Lecture 16: 3D Vision

Slides credit: Justin Johnson

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 1 May 30, 2023

Recall: 2D Detection and Segmentation

Classification

Semantic Segmentation

Object Detection

Lecture 16 - 2

Instance Segmentation

May 30, 2023

Recall: Video = 2D + Time

A video is a **sequence** of images 4D tensor: T x 3 x H x W (or 3 x T x H x W)

Lecture 16 - 3

May 30, 2023

This image is CC0 public domain

Focus on Two Problems today

Predicting 3D Shapes from single image

Processing 3D input data

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 4 May 30, 2023

Many more topics in 3D Vision!

3D Representations **Computing Correspondences** Multi-view stereo Structure from Motion Simultaneous Localization and Mapping (SLAM) View Synthesis **Differentiable Graphics 3D Sensors**

Lecture 16 - 5

May 30, 2023

.

Su et al. ICCV 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 6 May 30, 2023

Su et al. ICCV 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 7 May 30, 2023

CNN₁: a ConvNet extracting image features

Lecture 16 - 8

Su et al. ICCV 2015

May 30, 2023

View pooling: element-wise max-pooling across all views

Su et al. ICCV 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 9 May 30, 2023

Lecture 16 - 10

Su et al. ICCV 2015

May 30, 2023

Experiments – Classification & Retrieval

Non-deep {	Method	Classification	Retrieval
		(Accuracy)	(mAP)
	• SPH	68.2%	33.3%
	LFD	75.5%	40.9%
	3D ShapeNets	77.3%	49.2%
	FV, 12 views	84.8%	43.9%
	CNN, 12 views	88.6%	62.8%
	MVCNN, 12 views	89.9%	70.1%
	MVCNN+metric, 12 views	89.5%	80.2%
	MVCNN, 80 views	90.1%	70.4%
	MVCNN+metric, 80 views	90.1%	79.5%

On ModelNet 40

Lecture 16 - 11

May 30, 2023

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 12 May 30, 2023

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 13 May 30, 2023

3D Shape Representations: Depth Map

For each pixel, **depth map** gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)

RGB Image: 3 x H x W Depth Map: H x W

May 30, 2023

Lecture 16 - 14

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Lecture 16 - 15

May 30, 2023

RGB Input Image:Fully ConvolutionalPredicted Depth Image:3 x H x Wnetwork1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014 Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 16 May 30, 2023

Predicted Depth Image: Predicting Depth Maps $1 \times H \times W$ Scale invariant loss $D(y, y^*) = \frac{1}{2n^2} \sum_{i,j} \left((\log y_i - \log y_j) - (\log y_i^* - \log y_j^*) \right)^2$ $= \frac{1}{n} \sum_{i} d_{i}^{2} - \frac{1}{n^{2}} \sum_{i,i} d_{i} d_{j} = \frac{1}{n} \sum_{i} d_{i}^{2} - \frac{1}{n^{2}} \left(\sum_{i} d_{i} \right)^{2}$ Per-Pixel Loss (Scale invariant)

RGB Input Image: 3 x H x W Fully Convolutional network Predicted Depth Image: 1 x H x W

Lecture 16 - 17

May 30, 2023

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014 Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

3D Shape Representations: Surface Normals

For each pixel, **surface normals** give a vector giving the normal vector to the object in the world for that pixel

RGB Image: 3 x H x W Normals: 3 x H x W

Lecture 16 - 18

May 30, 2023

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 19 May 30, 2023

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 20 May 30, 2023

3D Shape Representations: Voxels

- Represent a shape with a V x V x V grid of occupancies
- Just like segmentation masks in Mask R-CNN, but in 3D!
- (+) Conceptually simple: just a 3D grid!
- (-) Need high spatial resolution to capture fine structures
- (-) Scaling to high resolutions is nontrivial!

Lecture 16 - 21

May 30, 2023

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Processing Voxel Inputs: 3D Convolution

Train with classification loss

Wu et al, "3D ShapeNets: A Deep Representation for Volumetric Shapes", CVPR 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 22 May 30, 2023

Generating Voxel Shapes: 3D Convolution

Train with per-voxel cross-entropy loss

May 30, 2023

Lecture 16 - 23

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Voxel Problems: Memory Usage Storing 1024³ voxel grid takes 4GB of memory!

Voxel memory usage (V x V x V float32 numbers)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 24 May 30, 2023

Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resolution!

Tatarchenko et al, "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", ICCV 2017

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 25 May 30, 2023

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 26 May 30, 2023

3D Shape Representations: Point Cloud

- Represent shape as a set of P points in 3D space
- (+) Can represent fine structures without huge numbers of points
- () Requires new architecture, losses, etc
- (-) Doesn't explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

Lecture 16 - 27

May 30, 2023

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Generating Pointcloud Outputs

We need a (differentiable) way to compare pointclouds as sets!

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

<u>May 30,</u> 2023

Lecture 16 - 30

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's a nearest neighbor in the other set

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017 Lecture 16 - 31

May 30, 2023

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's d_d nearest neighbor in the other set

$$CD(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Lecture 16 - 32

<u>May 30, 2023</u>

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of distance to each point's d_C L2 nearest neighbor in the other set

$$y_D(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017 Lecture 16 - 33

<u>May 30, 2023</u>

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's d_C nearest neighbor in the other set

$$\sum_{x \in S_1} (S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017 Lecture 16 - 34

<u>May 30, 2023</u>

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 35 May 30, 2023

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 36 May 30, 2023
3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

- Vertices: Set of V points in 3D space
- Faces: Set of triangles over the vertices
- (+) Standard representation for graphics
- (+) Explicitly represents 3D shapes
- (+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

Lecture 16 - 37

Dolphin image is in the public domain

May 30, 2023

3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

- Vertices: Set of V points in 3D space
- Faces: Set of triangles over the vertices
- (+) Standard representation for graphics
- (+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.

(-) Nontrivial to process with neural networks

Lecture 16 - 38

UV mapping figure is licensed under <u>CC BY-SA</u> <u>3.0</u>. Figure slightly

May 30, 2023

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object **Output**: Triangle mesh for the object

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 39 May 30, 2023

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object **Key ideas**: Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object

<u>May 30, 2023</u>

Lecture 16 - 40

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Predicting Triangle Meshes: Iterative Refinement

Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh Network predicts offsets for each vertex Repeat.

Lecture 16 - 41

May 30, 2023

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Predicting Triangle Meshes: Graph Convolution

$$f_i' = W_0 f_i + \sum_{j \in N(i)} W_1 f_j$$

Vertex v_i has feature f_i

New feature f'_i for vertex v_i depends on feature of neighboring vertices N(i)

Use same weights W_0 and W_1 to compute all outputs

Input: Graph with a feature vector at each vertex

Output: New feature vector for each vertex

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 42 May 30, 2023

Predicting Triangle Meshes: Graph Convolution

Each of these blocks consists of a stack of **graph convolution layers** operating on edges of the mesh

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 43 May 30, 2023

Predicting Triangle Meshes: Graph Convolution

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 44 May 30, 2023

Predicting Triangle Meshes: Vertex-Aligned Features

Idea #2: Aligned vertex features For each vertex of the mesh:

- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Lecture 16 - 45

May 30, 2023

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Predicting Triangle Meshes: Vertex-Aligned Features

Idea #2: Aligned vertex features For each vertex of the mesh:

- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Similar to RoI-Align operation from detection: maintains alignment between input image and feature vectors

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 46 May 30, 2023

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Lecture 16 - 47

May 30, 2023

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Lecture 16 - 48

May 30, 2023

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Sample points from the surface of the

ground-truth mesh

<u>May 30, 2023</u>

(offline)

Lecture 16 - 49

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

The same shape can be represented with different meshes - how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object **Key ideas**: Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object

<u>May 30, 2023</u>

Lecture 16 - 51

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

3D Shape Prediction: Mesh R-CNN

Mask R-CNN: 2D Image -> 2D shapes

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN", ICCV 2017

Mesh R-CNN: 2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 52 May 30, 2023

Mesh R-CNN: Task

Input: Single RGB image

Output:

- A set of detected objects
 For each object:
 - Bounding box
 - Category label
 - Instance segmentation
 - 3D triangle mesh

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 53 May 30, 2023

Mask R-CNN

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Lecture 16 - 54

May 30, 2023

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Mesh R-CNN: Use voxel predictions to create initial mesh prediction!

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 55 May 30, 2023

Input image

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 56 May 30, 2023

Input image

2D object recognition

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 57 May 30, 2023

Input image

2D object recognition

Y

3D object voxels

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 58 May 30, 2023

Input image

2D object recognition

 \mathbf{V}

Lecture 16 - 59

3D object meshes

Fei-Fei Li, Yunzhu Li, Ruohan Gao

3D object voxels

May 30, 2023

Mesh R-CNN: ShapeNet Results

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 60 May 30, 2023

Datasets for 3D Objects

- Large-scale Synthetic Objects: ShapeNet, 3M models
- ModelNet: absorbed by ShapeNet
- ShapeNetCore: 51.3K models in 55 categories

Chang et al. ShapeNet. arXiv 2015 Wu et al. 3D ShapeNets. CVPR 2015

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 62 May 30, 2023

Pix3D

- 10,069 images
- 395 shapes (IKEA furniture + 3D scan)

Sun et al. CVPR 2018, building upon Lim et al. ICCV 2013

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Predicting many objects per scene

Box & Mask Predictions

Mesh Predictions

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 64 May 30, 2023

Amodal completion: predict occluded parts of objects

Box & Mask Predictions

Mesh Predictions

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 65 May 30, 2023

Segmentation failures propagate to meshes

May 30, 2023

Box & Mask Predictions

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Mesh Predictions Lecture 16 - 66

Figure from the ShapeNet paper, Chang et al. arXiv 2015

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Datasets for 3D Object Parts

Fine-grained Parts: PartNet

- Fine-grained (+mobility)
- Instance-level
- Hierarchical

Mo et al. CVPR 2019 Slide credit: Hao Su

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

May 30, 2023

Physical Interaction with Articulated Objects

300+ door annotations

support articulated objects

(cabinets, doors, fridge, oven, window etc.)

http://svl.stanford.edu/igibson/

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

ObjectFolder

Multisensory neural objects

Multisensory real objects

May 30, 2023

Gao et al. CVPR 2023. <u>https://objectfolder.stanford.edu/</u>

Lecture 16 -

Visual Data in ObjectFolder Real

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Acoustic Data in ObjectFolder Real

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

May 30, 2023
Tactile Data in ObjectFolder Real

Gao et al. CVPR 2023. <u>https://objectfolder.stanford.edu/</u>

Lecture 16 -

May 30, 2023

3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 74 May 30, 2023

3D Shape Representations: Implicit Functions

 $o: \mathbb{R}^3 \to \{0, 1\}$ Learn a function to classify arbitrary 3D points as inside / outside the shape

 ${X : O(X) = \frac{1}{2}}$ The surface of the 3D object is the level set

Implicit function

Explicit Shape

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 75 May 30, 2023

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z

Slide credit: Ren Ng

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z

More complex shapes?

Slide credit: Ren Ng

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations

Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form Alternative: store a grid of values approximating function

Lecture 16 -

Slide credit: Ren Ng

May 30, 2023

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form Alternative: store a grid of values approximating function

Surface is found where interpolated values equal zero

Provides much more explicit control over shape (like a texture) Slide credit: Ren Ng

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

May 30, 2023

Level Sets from Medical Data (CT, MRI, etc.)

Level sets encode, e.g., constant tissue density

Slide credit: Ren Ng

May 30, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 -

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 84 May 30, 2023

NeRF: Representing Scenes as Neural Radiance Fields

Novel view synthesis

May 30, 2023

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Lecture 16 -

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 86 May 30, 2023

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 87 May 30, 2023

Main Problem: Very slow!

Training: 1-2 days on a V100 GPU, for just a single scene!

Inference: Sampling an image from a trained model: (256 x 256 pixels) x (224 samples per pixel)

Lecture 16 - 88

May 30, 2023

= 14.6M forward passes through MLP

Tons of follow-up work!

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

(a) Capture Process

(b) Input

(c) Nerfie

Lecture 16 - 89

(d) Nerfie Depth

May 30, 2023

Park et al, "Nerfies: Deformable Neural Radiance Fields", ICCV 2021

Lecture 16 - 90

May 30, 2023

Mildenhall et al, "NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images", CVPR 2022

Tancik et al, "Block-NeRF: Scalable Large Scene Neural View Synthesis", CVPR 2022

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 91 May 30, 2023

DreamFusion: Text-to-3D using 2D Diffusion, Ben et al., arXiv 2022

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 92 May 30, 2023

Summary: 3D Shape Representations

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 93 May 30, 2023

Next time: Lecture 17: Human-Centered Artificial Intelligence by Prof. Fei-Fei Li

Lecture 18 on 6/6: Zoom Guest Lecture by Prof. Sara Beery

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 16 - 94 May 30, 2023