Lecture 4: Neural Networks and Backpropagation

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 1

Announcements: Assignment 1

Assignment 1 due Fri 4/15 at 11:59pm

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 2

Administrative: Project Proposal

Due Mon 4/18

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 3

Administrative: Discussion Section

Discussion section tomorrow:

Backpropagation

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 4

Recap

- We have some dataset of (x,y)
- We have a **score function**: *s*
- We have a loss function:

$$s = f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 5

Finding the best W: Optimize with Gradient Descent

Vanilla Gradient Descent

while True:

Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain weights grad = evaluate gradient(loss fun, data, weights)

weights += - step size * weights grad # perform parameter update

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 6

Gradient descent

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 7

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

April 07, 2022

```
# Vanilla Minibatch Gradient Descent
while True:
    data_batch = sample_training_data(data, 256) # sample 256 examples
    weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
    weights += - step_size * weights_grad # perform parameter update
```

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 8

Last time: fancy optimizers

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 9

Last time: learning rate scheduling

Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine:
$$\alpha_t = \frac{1}{2} \alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0 (1 - t/T)$

Inverse sqrt:
$$lpha_t=lpha_0/\sqrt{t}$$

 α_0 : Initial learning rate α_t : Learning rate at epoch t T : Total number of epochs

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 10

Today:

Deep Learning

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 11

Released yesterday: dall-e-2

"Teddy bears working on new AI research on the moon in the 1980s." "Rabbits attending a college seminar on human anatomy.

"A wise cat meditating in the Himalayas searching for enlightenment."

April 07, 2022

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 12

vibrant portrait painting of Salvador Dalí with a robotic half face

a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

panda mad scientist mixing sparkling chemicals, artstation

a corgi's head depicted as an explosion of a nebula

a dolphin in an astronaut suit on saturn, artstation

napoleon holding a piece of cheese

Fei-Fei Li, Jiajun Wu, Ruohan Gao

a teddybear on a skateboard in times square

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents, 2022.

Lecture 4 - 13

Neural Networks

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 14

Neural networks: the original linear classifier

(**Before**) Linear score function: f=Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 15

Neural networks: 2 layers

(Before) Linear score function:
$$egin{array}{cc} f = Wx \ ({f Now})$$
 2-layer Neural Network $egin{array}{cc} f = W_2\max(0,W_1x) \ x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H} \end{array}$

(In practice we will usually add a learnable bias at each layer as well)

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 16

Why do we want non-linearity?

April 07, 2022

Lecture 4 -

17

Cannot separate red and blue points with linear classifier

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Why do we want non-linearity?

Cannot separate red and blue points with linear classifier After applying feature transform, points can be separated by linear classifier

θ

points with ssifier

 $f(x, y) = (r(x, y), \theta(x, y))$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 18

r

Neural networks: also called fully connected network

(Before) Linear score function: $egin{array}{cc} f = Wx \ ({f Now})$ 2-layer Neural Network $egin{array}{cc} f = W_2\max(0,W_1x) \ x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H} \end{array}$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

April 07, 2022

Lecture 4 - 19

Neural networks: 3 layers

(**Before**) Linear score function:

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

f = Wx

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 20

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ W1 h W2 Χ S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 21

Learn 100 templates instead of 10.

Share templates between classes

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 22

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**. **Q:** What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

ReLU is a good default choice for most problems

April 07, 2022

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 25

Neural networks: Architectures

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 26

Example feed-forward computation of a neural network

forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 27

<u>April 07, 2022</u>

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 28

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D_in, H), randn(H, D_out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 29

Define the network

Forward pass

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 30

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad_y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
       grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w^2 -= 1e^{-4} * qrad w^2
```

Define the network

Forward pass

Calculate the analytical gradients

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 31

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D in, H, D out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad y pred = 2.0 * (y pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
16
      grad h = grad y pred.dot(w2.T)
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 = 1e - 4 * qrad w2
```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 32

Setting the number of layers and their sizes

more neurons = more capacity

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 33 April 07, 2022

Do not use size of neural network as a regularizer. Use stronger regularization instead:

 $\lambda = 0.001$ $\lambda = 0.01$ $\lambda = 0.1$ 0 0 0 \mathbf{N} (Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo /classify2d.html)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 34 April 07, 2022

This image by Fotis Bobolas is licensed under CC-BY 2.0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 35

Impulses carried toward cell body

is licensed under CC-BY 3.0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 36
Impulses carried toward cell body

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 37

Impulses carried toward cell body

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 38

Impulses carried toward cell body

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 39

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 40

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 41

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 42

Plugging in neural networks with loss functions

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
Nonlinear score function
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
SVM Loss on predictions

$$\begin{split} R(W) &= \sum_k W_k^2 \text{ Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \text{Total loss: data loss + regularization} \end{split}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 43

Problem: How to compute gradients?

$$\begin{split} s &= f(x; W_1, W_2) = W_2 \max(0, W_1 x) \quad \text{Nonlinear score function} \\ L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM Loss on predictions} \\ R(W) &= \sum_k W_k^2 \quad \text{Regularization} \\ L &= \frac{1}{N} \sum_{i=1}^N L_i + \lambda R(W_1) + \lambda R(W_2) \quad \text{Total loss: data loss + regularization} \\ \text{If we can compute} \quad \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2} \text{ then we can learn } W_1 \text{ and } W_2 \end{split}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 44

(Bad) Idea: Derive $\nabla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 45

 W_k^2

Better Idea: Computational graphs + Backpropagation

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 46

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 47

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Lecture 4 - 48

Lecture 4 -

Solution: Backpropagation

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 50

$$f(x,y,z) = (x+y)z$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

$$f(x,y,z) = (x+y)z$$

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 52

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 53

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4
 $q = x + y$ $rac{\partial q}{\partial x} = 1, rac{\partial q}{\partial y} = 1$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 54

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{array}{ll} q=x+y & rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1 \ f=qz & rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q \end{array}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 55

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 56

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 57

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 58

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 59

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 60

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 61

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 62

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 63

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 64

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Nant:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 65

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 ∂f

 ∂z

Vant:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 66

Lecture 4 - 67

Lecture 4 - 68

Lecture 4 - 69

Lecture 4 - 70

Lecture 4 - 71

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 73

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 74

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 75

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 76

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 77

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 78

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 79

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 80

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 81

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 82

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 83

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 84

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 85

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 86

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 87

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 88

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{f(w,x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

1.37

-0.53

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 89

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00 0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

Sigmoid local gradient: $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 90

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
Completing $f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$
Sigmoid function $\sigma(x) = \frac{1}{1 + e^{-x}}$
where each expression expression $\sigma(x) = \frac{1}{1 + e^{-x}}$
Function $\sigma(x) = \frac{1}{1 + e^{-x}}$
Complete the second second

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

April 07, 2022

[upstream gradient] x [local gradient] [1.00] x [(1 - $1/(1+e^{-1}))(1/(1+e^{-1}))] = 0.2$

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 91

w0 2.00

x0 -1.00

w1 -3.00

x1 -2.00

w2 -3.00

0.20

0.40

-2.00

0.20

6.00

0.20

$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Sigmoid
function
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

0.73

1.00

1/x

[upstream gradient] x [local gradient] [1.00] x [(1 - 0.73) (0.73)] = 0.2

1.37

-0.53

Sigmoid local $\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 92

add gate: gradient distributor

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 93

add gate: gradient distributor

mul gate: "swap multiplier"

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 94

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 95

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 96

Forward pass:
Compute output

def	f()	w0,	X	0,	w1,	x1,	w2):
S	0 =	w0	*	x	0		
s	1 =	w1	*	x	1		
S	2 =	s0	+	s:	1		
s	3 =	s2	+	W	2		
L	=	sigr	no:	id	(s3)		

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 97

def f	(w0,	x0,	w1,	x1,	w2):
s0	= w0	* X	0		
s1	= w1	* X	1		
s2	= s0	+ s	1		
s3	= s2	+ w	2		
L =	sigr	noid	(s3)		

Base case	grad_L = 1.0					
	$grad_s3 = grad_L * (1 - L) * L$					
	grad_w2 = grad_s3					
	grad_s2 = grad_s3					
	grad_s0 = grad_s2					
	grad_s1 = grad_s2					
	grad_w1 = grad_s1 * x1					
	grad_x1 = grad_s1 * w1					
	grad_w0 = grad_s0 * x0					
	grad x0 = grad s0 * w0					

Lecture 4 - 98

Forward pass:

Compute output

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Forward pass:
Compute output

Sigmoid

d	ef	f(v	v0,	X	Э,	w1,	x1,
	s0	=	w0	*	x(0	
	s1	=	w1	*	X	1	
	s2	=	s0	+	s1	1	
	s3	=	s2	+	WZ	2	
	L						

grad_L = 1.0
$grad_s3 = grad_L * (1 - L) * L$
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0

w2):

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 99

Forward pass: Compute output

Add gate

de	ef	f(\	w0,	X	Э,	w1,	x1,
	s0	=	w0	*	x)	
	s1	=	w1	*	X1	L	
	s2	=	s0	+	s1	L	
	s3	=	s2	+	W2	2	
	L	= 5	sigr	no:	id	(s3)	

grad_L = 1.0
grad s3 = grad L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 100

April 07, 2022

w2):

Forward pass:
Compute output

Add gate

d	ef	f(v	w0,	X	0,	w1,	x1,	w2):
	sØ) =	w0	*	X	0		
	s1	=	w1	*	X	1		
	s2	! =	s0	+	S	1		
	s3	=	s2	+	W	2		
	L	= 9	sigr	no:	id	(s3)		

$grad_L = 1.0$
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
$grad_s0 = grad_s2$
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 101

Forward pass:
Compute output

Multiply gate

d	ef	f()	w0,	X	Э,	w1,	x1,	w2)	1
	s) =	w0	*	x	0			
	s1	L =	w1	*	X.	1			
	sź	2 =	s0	+	S.	1			
	s3	3 =	s2	+	W	2			
	L	=	sigr	no:	id	(s3)			

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 102

Forward pass: Compute output

Multiply gate

def f(w0,	x0, w1,	x1,	w2):
s0 = w0	* x0		
s1 = w1	* x1		
s2 = s0	+ s1		
s3 = s2	+ w2		
L = sign	noid(s3)		

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 103

"Flat" Backprop: Do this for assignment 1!

Stage your forward/backward computation!

Lecture 4 - 104

<u>April 07, 2022</u>

Fei-Fei Li, Jiajun Wu, Ruohan Gao

"Flat" Backprop: Do this for assignment 1!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = #... function of X,W1,b1
scores = #... function of h1,W2,b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 105

Backprop Implementation: Modularized API

Graph (or Net) object (rough pseudo code)

<u>April 07, 2022</u>

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 106

Modularized implementation: forward / backward API

Gate / Node / Function object: Actual PyTorch code

(x,y,z are scalars)

	_
<pre>class Multiply(torch.autograd.Function):</pre>	
@staticmethod	
<pre>def forward(ctx, x, y):</pre>	Need to cash some
ctx.save_for_backward(x, y) <	values for use in
z = x * y	backward
return z	
@staticmethod	
<pre>def backward(ctx, grad_z): </pre>	_ Upstream
<pre>x, y = ctx.saved_tensors</pre>	gradient
grad_x = y * grad_z # dz/dx * dL/dz	Multiply upstream
<pre>grad_y = x * grad_z # dz/dy * dL/dz</pre>	and local gradients
<pre>return grad_x, grad_y</pre>	

Lecture 4 - 107

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Example: PyTorch operators

pytorch / pytorch		⊙ Watch -	1,221	\star Unsta	r 26,770	¥ Fork	6,340
<>Code ⊕ Issues 2,286 ♪	Pull requests 561 III Projects 4	Wiki 🔟 Ins	sights				
Tree: 517c7c9861 - pytorch / aten	/ src / THNN / generic /		Create r	new file L	Ipload files	Find file	History
ezyang and facebook-github-bot C	anonicalize all includes in PyTorch. (#14849)			Latest	commit 517	c7c9 on Dec	: 8, 2018
AbsCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
BCECriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
ClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Col2Im.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
ELU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
FeatureLPPooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
GatedLinearUnit.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
HardTanh.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Im2Col.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
IndexLinear.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
LeakyReLU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
LogSigmoid.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MSECriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MultiLabelMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
MultiMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
RReLU.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
Sigmoid.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SmoothL1Criterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftMarginCriterion.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftPlus.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SoftShrink.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SparseLinear.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAdaptiveAveragePooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#148	349)				4 mor	nths ago
SpatialAveragePooling c	Canonicalize all includes in PyTorch (#14)	349)				4 mor	oths ago

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveAveragePoolin	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
Dooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
i unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 108
1	<pre>#ifndef TH_GENERIC_FILE</pre>		DyToroh ciamoid lovor
2	<pre>#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"</pre>		Fy forch signou layer
3	#else		
4 5 7 8 9 10	<pre>void THNN_(Sigmoid_updateOutput)(THNNState *state, THTensor *input, THTensor *output) { THTensor_(sigmoid)(output, input); }</pre>	Forward $\sigma(x) = rac{1}{1+e^{-x}}$	
17	7		
13	<pre>void THNN_(Sigmoid_updateGradInput)(</pre>		
14	THNNState *state,		
15	THTensor *gradOutput,		
16	THTensor *gradInput,		
17	THTensor *output)		
18	{		
19	<pre>THNN_CHECK_NELEMENT(output, gradOutput);</pre>		
20	THTensor_(resizeAs)(gradInput, output);		
21	TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,		
22	<pre>scalar_t z = *output_data;</pre>		
23	*gradInput_data = *gradOutput_data * (1 z) * z;		
24);		
25	}		
26			Source
27	#endif		Source

Lecture 4 - 109

Lecture 4 - 110

Lecture 4 - 111

So far: backprop with scalars

What about vector-valued functions?

Lecture 4 -

112

April 07, 2022

Recap: Vector derivatives

Scalar to Scalar

 $x\in \mathbb{R}, y\in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 113

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

Derivative is Gradient:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much will y change?

Lecture 4 - 114

<u>April 07, 2022</u>

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount then how much

will y change?

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 115

April 07, 2022

Derivative is **Gradient**:

 $x \in \mathbb{R}^N, y \in \mathbb{R}$

Vector to Scalar

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 116

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 117

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 118

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 119

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 120

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 121

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 122

Gradients of variables wrt loss have same dims as the original variable

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 123

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 124

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 125

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 126

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 127

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 128

4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: 3 (elementwise) off-diagonal entries -1 always zero! Never explicitly form Jacobian -- instead 4D dL/dx: [dz/dx] [dL/dz]4D dL/dz: use implicit [4] 0 multiplication [1] 01[4] 4 < 0 ⁻ Upstream 01 -11 -1 gradient [5] 1[5] 5 0 001[9 9 _____

4D input x: 4D output z: f(x) = max(0,x)Jacobian is **sparse**: 3 (elementwise) off-diagonal entries always zero! Never explicitly form Jacobian -- instead 4D dL/dx: [dz/dx] [dL/dz] 4D dL/dz: use implicit $\begin{bmatrix} \mathbf{4} \end{bmatrix} \leftarrow \qquad \leftarrow \begin{bmatrix} \mathbf{4} \end{bmatrix} \leftarrow \\ \begin{bmatrix} \mathbf{0} \end{bmatrix} \leftarrow \\ \begin{pmatrix} \partial L \\ \partial x \end{pmatrix}_i = \begin{cases} \left(\frac{\partial L}{\partial z} \right)_i & \text{if } x_i > 0 \leftarrow \begin{bmatrix} \mathbf{-1} \end{bmatrix} \leftarrow \\ \mathbf{0} & \text{otherwise} \leftarrow \begin{bmatrix} \mathbf{5} \end{bmatrix} \leftarrow \\ \end{bmatrix} \leftarrow \\ \end{bmatrix}$ multiplication Upstream gradient -101 ← [9] ←

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 130

Lecture 4 - 131

Lecture 4 - 132 A

Lecture 4 - 133

Lecture 4 - 134

Also see derivation in the course notes:

http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Lecture 4 -

135

y: [N×M]

April 07, 2022

x: [N×D] [2 1 -3] [-3 4 2] w: [D×M] [3 2 1 -1] [2 1 3 2] [3 2 1 -2] Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×D)×(N×M)] dy/dw: [(D×M)×(N×M)]

For a neural net we may have N=64, D=M=4096 Each Jacobian takes ~256 GB of memory! Must work with them implicitly! [5 2 17 1] dL/dy: [N×M] [2 3 -3 9] [-8 1 4 6]

136

Lecture 4 -

y: [N×M]

[13 9 -2 -6]

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 137

y: [N×M]

x: [N×D]

-3 4 2]

w: [D×M]

3 2 1 - 1]

2 1 3 2]

[321-2]

1 -3]

Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ **Q**: What parts of y are affected by one element of x? A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$

April 07, 2022

138

Lecture 4 -

139

Lecture 4 -

N×M

April 07, 2022

N×M -6 x: [N×D] Matrix Multiply 2 5 2 1 -3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] w: [D×M] 23-39 [-8 1 4 6] 3 2 1 - 1] **Q**: What parts of y **Q**: How much 2 1 3 2] are affected by one does $\overline{x}_{n,d}$ [3 2 1 - 2] element of x? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum \frac{\partial L}{\partial y_{n,m}} w_{d,m}$

140

Lecture 4 -

April 07, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 141

N×M

[D×M] [D×N] [N×M]

Lecture 4 -

142

 $\bar{\partial} v$

These formulas are easy to remember: they are the only way to make shapes match up!

By similar logic:

 $= x^T$ (

 ∂L

 $\overline{\partial w}$

2 1 3 2]

[3 2 1 - 2]

[N×D] [N×M] [M×D]

 $\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right)$

Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

N×M

April 07, 2022

Backprop with Matrices

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- **backpropagation** = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- **forward**: compute result of an operation and save any intermediates needed for gradient computation in memory
- **backward**: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Neural Networks!

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 4 - 144