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So far: Supervised Learning
Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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So far: Self-Supervised Learning
Feature Learning

(e.g. autoencoders)

Self-Supervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden 
structure of the data

Examples: Clustering, dimensionality 
reduction, feature learning, density 
estimation, etc.
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Today: Reinforcement Learning

Earth photo is in the public domain
Robot image is in the public domain

Action

Reward

Agent EnvironmentProblems where an 
agent performs actions
in environment, and 
receives rewards

Goal: Learn how to 
take actions that 
maximize reward
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https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
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Overview

- What is reinforcement learning?
- Algorithms for reinforcement learning

- Q-Learning
- Policy Gradients
- Model-based RL and planning
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Reinforcement Learning

Environment

Agent
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Reinforcement Learning

Environment

State 
st

Agent

The agent sees a state; may 
be noisy or incomplete
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Reinforcement Learning

Environment

State 
st

Action 
at

Agent

The makes an action
based on what it sees
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Reinforcement Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Reward tells the agent 
how well it is doing
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Reinforcement Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

Agent

Action causes change 
to environment

Agent learns
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Reinforcement Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1

Process repeats
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Example: Cart-Pole Problem
Objective: Balance a pole 
on top of a movable cart

State: angle, angular speed, 
position, horizontal velocity

Action: horizontal force 
applied on the cart

Reward: 1 at each time 
step if the pole is upright

This image is CC0 public domain
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example: Robot Locomotion
Objective: Make the 
robot move forward

State: Angle, position, 
velocity of all joints

Action: Torques applied 
on joints

Reward: 1 at each time 
step upright + forward 
movement

Figure from: Schulman et al, “High-Dimensional Continuous 
Control Using Generalized Advantage Estimation”, ICLR 2016
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Example: Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013
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Example: Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the 
next piece down

Reward: On last turn: 1 if 
you won, 0 if you lost

This image is CC0 public domain

15

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Reinforcement Learning vs Supervised Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1
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Reinforcement Learning vs Supervised Learning

Dataset

Input 
xt

Prediction
yt

Model

Loss 
Lt

Dataset

Model

Loss
Lt+1

Input 
xt+t

Prediction
yt+1

Why is RL different from normal supervised learning?

17



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Reinforcement Learning vs Supervised Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1

Credit assignment: Reward rt may not directly depend on action at
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Reinforcement Learning vs Supervised Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1

Nondifferentiable: Can’t backprop through world; can’t compute drt/dat
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Reinforcement Learning vs Supervised Learning

Environment

State 
st

Action 
at

Agent

Reward 
rt

Environment

State 
st+1

Action 
at+1

Agent

Reward 
rt+1

Nonstationary: What the agent experiences depends on how it acts
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the 
world. Rewards and next states depend only on current state, not history.
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
Goal: Find policy 𝜋* that maximizes cumulative discounted reward: ∑! 𝛾!𝑟!
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Markov Decision Process (MDP)

- At time step t=0, environment samples initial state 𝑠! ~ 𝑝(𝑠!)
- Then, for t=0 until done:
- Agent selects action 𝑎" ~ 𝜋 𝑎 𝑠")
- Environment samples reward 𝑟" ~ 𝑅 𝑟 𝑠", 𝑎")
- Environment samples next state 𝑠"#$ ~ 𝑃 𝑠 | 𝑠", 𝑎"
- Agent receives reward rt and next state st+1
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A simple MDP: Grid World

★

★

States Reward

Set a negative 
“reward” for 

each transition 
(e.g. r = -1)

Actions:

1. Right

2. Left

3. Up

4. Down

Objective: Reach one of the terminal states in as few moves as possible
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A simple MDP: Grid World

★

★

Bad policy

★

★

Optimal Policy
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Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.
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Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards
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Finding Optimal Policies

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

𝜋∗ = argmax
#

𝔼 ,
!$%

𝛾! 𝑟! | 𝜋
𝑠% ~ 𝑝 𝑠%
𝑎! ~ 𝜋 𝑎 | 𝑠!
𝑠!&' ~ 𝑃 𝑠 | 𝑠! , 𝑎!
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Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

31



Fei-Fei Li, Yunzhu Li, Ruohan Gao Lecture 14 - May 23, 2023

Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward 
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋
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Value Function and Q Function
Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward 
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋

How good is a state-action pair? The Q function at state s and action a, is the expected 
cumulative reward from taking action a in state s and then following the policy:

𝑄! 𝑠, 𝑎 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝑎$ = 𝑎, 𝜋
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Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋
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Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')
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Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)
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Bellman Equation
Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Intuition: After taking action a in state s, we get reward r and move to a new 
state s’. After that, the max possible reward we can get is max

&'
𝑄∗ 𝑠', 𝑎′
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Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.
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Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)
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Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
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Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
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Solving for the optimal policy: Value Iteration
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*:  𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*:  𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*:  𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*:  𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q* satisfies the following recurrence relation:

𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*:  𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
Problem: How to sample batches of data for training?
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013
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Case Study: Playing Atari Games

Network input: state st: 4x84x84 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

FC-256

FC-A (Q-values)

Conv(4->16, 8x8, stride 4)

Conv(16->32, 4x4, stride 2)

𝑄 𝑠, 𝑎; 𝜃
Neural network 
with weights θ

Network output: 
Q-values for all actions With 4 actions: last 

layer gives values 
Q(st, a1), Q(st, a2), 
Q(st, a3), Q(st,a4)

Mnih et al, “Playing Atari with Deep Reinforcement 
Learning”, NeurIPS Deep Learning Workshop, 2013
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https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Q-Learning
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions
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Q-Learning vs Policy Gradients
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state
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Q-Learning vs Policy Gradients
Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state

Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)
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Policy Gradients
Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute ()
(*
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Policy Gradients
Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()
(*

Problem: Nondifferentiability! Don’t know how to compute ()
(*
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm
General formulation:   𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute  ()

(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Approximate the expectation via sampling!
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities 
of environment. We 
can’t compute this.
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"
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Policy Gradients: REINFORCE Algorithm

𝑝& 𝑥 =/
"#$

𝑃 𝑠"'(| 𝑠" 𝜋& 𝑎" | 𝑠" ⇒ log 𝑝&(𝑥) =&
"#$

log 𝑃 𝑠"'(|𝑠" + log 𝜋& 𝑎"|𝑠"

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"
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Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =/
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼𝒙~𝒑𝜽 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Sequence of states 
and actions when 
following policy 𝝅𝜽
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝒇 𝒙 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Reward we get from 
state sequence x
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝝏
𝝏𝜽

𝒍𝒐𝒈𝝅𝜽 𝒂𝒕|𝒔𝒕

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Gradient of predicted 
action scores with 
respect to model 
weights. Backprop 
through model 𝝅𝜽! 
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and 

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and 

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and 

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2
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Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm
Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and 
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Intuition: 
When f(x) is high: Increase the 
probability of the actions we took.
When f(x) is low: Decrease the 
probability of the actions we took.
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"

Improving policy gradients: Add baseline to reduce variance of gradient estimator
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Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
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Case Study: Playing Games

This image is CC0 public domain
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- Beat 18-time world champion Lee Sedol
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- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game
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Case Study: Playing Games

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
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Case Study: Playing Games
AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

November 2019: Lee Sedol 
announces retirement

“ With the debut of AI 
in Go games, I've 
realized that I'm not at 
the top even if I 
become the number 
one through frantic 
efforts”
“Even if I become the 
number one, there is 
an entity that cannot 
be defeated”

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0
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More Complex Games

StarCraft II: AlphaStar
(October 2019)
Vinyals et al, “Grandmaster 
level in StarCraft II using 
multi-agent reinforcement 
learning”, Science 2018

Dota 2: OpenAI Five (April 2019)
No paper, only a blog post: 
https://openai.com/five/#how-
openai-five-works
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Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions
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Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions

• Safety concerns
• Limited interpretability

• What if things go wrong?
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Problems of Model-Free RL
• Learns from trials and error
• Require extensive interactions

• Safety concerns
• Limited interpretability

• What if things go wrong?

• Humans maintain an intuitive model 
of the world
• Widely applicable
• Sample efficient
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Model-Based RL
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and 
then use planning through the model to make decisions

92

Model might not be accurate enough.

1. Execute the first action      
2. Obtain new state
3. Re-optimize the action sequence using gradient descent 

Key: GPU for parallel sampling / gradient descent

Key question: what should be the form of 𝑠#?
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Pixel Dynamics - Deep Visual Foresight

93
Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017
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Pixel Dynamics - Deep Visual Foresight

94
Finn and Levine, “Deep Visual Foresight for Planning Robot Motion”, ICRA 2017
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Keypoint Dynamics

95
Manuelli, Li, Florence, Tedrake, “Keypoints into the Future: Self-Supervised Correspondence in Model-Based Reinforcement Learning”, CoRL 2020
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Particle Dynamics

97
Wang, Li, Driggs-Campbell, Fei-Fei, Wu, “Dynamic-Resolution Model Learning for Object Pile Manipulation”, RSS 2023
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Granola

Carrot

Rice

Candy
24x speed
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Push to all letters
24x speed
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Mesh-Based Dynamics

100
Huang, Lin, Held, “Mesh-based Dynamics with Occlusion Reasoning for Cloth Manipulation”, RSS 2022
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Other approaches
Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and 
then use planning through the model to make decisions

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that 
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al, 
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Imitation Learning: Gather data about how experts perform in the environment, learn a 
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a 
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016
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Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that 
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Other approaches
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Reinforcement Learning: Interacting With World

Ac#on

Reward

Agent Environment

Normally we use RL to train 
agents that interact with a (noisy, 
nondifferentiable) environment
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Summary: Reinforcement Learning

Ac#on

Reward

Agent Environment

RL trains agents that interact 
with an environment and 
learn to maximize reward

Q-Learning: Train network 𝑄! 𝑠, 𝑎 to 
estimate future rewards for every 
(state, action) pair. Use Bellman 
Equation to define loss function for 
training Q

Policy Gradients: Train a network 
𝜋! 𝑎 𝑠) that takes state as input, 
gives distribution over which action to 
take in that state. Use REINFORCE Rule
for computing gradients
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Next time: Generative Models
Guest Lecture by Dr. Ruiqi Gao from Google Brain


