Lecture 2: Image Classification with Linear Classifiers

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 1

Administrative: Assignment 1

Out tomorrow, Due 4/21 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax

Lecture 2 - 2

<u>April 6, 2023</u>

- Two-layer neural network
- Image features

Administrative: Course Project

Project proposal due 4/24 (Monday) 11:59pm

Contact your assigned TA for initial guidance (Canvas -> People -> Groups)

Lecture 2 - 3

April 6, 2023

Use Google Form to find project partners (will be posted later today)

"Is X a valid project for 231n?" --- Ed private post / TA Office Hours

More info on the website

Administrative: Discussion Sections

This Friday 1:30pm-2:20 pm, in person at Thornton 102, remote on Zoom (recording will be made available)

Lecture 2 - 4

April 6, 2023

Python / Numpy, Google Colab

Presenter: Manasi Sharma (TA)

Syllabus

Deep Learning Basics	Convolutional Neural Networks	Computer Vision Applications
Data-driven approaches Linear classification & kNN Loss functions Optimization Backpropagation Multi-layer perceptrons Neural Networks	Convolutions PyTorch / TensorFlow Activation functions Batch normalization Transfer learning Data augmentation Momentum / RMSProp / Adam Architecture design	RNNs / Attention / Transformers Image captioning Object detection and segmentation Style transfer Video understanding Generative models Self-supervised learning 3D vision Robot learning Human-centered Al Eairness & ethics

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 5

Image Classification

A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
 - K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 7

(3 channels RGB)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 8

Challenges: Viewpoint variation

This image by Nikita is licensed under CC-BY 2.0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 9

Challenges: Illumination

This image is CC0 1.0 public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 10

Challenges: Background Clutter

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 11

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 12

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0 This image by sare bear is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 13

Challenges: Intraclass variation

This image is CC0 1.0 public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 14

Challenges: Context

April 6, 2023

Image source:

https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-lq ?utm_source=linkedin_share&utm_medium=member_desktop_web

Lecture 2 - 15

Modern computer vision algorithms

This image is CC0 1.0 public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 16

An image classifier

def classify_image(image):
 # Some magic here?
 return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Lecture 2 - 17

April 6, 2023

Attempts have been made

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 18

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

Lecture 2 - 19

April 6, 2023

Nearest Neighbor Classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 20

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label
 of the most similar training image

April 6, 2023

Lecture 2 - 21

First classifier: Nearest Neighbor

Training data with labels

query data

Distance Metric

Lecture 2 - 22

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 23

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num_test):
        # find the nearest training image to the i'th test image
        # using the L1 distance (sum of absolute value differences)
        distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
        min_index = np.argmin(distances) # get the index with smallest distance
```

Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

April 6, 2023

Lecture 2 - 24

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min index = np.argmin(distances) # get the index with smallest distance

Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Memorize training data

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 25

```
import numpy as np
```

```
class NearestNeighbor:
 def init (self):
   pass
```

```
def train(self, X, y):
  """ X is N x D where each row is an example. Y is 1-dimension of size N """
  # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
  self.ytr = y
```

```
def predict(self, X):
  """ X is N x D where each row is an example we wish to predict label for """
  num test = X.shape[0]
  # lets make sure that the output type matches the input type
  Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min index = np.argmin(distances) # get the index with smallest distance
  Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

For each test image: Find closest train image Predict label of nearest image

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 26

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows

for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

Lecture 2 - 27

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

April 6, 2023

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
 # loop over all test rows
 for i in xrange(num_test):

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 28

What does this look like?

1-nearest neighbor

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 29

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

K = 1

K = 3

K = 5

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 30

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 31

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 32

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 33

Hyperparameters

What is the best value of **k** to use? What is the best **distance** to use?

These are **hyperparameters**: choices about the algorithms themselves.

Lecture 2 - 34

April 6, 2023

Very problem/dataset-dependent. Must try them all out and see what works best.

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the **training data**

train

April 6, 2023

Lecture 2 - 35

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

April 6, 2023

Lecture 2 - 36

train
Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

April 6, 2023

Lecture 2 - 37

train

Idea #2: choose hyperparameters that work best on **test** data

train test

Idea #1: Choose hyperparameters that work best on the **training data**

train

Idea #2: choose hyperparameters that work best on **test** data

BAD: No idea how algorithm will perform on new data

BAD: K = 1 always works

perfectly on training data

train test

Never do this!

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 38

Idea #1: Choose hyperparameters that work best on the **training data**

train

Idea #2: choose hyperparameters that work best on **test** data

BAD: No idea how algorithm will perform on new data

Better!

Lecture 2 - 39

train test

Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

train	validation	test
-------	------------	------

Fei-Fei Li,	Yunzhu Li,	Ruohan Gao
-------------	------------	------------

BAD: K = 1 always works perfectly on training data

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Lecture 2 - 40

April 6, 2023

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	-	2		×	7	-	X	-	The second	-
automobile		S	E.C			.			P.	-
bird		Tes	×.	1	-	4	r	2	1.	
cat	-	13	-		Ste			1	-	
deer	- Area	30		X	m	-	¥.		2	
dog	Ĩ	X	-	-	ø	- OF	f.		A	490
frog		P	50	CAR	Cart .	1		7	No.	1
horse	-	3	R.	PE	ふ	A	r.	2	js.	5
ship	-	-	置	R.	-	- 1972		142-	- INAU	
truck	and a	C		-	200	- Sector	No.	der.	P.	The state

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 41

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images

airplane	💐 🎇	**	-		······································
automobile			27	A	÷
bird	-	1	49 2	12	1
cat	-				
deer	1		11.		
dog	1	1 m			AT SIL
frog	<u>.</u>	30	6	🐎 🐳	1
horse		R. C	R M		
ship	<u>_</u>	1 2			
truck			2	the states	

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Test images and nearest neighbors

Lecture 2 - 42

April 6, 2023

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

Lecture 2 - 43

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

April 6, 2023

What does this look like?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 44

What does this look like?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 45

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

Lecture 2 - 46

April 6, 2023

k-Nearest Neighbor with pixel distance never used.

- Curse of dimensionality

Dimensions = 3 Points = 4^3

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 47

K-Nearest Neighbors: Summary

In **image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**

The **K-Nearest Neighbors** classifier predicts labels based on the K nearest training examples

Lecture 2 - 48

April 6, 2023

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set

Only run on the test set once at the very end!

Linear Classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 49

Parametric Approach

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 50

Parametric Approach: Linear Classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 51

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 52

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 53

This image is CC0 1.0 public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 54

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 55

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Lecture 2 - 56

April 6, 2023

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 57

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) <u>Algebraic Viewpoint</u>

Flatten tensors into a vector

Input image

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 58

Interpreting a Linear Classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 59

Interpreting a Linear Classifier: Visual Viewpoint

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 60

Interpreting a Linear Classifier: Geometric Viewpoint

f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

Plot created using Wolfram Cloud

Cat image by Nikita is licensed under CC-BY 2.0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 61

Hard cases for a linear classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants Class 1: 1 <= L2 norm <= 2

Class 2: Everything else Class 1: Three modes

Class 2: Everything else

April 6, 2023

Lecture 2 - 62

Linear Classifier – Choose a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.

2. Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

April 6, 2023

Lecture 2 - 63

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 64

A **loss function** tells how good our current classifier is

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -65

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}_i$ is image and $oldsymbol{y_i}_i$ is (integer) label

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -66

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}_i$ is image and $oldsymbol{y_i}_i$ is (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

car

frog

Lecture 2 -67

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

car

frog

Lecture 2 -68

Multiclass SVM loss:

Given an example (x_i, y_i)

April 6, 2023

if $s_{y_i} \ge s_j + 1$

otherwise

Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss: With some W the scores f(x, W) = Wx are: Loss $s_{y_i} - s_j$ (000) difference in scores between correct and 2.2 3.2 1.3 incorrect class cat $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1\\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car $=\sum \max(0, s_j - s_{y_i} + 1)$ -3.1 2_{0} -1.7 frog $j \neq y_i$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -69

Suppose: 3 training examples, 3 classes. Interpreting Multiclass SVM loss: With some W the scores f(x, W) = Wx are: Loss $s_{y_i} - s_j$ (000) difference in scores between correct and 2.2 3.2 1.3 incorrect class cat $L_{i} = \sum_{j \neq y_{i}} \begin{cases} 0 & \text{if } s_{y_{i}} \geq s_{j} + 1\\ s_{j} - s_{y_{i}} + 1 & \text{otherwise} \end{cases}$ 2.5 4.9 5.1 car $=\sum \max(0, s_j - s_{y_i} + 1)$ -3.1 2_{0} -1.7 frog $j \neq y_i$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -70

Interpreting Multiclass SVM loss:

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

Lecture 2 -71

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -72

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 5.1 - 3.2 + 1) \\ &+ \max(0, -1.7 - 3.2 + 1) \\ &= \max(0, 2.9) + \max(0, -3.9) \\ &= 2.9 + 0 \\ &= 2.9 \end{split}$$

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Cat 3.2
frog -1.7
Losses: 2.9

$$a_{i}$$
 is the image and where y_i is the (integer) label,
and using the shorthand for the scores vector: $s = f(x_i, W)$
the SVM loss has the form:
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$
 $= \max(0, 1.3 - 4.9 + 1)$
 $+ \max(0, 2.0 - 4.9 + 1)$
 $= \max(0, -2.6) + \max(0, -1.9)$
 $= 0$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 -74

Multiclass SVM loss:

(integer) label,

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 6.3) + \max(0, 6.6) \\ &= 6.3 + 6.6 \end{split}$$

= 12.9

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

car

Lecture 2 -75

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = rac{1}{N} \sum_{i=1}^N L_i$$

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

car

frog

Multiclass SVM loss:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?

cat	1.3
car	4.9
frog	2.0
Losses:	0

Q2: what is the min/max possible SVM loss L_i?

Q3: At initialization W is small so all s \approx 0. What is the loss L_i, assuming N examples and C classes?

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including j = y i)

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

cat

car

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Multiclass SVM loss:

Lecture 2 -81

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 82

Softmax classifier

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 83

Want to interpret raw classifier scores as **probabilities**

cat**3.2**car5.1frog-1.7

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 84

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

cat**3.2**car5.1frog-1.7

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 85

-1.7

cat

car

frog

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

24.5

164.0

0.18

unnormalized

probabilities

n

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}$$
 Softmax

April 6, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 87

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 88

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 90

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 92

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat**3.2**car5.1frog-1.7

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 94

3.2

5.1

-1.7

cat

car

frog

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

April 6, 2023

$$L_i = -\log P(Y = y_i | X = x_i) ~~~~ L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Q1: What is the min/max possible softmax loss L_i?

Q2: At initialization all s_j will be approximately equal; what is the softmax loss L_i , assuming C classes?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

<u>___</u>

April 6, 2023

$$L_i = -\log P(Y = y_i | X = x_i) \hspace{1cm} L_i = -\log igl(rac{e^{sy_i}}{\sum e^{s_j}} igr)$$

3.2 cat 5.1 car -1.7

frog

Q2: At initialization all s will be approximately equal; what is the loss? A: $-\log(1/C) = \log(C)$, If C = 10, then $L_i = \log(10) \approx 2.3$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 97

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 98

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$

Q: What is the **softmax loss** and the **SVM** loss?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 99

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [20, -2, 3] [20, 9, 9] [20, -100, -100]and $y_i = 0$ Q: What is the **softmax loss** and the **SVM** loss **if I double the correct class score from 10 -> 20**?

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 100

Coming up:

RegularizationOptimization

f(x,W) = Wx + b

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 2 - 101