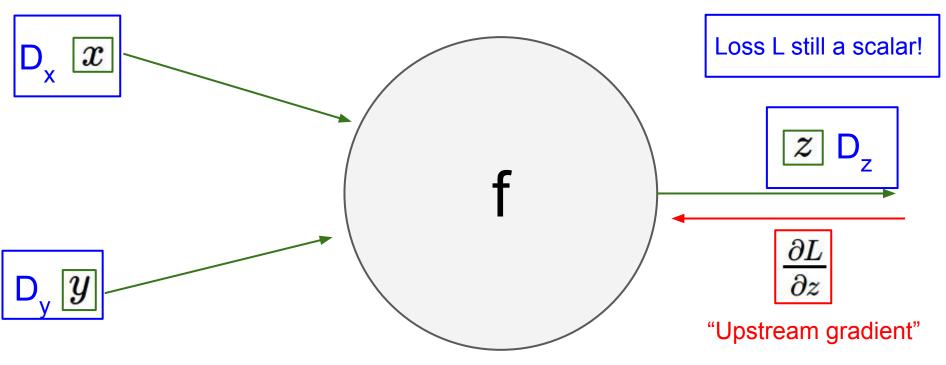
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 118



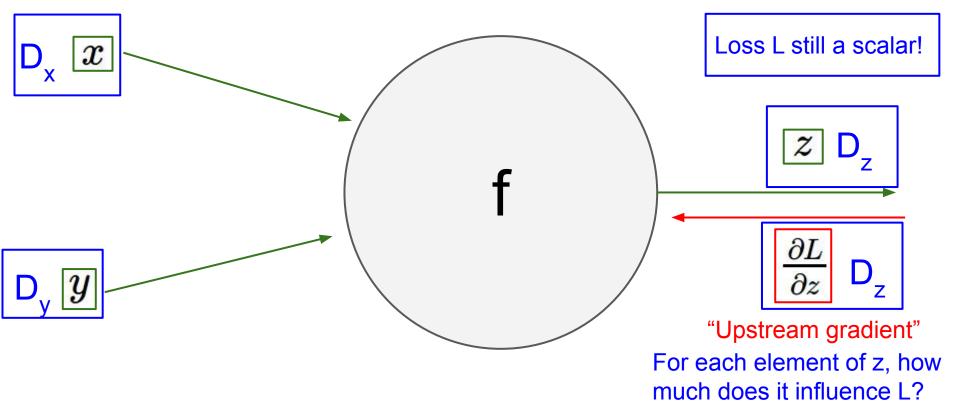
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 119



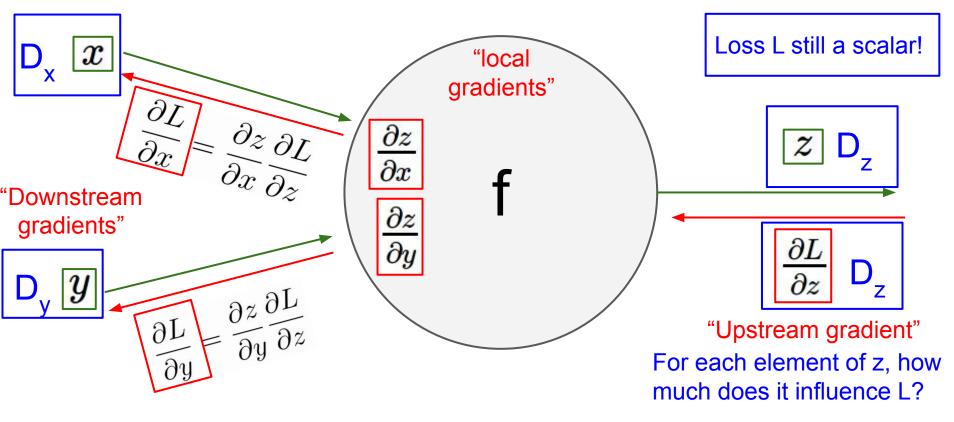
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 120



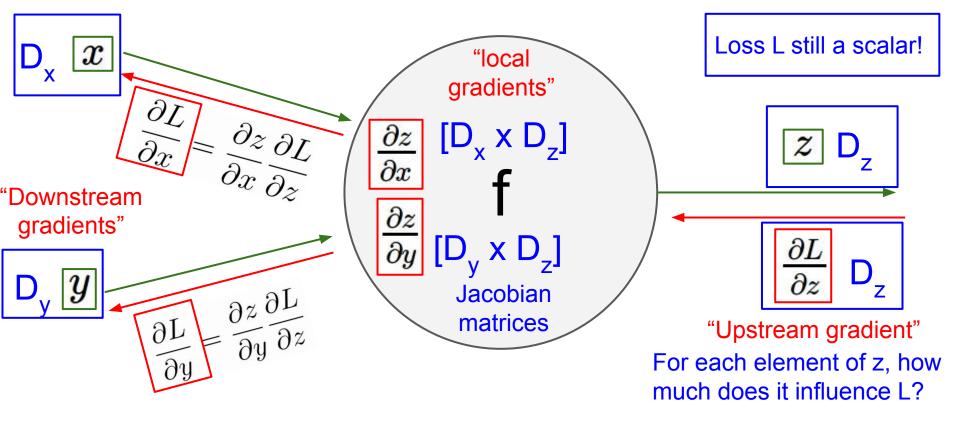
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 121



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 122



Fei-Fei Li, Yunzhu Li, Ruohan Gao

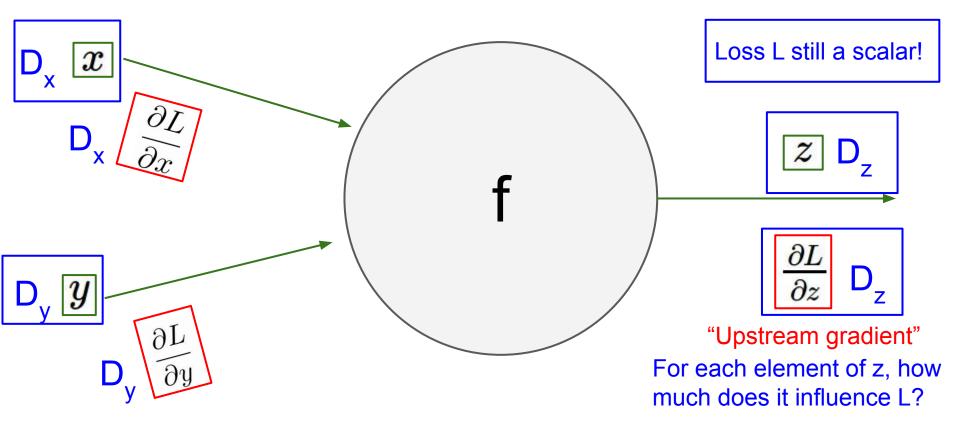
Lecture 4 - 123



Fei-Fei Li, Yunzhu Li, Ruohan Gao

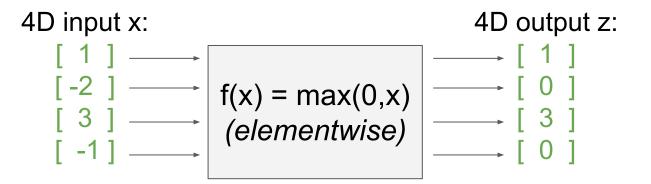
Lecture 4 - 124

Gradients of variables wrt loss have same dims as the original variable



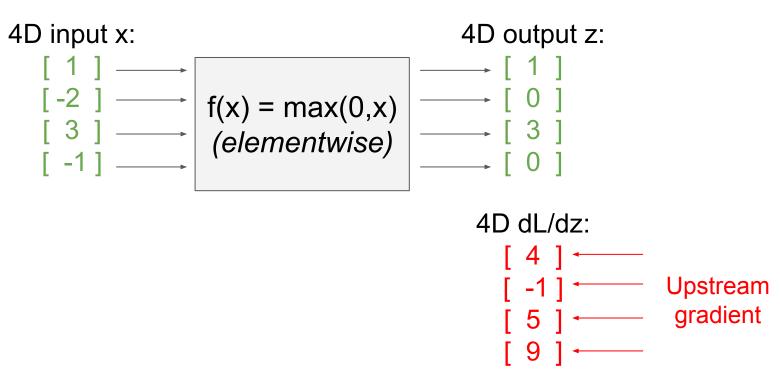
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 125



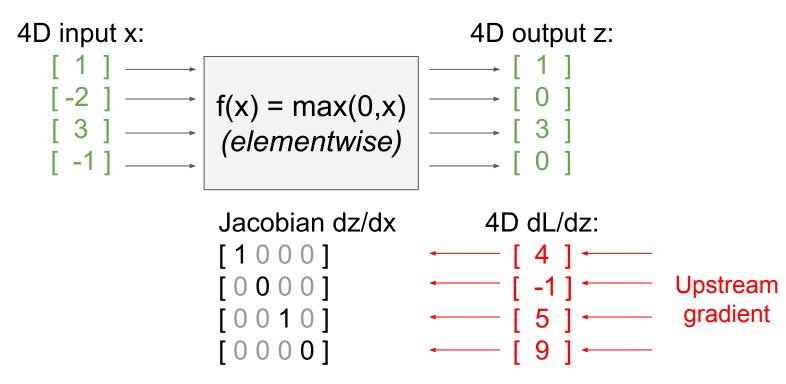
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 126



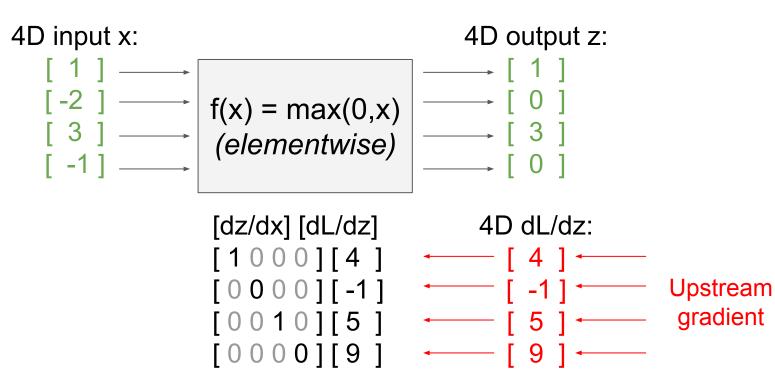
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 127



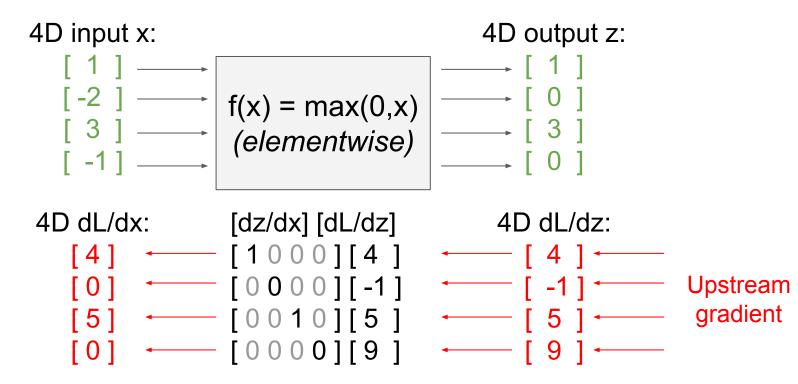
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 128



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 129



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 130

4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: 3 (elementwise) off-diagonal entries -1 always zero! Never explicitly form Jacobian -- instead 4D dL/dx: $\left[\frac{dz}{dx}\right] \left[\frac{dL}{dz}\right]$ 4D dL/dz: use implicit [4] 0 multiplication [1] 01[4] 4 < 0 ⁻ Upstream 01 -1 gradient [5] 1[5] 5 0 001[9 9 _____

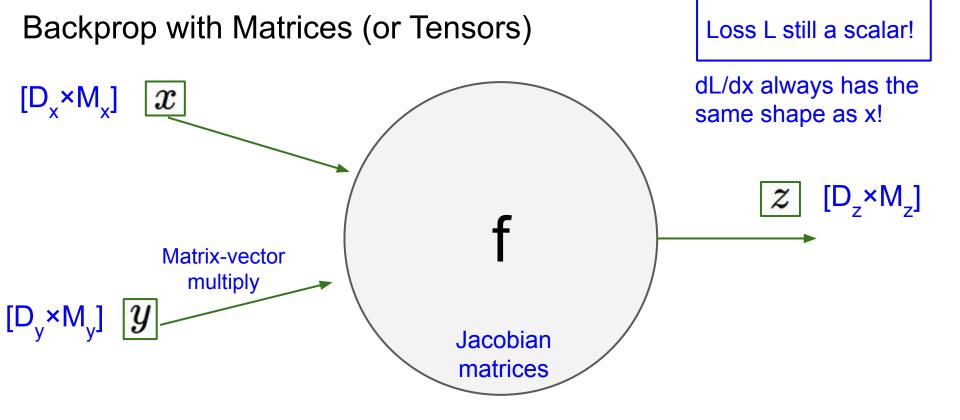
Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 131

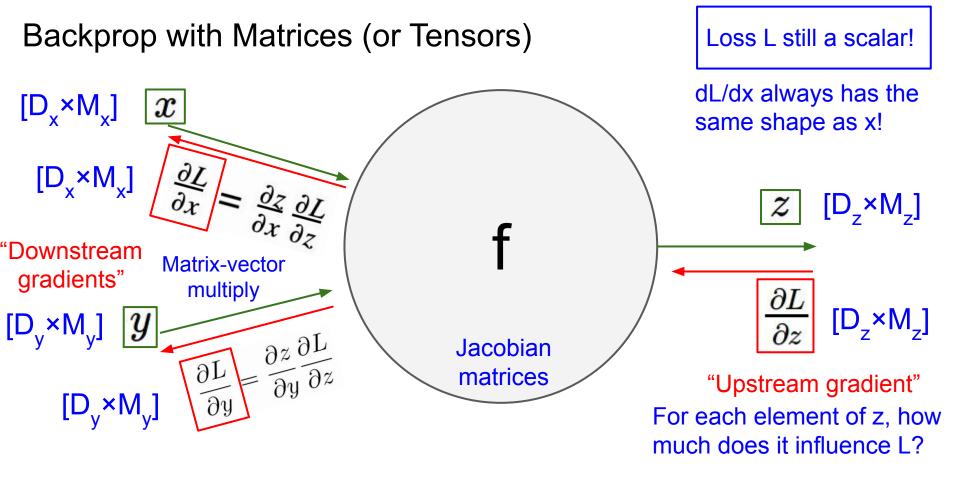
4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: (elementwise) off-diagonal entries always zero! Never explicitly form Jacobian -- instead 4D dL/dx: [dz/dx] [dL/dz] 4D dL/dz: use implicit $\begin{bmatrix} 4 \end{bmatrix} \leftarrow & \leftarrow \begin{bmatrix} 4 \end{bmatrix} \leftarrow & \\ \begin{bmatrix} 0 \end{bmatrix} \leftarrow & \begin{pmatrix} \frac{\partial L}{\partial x} \end{pmatrix}_i = \begin{cases} \left(\frac{\partial L}{\partial z} \right)_i & \text{if } x_i > 0 \leftarrow \begin{bmatrix} -1 \end{bmatrix} \leftarrow & \\ 0 & \text{otherwise} \leftarrow \begin{bmatrix} 5 \end{bmatrix} \leftarrow & \\ \end{bmatrix}$ multiplication Upstream gradient -101 ← [9] ←

Fei-Fei Li, Yunzhu Li, Ruohan Gao

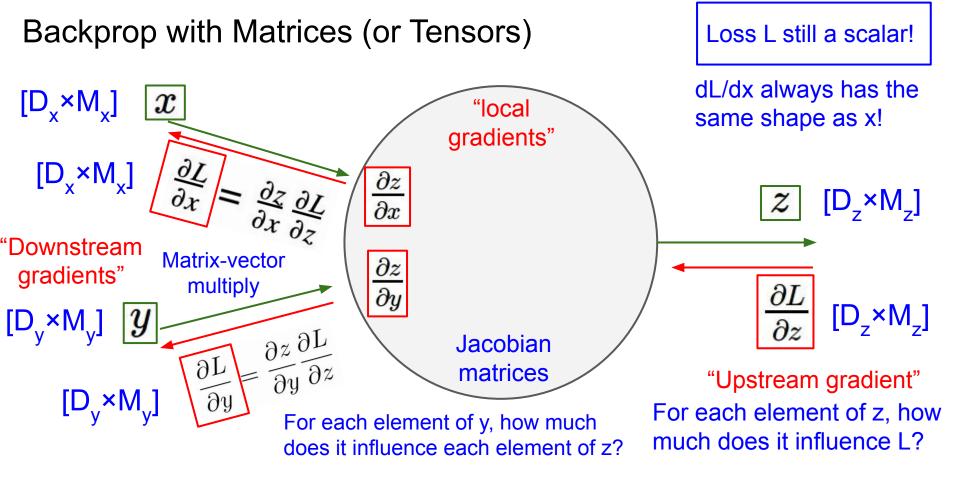
Lecture 4 - 132



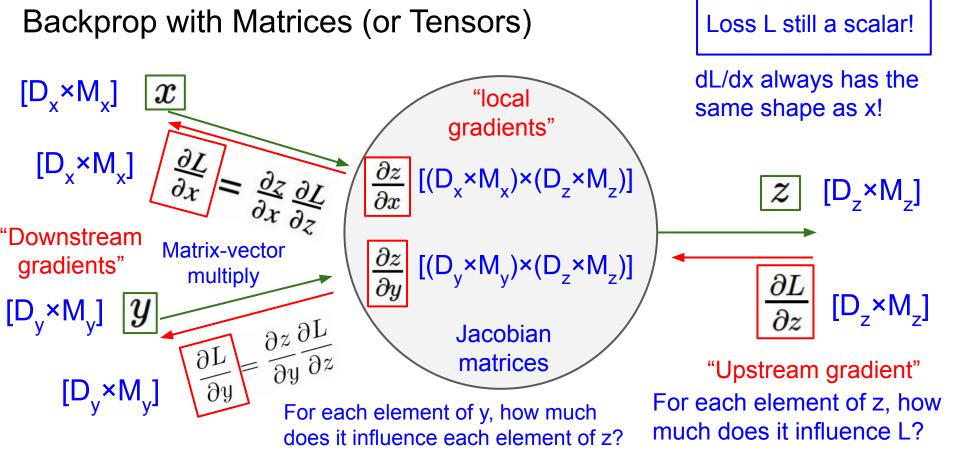
Lecture 4 - 133



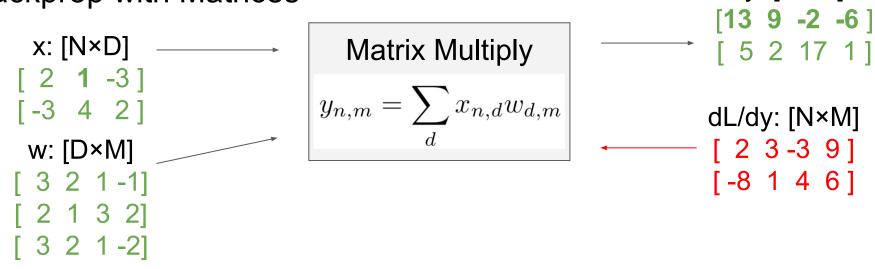
Lecture 4 - 134 Ar



Lecture 4 - 135



Lecture 4 - 136 April 1



Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Lecture 4 -

137

y: [N×M]

April 13, 2023

x: [N×D] [21-3] [-342] w: [D×M] [321-1] [2132] [321-2] Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×D)×(N×M)] dy/dw: [(D×M)×(N×M)]

For a neural net we may have N=64, D=M=4096 Each Jacobian takes ~256 GB of memory! Must work with them implicitly! [5 2 17 1] dL/dy: [N×M] - [2 3 -3 9] [-8 1 4 6]

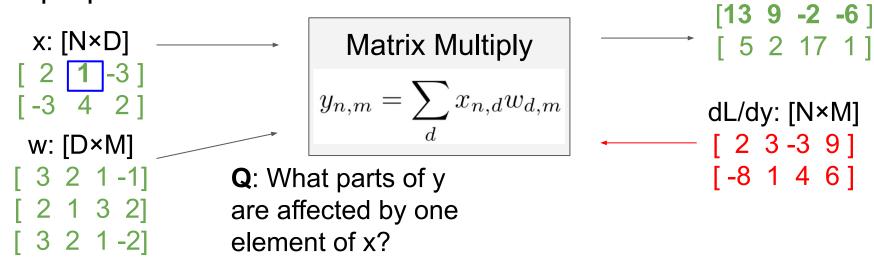
138

Lecture 4 -

y: [N×M]

[13 9 -2 -6]

April 13, 2023



y: [N×M]

April 13, 2023

139

Lecture 4 -

x: [N×D] 1 -3] -3 4 2] w: [D×M] [3 2 1 -1] 2 1 3 2] [3 2 1 -2] element of x?

Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Lecture 4 -

140

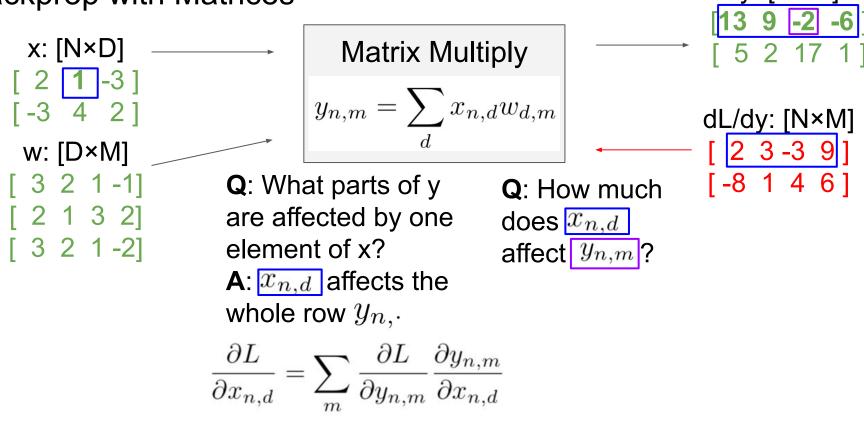
Q: What parts of y are affected by one

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

[N×M

April 13, 2023



Lecture 4 -

141

Ν×Μ

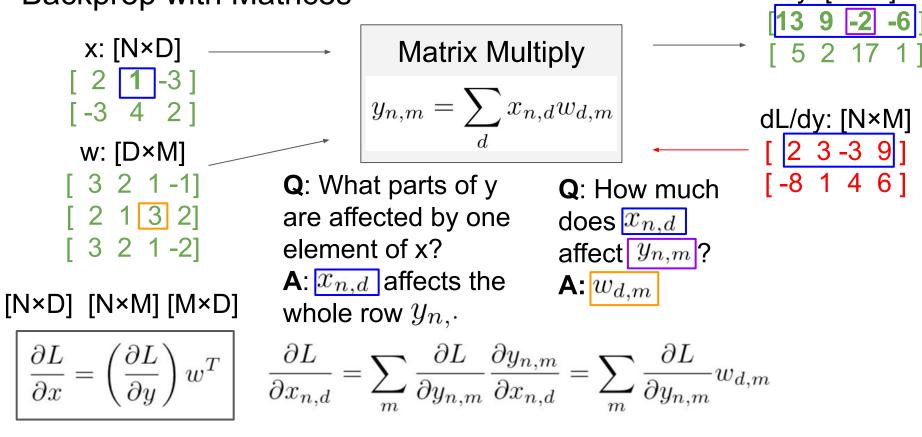
April 13, 2023

N×M -6 x: [N×D] Matrix Multiply 2 5 2 1 -3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] w: [D×M] 23-39 $[-8 \ 1 \ 4 \ 6]$ 3 2 1 - 1] **Q**: What parts of y **Q**: How much 2 1 3 2] are affected by one does $\overline{x}_{n,d}$ [3 2 1 - 2] element of x? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

142

April 13, 2023

Lecture 4 -



N×M

April 13, 2023

143

Lecture 4 -

144 Lecture 4 -

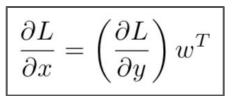
April 13, 2023

These formulas are

are the only way to

easy to remember: they

make shapes match up!



 $[N \times D] [N \times M] [M \times D]$

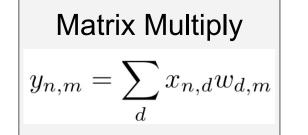
x: [N×D]

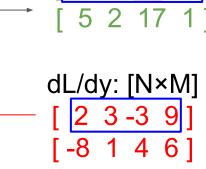
By similar logic:

 $[D \times M]$ $[D \times N]$ $[N \times M]$

 $|\frac{\partial L}{\partial w} = x^T \Big($

1 -3] -3 4 2] w: [D×M] 3 2 1 - 1] 2 1 3 2] [3 2 1 - 2]





N×M

-6

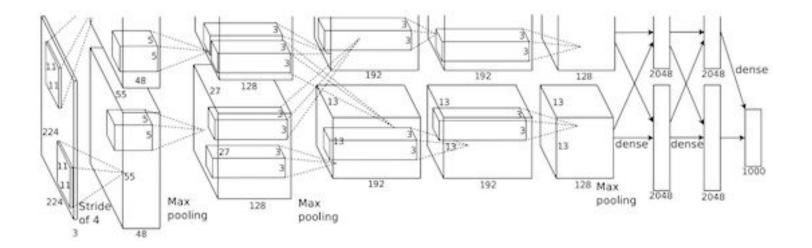
Backprop with Matrices

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Lecture 4 - 145

Next Time: Convolutional Neural Networks!



Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 4 - 146