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Released last week, due Fri 4/21 at 11:59pm

Office hours: help with high-level questions only, no code 
debugging. [No Code Show Policy]

Administrative: Assignment 1 
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Administrative: Project proposal

Due Mon 4/24

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)
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Administrative: Ed

Please make sure to check and read all pinned Ed posts.

● AWS credit: create an account, submit the number ID using 
google form by 4/13.

● Project group: fill in your information in the google form and/or 
look through existing responses and reach out

● SCPD: if you would like to take the midterm on-campus, make 
a private Ed post to let us know by 4/12.
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cat
dog
bird
deer
truck

Image Classification: A core task in Computer Vision

5

(assume given a set of labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Recall from last time: Challenges of recognition
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This image is CC0 1.0 public domain This image by Umberto Salvagnin 
is licensed under CC-BY 2.0 This image by jonsson is licensed 

under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall from last time: data-driven approach, kNN
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1-NN classifier 5-NN classifier

train test

train testvalidation
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Recall from last time: Linear Classifier
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f(x,W) = Wx + b
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Interpreting a Linear Classifier: Visual Viewpoint
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Input image

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

f(x,W) = Wx

Algebraic Viewpoint

-96.8Score 437.9 61.95
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Interpreting a Linear Classifier: Geometric Viewpoint
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f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Cat image by Nikita is licensed under CC-BY 2.0Plot created using Wolfram Cloud

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

A loss function tells how good 
our current classifier is

Given a dataset of examples

Where       is image and 
                  is (integer) label

Loss over the dataset is a 
average of loss over examples:
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Softmax vs. SVMSoftmax vs. SVM
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Q: Suppose that we found a W such that L = 0. 
Is this W unique? 

14
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Q: Suppose that we found a W such that L = 0. 
Is this W unique? 

No! 2W is also has L = 0! 
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Suppose: 3 training examples, 3 classes.
With some W the scores                           are:

cat

frog

car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

= max(0, 1.3 - 4.9 + 1) 
   +max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

0Losses: 2.9

Before:

With W twice as large:
= max(0, 2.6 - 9.8 + 1) 
   +max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0
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E.g. Suppose that we found a W such that L = 0. 
Is this W unique?

No! 2W is also has L = 0! 
How do we choose between W and 2W?
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Regularization - 

18

Data loss: Model predictions 
should match training data
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Regularization

19

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data
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Regularization intuition: toy example training data

20

x

y
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Regularization intuition: Prefer Simpler Models

21

x

y
f1 f2
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Regularization: Prefer Simpler Models

22

x

y
f1 f2

Regularization pushes against fitting the data 
too well so we don’t fit noise in the data
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Regularization

23

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Occam’s Razor: Among multiple 
competing hypotheses, the simplest is the 
best, William of Ockham 1285-1347
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Regularization

24

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)
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Regularization

25

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 
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Regularization

26

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex:
Dropout
Batch normalization
Stochastic depth, fractional pooling, etc
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Regularization

27

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Why regularize?
- Express preferences over weights
- Make the model simple so it works on test data
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

28

L2 Regularization

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

29

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Regularization: Expressing Preferences

30

L2 Regularization

L2 regularization likes to 
“spread out” the weights 

Which one would L1 
regularization prefer? 

Which of w1 or w2 will 
the L2 regularizer prefer?
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss
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Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?
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Interactive Web Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/ 

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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Optimization
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This image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
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Strategy #1: A first very bad idea solution: Random search
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Lets see how well this works on the test set...

15.5% accuracy! not bad!
(SOTA is ~99.7%)



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 3 - April 11, 202339

Strategy #2: Follow the slope
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Strategy #2: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 3 - April 11, 202341

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0
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gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Numeric Gradient
- Slow! Need to loop over 

all dimensions
- Approximate
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This is silly. The loss is just a function of W:

want
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This is silly. The loss is just a function of W:

want

This image is in the public domain This image is in the public domain

Use calculus to compute an 
analytic gradient

https://en.wikipedia.org/wiki/Isaac_Newton#/media/File:GodfreyKneller-IsaacNewton-1689.jpg
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz#/media/File:Gottfried_Wilhelm_Leibniz,_Bernhard_Christoph_Francke.jpg
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gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)
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In summary:
- Numerical gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

=>

In practice: Always use analytic gradient, but check 
implementation with numerical gradient. This is called a 
gradient check.



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 3 - April 11, 202353

Gradient Descent
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original W

negative gradient direction
W_1

W_2
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Stochastic Gradient Descent (SGD)

56

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Aside: Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large

w2

w1
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Optimization: Problem #1 with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck

lo
ss

w
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Optimization: Problem #2 with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014
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Optimization: Problem #2 with SGD

Image source: https://en.wikipedia.org/wiki/Saddle_point

saddle point in two dimension

https://en.wikipedia.org/wiki/Saddle_point
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Optimization: Problem #3 with SGD

Our gradients come from 
minibatches so they can be noisy!
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD SGD+Momentum
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SGD: the simple two line update code

SGD
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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SGD + Momentum: 
alternative equivalent formulation

SGD+Momentum SGD+Momentum

You may see SGD+Momentum formulated different ways, 
but they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Gradient

Velocity

actual step

Momentum update:

SGD+Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point with 
velocity to get step used to update weights
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with 
velocity to get step used to update weights

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction
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Nesterov Momentum

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

Change of variables                                   and 
rearrange: 

https://cs231n.github.io/neural-networks-3/ 

https://cs231n.github.io/neural-networks-3/
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Nesterov Momentum
Annoying, usually we want 
update in terms of

Gradient
Velocity

actual step

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction

Change of variables                                   and 
rearrange: 

https://cs231n.github.io/neural-networks-3/ 

https://cs231n.github.io/neural-networks-3/
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated
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AdaGrad

Q2: What happens to the step size over long time?
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AdaGrad

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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RMSProp
SGD

SGD+Momentum

RMSProp

AdaGrad 
(stuck due to 
decaying lr)
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Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 3 - April 11, 202384

Adam (almost)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models! 
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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Learning rate schedules

88

Learning rate
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

A: In reality, all of these are good 
learning rates.
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Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

Inverse sqrt: 

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017
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High initial learning rates can make loss 
explode; linearly increasing learning rate 
from 0 over the first ~5,000 iterations can 
prevent this.

Empirical rule of thumb: If you increase the 
batch size by N, also scale the initial 
learning rate by N

Learning Rate Decay: Linear Warmup

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting second-order methods to large-scale, 
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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- Adam is a good default choice in many cases; it 
often works ok even with constant learning rate

- SGD+Momentum can outperform Adam but may 
require more tuning of LR and schedule

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)

In practice:
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Next time:

Introduction to neural networks

Backpropagation

105


