
Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Lecture 14:
Robot Learning

1

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

So far: Supervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

2

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

So far: Self-Supervised Learning
Feature Learning

(e.g. autoencoders)

Self-Supervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality
reduction, feature learning, density
estimation, etc.

3

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Today: Reinforcement Learning

Earth photo is in the public domain
Robot image is in the public domain

Action

Reward

Agent EnvironmentProblems where an
agent performs actions
in environment, and
receives rewards

Goal: Learn how to
take actions that
maximize reward

4

https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Overview

- What is reinforcement learning?
- Algorithms for reinforcement learning

- Q-Learning
- Policy Gradients
- Model-based RL and planning

5

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

Agent

6

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

State
st

Agent

The agent sees a state; may
be noisy or incomplete

7

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

State
st

Action
at

Agent

The makes an action
based on what it sees

8

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

State
st

Action
at

Agent

Reward
rt

Reward tells the agent
how well it is doing

9

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

Agent

Action causes change
to environment

Agent learns

10

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Process repeats

11

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Example: Cart-Pole Problem
Objective: Balance a pole
on top of a movable cart

State: angle, angular speed,
position, horizontal velocity

Action: horizontal force
applied on the cart

Reward: 1 at each time
step if the pole is upright

This image is CC0 public domain

12

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Example: Robot Locomotion
Objective: Make the
robot move forward

State: Angle, position,
velocity of all joints

Action: Torques applied
on joints

Reward: 1 at each time
step upright + forward
movement

Figure from: Schulman et al, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”, ICLR 2016

13

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Example: Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013

14

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Example: Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the
next piece down

Reward: On last turn: 1 if
you won, 0 if you lost

This image is CC0 public domain

15

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

16

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Dataset

Input
xt

Prediction
yt

Model

Loss
Lt

Dataset

Model

Loss
Lt+1

Input
xt+t

Prediction
yt+1

Why is RL different from normal supervised learning?

17

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Stochasticity: Rewards and state transitions may be random

18

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Credit assignment: Reward rt may not directly depend on action at

19

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Nondifferentiable: Can’t backprop through world; can’t compute drt/dat

20

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Nonstationary: What the agent experiences depends on how it acts

21

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the
world. Rewards and next states depend only on current state, not history.

22

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states

23

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
Goal: Find policy 𝜋* that maximizes cumulative discounted reward: ∑! 𝛾!𝑟!

24

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Markov Decision Process (MDP)

- At time step t=0, environment samples initial state 𝑠! ~ 𝑝(𝑠!)
- Then, for t=0 until done:
- Agent selects action 𝑎" ~ 𝜋 𝑎 𝑠")
- Environment samples reward 𝑟" ~ 𝑅 𝑟 𝑠", 𝑎")
- Environment samples next state 𝑠"#$ ~ 𝑃 𝑠 | 𝑠", 𝑎"
- Agent receives reward rt and next state st+1

25

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

A simple MDP: Grid World

★

★

States Reward

Set a negative
“reward” for

each transition
(e.g. r = -1)

Actions:

1. Right

2. Left

3. Up

4. Down

Objective: Reach one of the terminal states in as few moves as possible

26

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

A simple MDP: Grid World

★

★

Bad policy

★

★

Optimal Policy

27

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

28

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

29

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

𝜋∗ = argmax
#

𝔼 ,
!$%

𝛾! 𝑟! | 𝜋
𝑠% ~ 𝑝 𝑠%
𝑎! ~ 𝜋 𝑎 | 𝑠!
𝑠!&' ~ 𝑃 𝑠 | 𝑠! , 𝑎!

30

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

31

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋

32

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋

How good is a state-action pair? The Q function at state s and action a, is the expected
cumulative reward from taking action a in state s and then following the policy:

𝑄! 𝑠, 𝑎 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝑎$ = 𝑎, 𝜋

33

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

34

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

35

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

36

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Intuition: After taking action a in state s, we get reward r and move to a new
state s’. After that, the max possible reward we can get is max

&'
𝑄∗ 𝑠', 𝑎′

37

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

38

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

39

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞

40

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite

41

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!

42

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

43

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

44

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

45

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!

46

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
Problem: How to sample batches of data for training?

47

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013

48

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Atari Games

Network input: state st: 4x84x84 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

FC-256

FC-A (Q-values)

Conv(4->16, 8x8, stride 4)

Conv(16->32, 4x4, stride 2)

𝑄 𝑠, 𝑎; 𝜃
Neural network
with weights θ

Network output:
Q-values for all actions With 4 actions: last

layer gives values
Q(st, a1), Q(st, a2),
Q(st, a3), Q(st,a4)

Mnih et al, “Playing Atari with Deep Reinforcement
Learning”, NeurIPS Deep Learning Workshop, 2013

49

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023
https://www.youtube.com/watch?v=V1eYniJ0Rnk

50

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Q-Learning
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

51

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Q-Learning vs Policy Gradients
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state

52

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Q-Learning vs Policy Gradients
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state

Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

53

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients
Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute ()
(*

54

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients
Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

Problem: Nondifferentiability! Don’t know how to compute ()
(*

55

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

56

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

57

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

58

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

59

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

60

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

61

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

62

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Approximate the expectation via sampling!

63

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

64

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

65

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

66

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

67

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

68

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

69

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

70

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

71

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

72

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

73

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼𝒙~𝒑𝜽 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Sequence of states
and actions when
following policy 𝝅𝜽

74

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝒇 𝒙 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Reward we get from
state sequence x

75

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝝏
𝝏𝜽

𝒍𝒐𝒈𝝅𝜽 𝒂𝒕|𝒔𝒕

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Gradient of predicted
action scores with
respect to model
weights. Backprop
through model 𝝅𝜽!

76

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

77

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

78

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

79

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Intuition:
When f(x) is high: Increase the
probability of the actions we took.
When f(x) is low: Decrease the
probability of the actions we took.

80

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

So far: Q-Learning and Policy Gradients

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"

81

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

So far: Q-Learning and Policy Gradients

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"

Improving policy gradients: Add baseline to reduce variance of gradient estimator

82

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

83

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

84

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

85

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

86

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Case Study: Playing Games
AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

November 2019: Lee Sedol
announces retirement

“ With the debut of AI
in Go games, I've
realized that I'm not at
the top even if I
become the number
one through frantic
efforts”
“Even if I become the
number one, there is
an entity that cannot
be defeated”

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0

87

https://en.yna.co.kr/view/AEN20191127004800315
https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

More Complex Games

StarCraft II: AlphaStar
(October 2019)
Vinyals et al, “Grandmaster
level in StarCraft II using
multi-agent reinforcement
learning”, Science 2018

Dota 2: OpenAI Five (April 2019)
No paper, only a blog post:
https://openai.com/five/#how-
openai-five-works

88

https://openai.com/five/
https://openai.com/five/

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions

89

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions

• Safety concerns
• Limited interpretability

• What if things go wrong?

90

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions

• Safety concerns
• Limited interpretability

• What if things go wrong?

• Humans maintain an intuitive model
of the world
• Widely applicable
• Sample efficient

91

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Model-Based RL
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

92

Model might not be accurate enough.

1. Execute the first action
2. Obtain new state
3. Re-optimize the action sequence using gradient descent

Key: GPU for parallel sampling / gradient descent

Key question: what should be the form of 𝑠#?

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Pixel Dynamics - Deep Visual Foresight

93
Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Pixel Dynamics - Deep Visual Foresight

94
Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Keypoint Dynamics

95
Manuelli, Li, Florence, Tedrake, “Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning”, CoRL 2020

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 202396

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Particle Dynamics

97
Wang, Li, Driggs-Campbell, Fei-Fei, Wu, “Dynamic-Resolution Model Learning for Object Pile Manipulation”, RSS 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Granola

Carrot

Rice

Candy
24x speed

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Push to all letters
24x speed

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Mesh-Based Dynamics

100
Huang, Lin, Held, “Mesh-based Dynamics with Occlusion Reasoning for Cloth Manipulation”, RSS 2022

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

101

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

102

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

103

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

104

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

105

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning: Interacting With World

Ac#on

Reward

Agent Environment

Normally we use RL to train
agents that interact with a (noisy,
nondifferentiable) environment

106

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Summary: Reinforcement Learning

Ac#on

Reward

Agent Environment

RL trains agents that interact
with an environment and
learn to maximize reward

Q-Learning: Train network 𝑄! 𝑠, 𝑎 to
estimate future rewards for every
(state, action) pair. Use Bellman
Equation to define loss function for
training Q

Policy Gradients: Train a network
𝜋! 𝑎 𝑠) that takes state as input,
gives distribution over which action to
take in that state. Use REINFORCE Rule
for computing gradients

107

Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023108

Next time: Generative Models
Guest Lecture by Dr. Ruiqi Gao from Google Brain

