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So far: Supervised Learning

Supervised Learning

Classification

Data: (x, y)

X is data, y is label

Goal: Learn a function to map x ->y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

So far: Self-Supervised Learning

Self-Supervised Learning Feature Learning
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Today: Reinforcement Learning

Problems where an Agent Environment
agent performs actions R

in environment, and E‘ ~ @F

receives rewards —

Goal: Learn how to =y

take actions that g%

maximize reward Reward

Earth photo is in the public domain
Robot image is in the public domain
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https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg

Overview

- What is reinforcement learning?

- Algorithms for reinforcement learning
- Q-Learning
- Policy Gradients
- Model-based RL and planning
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Reinforcement Learning

Environment

Agent
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Reinforcement Learning

Environment

State The agent sees a state; may
St be noisy or incomplete

Agent
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Reinforcement Learning

Environment

State ] Actionl The makes an action
St ay based on what it sees
Agent
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Reinforcement Learning

Environment

State ] Action| Reward Reward tells the agent
St Ch re how well it is doing

v

Agent
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Reinforcement Learning
Action causes change

to environment

Environment — Environment

State Action Reward
St d¢ Iy

v

Agent — Agent

Agent learns
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Reinforcement Learning Process repeats

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d My v St+1 di+1 M41 v
Agent — Agent —_—
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Example: Cart-Pole Problem

Objective: Balance a pole
on top of a movable cart

State: angle, angular speed,
position, horizontal velocity

Action: horizontal force
applied on the cart

M F
Reward: 1 at each time
JT7777777777777777777777777777 step if the pole is upright
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example: Robot Locomotion o
Objective: Make the

robot move forward

State: Angle, position,
velocity of all joints

Action: Torques applied
on joints

Reward: 1 at each time
step upright + forward
movement

Figure from: Schulman et al, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”, ICLR 2016
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Example: Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Example: Go

A BCDEFGH )] KLMNUOPOQRST

19
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(-]

17 O ( 17 Objective: Win the game!
6 T @TOTO .

“ e - State: Position of all pieces
11 o 11 .

10 N Action: Where to put the

o

o

next piece down

o°

S

A BCDEFGH )] KLMNUOPOQRST

Reward: On last turn: 1 if
you won, O if you lost

N

= N W s YN @
= N W L N @

This image is CCO public domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Reinforcement Learning vs Supervised Learning

Environment

State | Action I Reward
St d¢ Iy

v

Agent

Environment —
State I Action[ Reward
St+1 di+1 LTS
Agent —
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Reinforcement Learning vs Supervised Learning

Dataset — Dataset —
nput ] Predictionl Loss Inputl Predictionl Loss
X Yt Lt v Xet Yis1 I-t+1 v

Why is RL different from normal supervised learning?
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d I v St+1 di+1 M41 v

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Action| Reward State I Action[ Reward
St dy My v St+1 di+1 Me+1 v
Agent — Agent —_—

Credit assighment: Reward r, may not directly depend on action a,
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d I v St+1 di+1 M41 v

Nondifferentiable: Can’t backprop through world; can’t compute dr,/da,
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Action| Reward State I Action[ Reward
St d e | St+1 di+1 M1 |
Agent — Agent —_—

Nonstationary: What the agent experiences depends on how it acts
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states

A: Set of possible actions

R: Distribution of reward given (state, action) pair

P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the
world. Rewards and next states depend only on current state, not history.
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states
A: Set of possible actions

R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Agent executes a policy i giving distribution of actions conditioned on states
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states
A: Set of possible actions

R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Agent executes a policy i giving distribution of actions conditioned on states
Goal: Find policy T that maximizes cumulative discounted reward: Zt )/t’rt
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Markov Decision Process (MDP)

- At time step t=0, environment samples initial state sq ~ p(sp)
- Then, for t=0 until done:

Agent selects action a; ~ w(a | s;)

Environment samples reward 1 ~ R(r | s¢, a;)

Environment samples next state s;.1 ~ P(s | ¢, a;)

Agent receives reward r, and next state s, ,
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A simple MDP: Grid World

Actions: States Reward
1. Right
* Set a negative
2. LEft 7, ”
* reward” for
3. Up each transition
4. Down (e.g. 7 =-1)

Objective: Reach one of the terminal states in as few moves as possible
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A simple MDP: Grid World

Bad policy Optimal Policy

) o
Sk
{

) =
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.
Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

o ~ P(So)
n*=argm7$1XIE zytrthr a, ~m(a|s;)
-t20 : St41 ~ P(s | 5, ar)
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Value Function and Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -
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Value Function and Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

VT(s) = E Zytrt|so =S,

Lt=20
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Value Function and

Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

VT(s) =

e[St =

Lt=20

How good is a state-action pair? The Q function at state s and action a, is the expected
cumulative reward from taking action a in state s and then following the policy:

Q"(s,a) =

Zy | Sg =5,ap =,

Lt=20
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am
t=0

Q*(s,a) = max E
T
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al’
Where r~R(s,a),s ~P(s, a)
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al’
Where r~R(s,a),s ~P(s, a)

Intuition: After taking action a in state s, we get reward r and move to a new
state s’. After that, the max possible reward we can get is max Q*(s’, a’)
al
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Solving for the optimal policy: Value lteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
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Solving for the optimal policy: Value lteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q(s’, a’)]
Where r~R(s,a),s'~P(s, a)
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Solving for the optimal policy: Value lteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q(s’, a’)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
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Solving for the optimal policy: Value lteration
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = Erg [7‘ +ymaxQ*(s’, a’) ]
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q;(s’, a’)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
Problem: Need to keep track of Q(s, a) for all (state, action) pairs —impossible if infinite
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Solving for the optimal policy: Value lteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q;(s’, a’)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
Problem: Need to keep track of Q(s, a) for all (state, action) pairs —impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - 43 May 23, 2023



Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vs,a,0 = Ergr [7‘ Ty n}lalx Q(s',a’; 0)]
Where r~R(s,a),s'~P(s,a)
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vs,a,0 = Ergr [7‘ Ty n}lalx Q(s',a’; 0)]
Where r~R(s,a),s'~P(s,a)

Use this to define the loss for training Q:  L(s,a) = (Q(s, a;8) — ys,a,9)2
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vs,a,0 = Ergr [7‘ Ty n}lalx Q(s',a’; 0)]
Where r~R(s,a),s'~P(s,a)

2
Use this to define the loss for training Q:  L(s,a) = (Q(s, & 0) — Ysa0)
Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights 0!
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vs,a,0 = Ergr [7‘ Ty n}lalx Q(s',a’; 0)]
Where r~R(s,a),s'~P(s,a)

2
Use this to define the loss for training Q:  L(s,a) = (Q(s, & 0) — Ysa0)
Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights 0!
Problem: How to sample batches of data for training?
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Mnih et al, “Playing Atari with Deep Reinforcement
Learning”, NeurlPS Deep Learning Workshop, 2013

Case Study: Playing Atari Games

Network output:

Q-values for all actions With 4 actions: last
Q(s,a;0) -
FC-A (Q-values) layer gives values
Neural network
Wlth WEIghtS e Q(Stl al)l Q(Str a2)1
Q(s, as), Q(s,a,)

L= = L] L= = L] L= = L] L= = L]

Network input: state s,: 4x84x84 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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https://www.youtube.com/watch?v=V1eYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Q-Learning

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions
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Q-Learning vs Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state
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Q-Learning vs Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state

Objective function: Expected future rewards when following policy mg:

J(0) = Er~p9 [z Vt rt]

t=0

Find the optimal policy by maximizing: 8* = arg meaxj(é?) (Use gradient ascent!)
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Policy Gradients

Objective function: Expected future rewards when following policy mg:

Find the optimal policy by maximizing: 8* = arg mgx](@) (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute g—é
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Policy Gradients

Objective function: Expected future rewards when following policy mg:

J(0) = IEr~p9 lE Vt Tt ]

t=0

Find the optimal policy by maximizing: 8* = arg mgx](@) (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute g—é
General formulation: J(6) = E,., [f(x)] Wantto compute g_é
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute g_é
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
9 0

0
5= 59 Brnal 01 = 35 | paGOFGId

20
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
d d 0 0
L = B[] = o J poCoreade= | £e0Jpacods
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
d d 0 0
L = B[] = o J poCoreade= | £e0Jpacods

d
%108 pg (x)
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute g_é
a] 0 9, 0
5= 5 Benalf @1 = 35 | paGFGx = | G Z5meCIa
0 0
%log po(x) = > () 06 po (x)
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Policy Gradients: REINFORCE Algorithm

General formulation: J(0) = E,., [f(x)] Want to compute g_é
o] 8 0 0
5= 5 Benalf @1 = 35 | paGFGx = | G Z5meCIa
. | B 0 0 B J |
56108P0 () = —r5 2P (x) = 55pe (x) = pg () 7510 po (x)
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Policy Gradients: REINFORCE Algorithm

General formulation: J(0) = E,., [f(x)] Want to compute g_é
o] 8 0 0
5= 5 Benalf @1 = 35 | paGFGx = | G Z5meCIa
. | B 0 0 B J |
56108P0 () = —r5 2P (x) = 55pe (x) = pg () 7510 po (x)

0 0
5= | F@aeS5l0ems) da
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute g—é
0 0 0
= B[] = 5 f po(O)f (x)dx = j F(6) 55 Do (X)dx

d 1 o0 d 0
631082?9(96) = )aepe(x) agpe(x) —Pe(x) 108pe(x)

f f(x)pe(x) 108299(X) dx = Eyx.p, [f(x) log pg (x)

Approximate the expectation via sampling!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| se)mg(a | s¢)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| s )mg(ae | s¢) = logpg(x) = 2(108 P(s¢t1lse) +logmg(ae|se))

t=0 t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| se)mg(ae | s¢) = logpg(x) = Z(logp(5t+1|5t) + log g (ac|s¢))

t=0 t=0
Transition probabilities
of environment. We
can’t compute this.
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| s )mg(as | s¢) = logpg(x) = Z(logp(5t+1|5t) + logmy(a;|s;))

t=0 t=0
Transition probabilities Action probabilities
of environment. We of policy. We can
can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| s )mg(as | s¢) = logpg(x) = Z(logp(5t+1|5t) + logmy(a;|s;))

t>0 t>0
Transition probabilities Action probabilities

%log Pe (X) " of environment. We of policy. We can
can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = np(5t+1| s )mg(as | s¢) = logpg(x) = Z(logp(5t+1|5t) + logmy(a;|s;))

t=0 t=0
Transition probabilities Action probabilities
EY: —logpe(x) = z %108 1 (At[St) of environment. We of policy. We can
t20 can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

0
EY: ——logpg(x) = 2 %108 g (atst)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y: aag logpg(x) = PY: —logmy(a;|s;)
J(6) = x~p9[f<x>]

aJ

% Ex-pg f(X) 108P9(x)

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - 71 May 23, 2023



Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y: aag logpg(x) = PY: —logmy(a;|s;)

J(6) = x~p9[f<x>] |

aJ

% x~p9 f(x) logp9 (x) x~p9 f(x)z logne (atlst)
t>0 i
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = Exp,lf (x)]

; _
é = Eyp, f(x) z log g (ac|se)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1g:

J(0) = Exp,f (x)] Sequence of states

d] ] and actions when

90 E, p, f(x) z —logmg(as|s;) following policy g
t>0 _
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1g:

J(0) = Exp, [f (x)] Reward we get from
d] ] state sequence x

-5 = Ex-p, f(x) z log g (a|se)

t=0 _
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1ty Gradient of predicted

J(0) = x~p9 [ (x)] action scores with

9] ] respect to model

50 = Eyxp, f(x) z logmg(a,|s;) weights. Backprop
t=0 ] through model 17, !
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

1. Initialize random weights O
Expected reward under 1y: 5

J(8) = Exp,lf (x)]

a _
% = Eyp, f(x) z log g (a|se)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and

actions we get when following policy mg. It’s random: x~pg(x)
1. Initialize random weights 6

Expected reward under 7rp: 2. Collect trajectories x and
J(0) = x~p9 [f (x)] _ rewards f(x) using policy g
0] 3. Compute dJ/d6
35 = Bxera |0 > S logme(als,)

t=0 .
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = Exp,lf (x)]

0]
5 = Ex~p, f(x) z log g (ac|se)
t>0

1.
2.

Initialize random weights 0
Collect trajectories x and
rewards f(x) using policy g
Compute dJ/d6

Gradient ascent step on 6
GOTO 2
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Intuition:
EXPECted reward under my: When f(x) is high: Increase the
J(8) = x~p9 [f(x) probability of the actions we took.
0] 1 When f(x) is low: Decrease the
robability of the actions we took.
= By, f(x)z log mg(als,)| PPty
t=0 i
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

Vsad = Erg [r + ymaxQ(s’,a’; 9)] Where r~R(s,a),s'~P(s,a)
al
2
L(s,a) = (Q(s,a;0) — Ysap)

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

J(6) = Exepy[f ()] 2 = Eypy |f(6) Teso 35 10g mo (aclsy))|
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

Vsad = Erg [r + ymaxQ(s’,a’; 9)] Where r~R(s,a),s'~P(s,a)
al
2
L(s,a) = (Q(s,a;0) — Ysap)

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

J(6) = Exepy[f ()] 2 = Eypy |f(6) Teso 35 10g mo (aclsy))|

Improving policy gradients: Add baseline to reduce variance of gradient estimator
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Case Study: Playing Games

AlphaGo: (January 2016) ABCDEFGH)KLMNOPQRST

. ) ) e PN 19

- Used imitation learning + tree search + RL RPN p @ L
- Beat 18-time world champion Lee Sedol e [@FOHO Q?%#’
s O T

i e > e

190 190

. .

: ARtk

: C CS&‘ s

1 T A

A B CDEVF GH )] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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Case Study: Playing Games

AlphaGo: (January 2016)  AUEBEEODILLUNEDEE

- Used imitation learning + tree search + RL 7 LS OQQQ(JP? 1
- Beat 18-time world champion Lee Sedol e @+O+O s e
AlphaGo Zero (October 2017) 14— T 14
- Simplified version of AlphaGo e 05 12
- No longer using imitation learning > ® o
- Beat (at the time) #1 ranked Ke Jie . .
. r\C ® :
; Sap SeNrJalh
: oit Svee’IE

A B CDEVF GH )] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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Case Study: Playing Games

AlphaGo: (January 2016)  AUEBEEODILLUNEDEE

- Used imitation learning + tree search + RL 7 LS C \\/JP, 1
- Beat 18-time world champion Lee Sedol o 1 @TOTO DQQSC; e
AlphaGo Zero (October 2017) 14— T 14
- Simplified version of AlphaGo e Q&(} 12
- No longer using imitation learning > ® o
- Beat (at the time) #1 ranked Ke Jie . .
Alpha Zero (December 2018) ! C ® :
- Generalized to other games: Chess and Shogi > ®, D \ Sl

: SIS R -

N \/f\ \ .

A B CDEVF GH )] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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Case Study: Playing Games

AlphaGo: (January 2016)

- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi

MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

A B CDEVFIGH )] KLMNUOPIQRST

19 19
18 P 18
e Cglgra®
16 - @TOTO @ 16
15 ©) 15
14 ® 14
13 13
12 12
11 o 11
10 10
9 9
8 8
7 7
s OO T@ T
s CTEOLT e
: ST, :
3 L 4 C 3
2 () 2
1 1

A B CDEVF GH )] KLMNUOPIQRST

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

This image is CCO public domain

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 14 - 86

May 23, 2023


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games ovember 2019: Lee Sedol

AIphaGo: (January 2016) announces retirement

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi
MuZero (November 2019)

- Plans through a learned model of the game

“With the debut of Al
in Go games, I've
realized that I'm not at
the top even if |
become the number
one through frantic
efforts’

“Even if | become the
number one, there is
an entity that cannot
be defeated”

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

S!Iver et al, ”Masterlng the game of Go W|thout human knowledge”, Nature 2017‘ o Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018 | f Lee Sedol is [i 4 under CC BY 2.0

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 mage ol Lee >edol IS licensed under L oY 2.1
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More Complex Games

StarCraft Il: AlphaStar

(October 2019) Dota 2: OpenAl Five (April 2019)
Vinyals et al, “Grandmaster ~ No paper, only a blog post:

level in StarCraft Il using https://openai.com/five/#how-
multi-agent reinforcement openai-five-works

learning”, Science 2018

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - 88 May 23, 2023


https://openai.com/five/
https://openai.com/five/

Problems of Model-Free RL

* Learns from trials and error
* Require extensive interactions

AlphaGo Zero: Google DeepMind

supercomputer learns 3,000 years of human

knowledge in 40 days

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Lecture 14 - 89

May 23, 2023



Problems of Model-Free RL

e Learns from trials and error
* Require extensive interactions

e Safety concerns
* Limited interpretability
 What if things go wrong?
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Problems of Model-Free RL

-
1

e Learns from trials and error
* Require extensive interactions

» Safety concerns
* Limited interpretability
 What if things go wrong?

* Humans maintain an intuitive model
of the world
* Widely applicable
 Sample efficient
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Model-Based RL

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions

/)'
e m === -7 o Model might not be accurate enough.
== ~_ "
02T -T2 e o
YRR 1. Execute the first action
\\\ 2. Obtain new state
v oS - O 3. Re-optimize the action sequence using gradient descent
\ =
\\ ~
S~o Key: GPU for parallel sampling / gradient descent

Key question: what should be the form of s;?
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Pixel Dynamics - Deep Visual Foresight

5x5 5x5conv  5x5conv  5x5conv 5x5conv  5x5 conv 5x5 conv 5x5 conv Ix1
RGB input conv1 LSTM 1 LSTM 2 LSTM 3 LSTM 4 LSTM 5 LSTM 6 LSTM 7 conv 2 compositing
! masks
1 t - B
32¢ 32¢ 32¢ 64 c 64 c 128 ¢ 64 c 32¢ 6c
channel
softmax [ |
: e
stride stride stride deconv deconv deconv el
: 2 2 2 2 2 2
64x64x3 32x32 32x32 32x32 16x16  16x16  § 8x8 16x16 32x32 64x64 e 64x64
action 10c *g compositing
ai tile = convolve
tat l i ()
state - fully connected, m -,
X¢ reshape & 5 5y 64x64 .
normalize x 5 64x64x3 RGB It_|_1
8x8 CDNA kernels ~
transformed "‘W""
images

Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017
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Keypoint Dynamics

Manuelli, Li, Florence, Tedrake, “Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning”, CoRL 2020
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Particle Dynamics

=

S

Real scene (w/ goal mask)

Particle repr.

Wang, Li, Driggs-Campbell, Fei-Fei, Wu, “Dynamic-Resolution Model Learning for Object Pile Manipulation”, RSS 2023
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Rice

Candy

24x speed



Push to all letters
24x speed




Mesh-Based Dynamics

Execution Model rollout

Huang, Lin, Held, “Mesh-based Dynamics with Occlusion Reasoning for Cloth Manipulation”, RSS 2022
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Other approaches

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions
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Other approaches

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016
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Other approaches

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)
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Other approaches

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000
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Other approaches

Model-Based: Learn a model of the world’s state transition function P(s;41|s¢, a¢) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake

Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurlPS 2016
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Reinforcement Learning: Interacting With World

/ Action\

Agent Environment

SN

. v
\Reway

Normally we use RL to train
agents that interact with a (noisy,
nondifferentiable) environment
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Summary: Reinforcement Learning

RL trains agents that interact Q-Learning: Train network Qy (s, a) to
with an environment and estimate future rewards for every
learn to maximize reward (state, action) pair. Use Bellman
Equation to define loss function for
/AC“O”\ training Q

Environment

Policy Gradients: Train a network

g (a | s) that takes state as input,
gives distribution over which action to
take in that state. Use REINFORCE Rule
for computing gradients
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Next time: Generative Models
Guest Lecture by Dr. Ruigi Gao from Google Brain
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