Lecture 4: Neural Networks and Backpropagation

Announcements: Assignment 1

Assignment 1 due Fri 4/15 at 11:59pm

Administrative: Project Proposal

Due Mon 4/18

TA expertise are posted on the webpage.
(http://cs231n.stanford.edu/office hours.html)

Administrative: Discussion Section

Discussion section tomorrow:
Backpropagation

Recap

- We have some dataset of (x,y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{array}{ll}
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \mathrm{SVM} \xrightarrow{x_{i}} \xrightarrow{y_{i}}
\end{array}
$$

$$
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
$$

Finding the best W : Optimize with Gradient Descent

Vanilla Gradient Descent

while True:
weights += - step_size * weights_grad \# perform parameter update

```

\section*{Gradient descent}
\[
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

\section*{Stochastic Gradient Descent (SGD)}
\[
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
\]

Full sum expensive when N is large!

Approximate sum using a minibatch of examples
32 / 64 / 128 common
```


Vanilla Minibatch Gradient Descent

while True:
data_batch = sample_training_data(data, 256) \# sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad \# perform parameter update

```

\section*{Last time: fancy optimizers}


\section*{Last time: learning rate scheduling}


Step: Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30,60 , and 90 .
Cosine: \(\alpha_{t}=\frac{1}{2} \alpha_{0}(1+\cos (t \pi / T))\)
Linear: \(\alpha_{t}=\alpha_{0}(1-t / T)\)
Inverse sqrt: \(\alpha_{t}=\alpha_{0} / \sqrt{t}\)
\(\alpha_{0}\) : Initial learning rate
\(\alpha_{t}\) : Learning rate at epoch t
\(T\) : Total number of epochs

\section*{Today:}

\section*{Deep Learning}

Released yesterday: dall-e-2

"Rabbits attending a college seminar on human anatomy.
"A wise cat meditating in the Himalayas searching for enlightenment."


\section*{Neural Networks}

Neural networks: the original linear classifier
(Before) Linear score function: \(\quad f=W x\)
\[
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
\]

\section*{Neural networks: 2 layers}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
\[
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
\]
(In practice we will usually add a learnable bias at each layer as well)

\section*{Why do we want non-linearity?}


Cannot separate red
and blue points with
linear classifier

\section*{Why do we want non-linearity?}


Cannot separate red and blue points with linear classifier
\[
f(x, y)=(r(x, y), \theta(x, y))
\]



After applying feature transform, points can be separated by linear classifier

\section*{Neural networks: also called fully connected network}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
\[
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
\]
"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)
(In practice we will usually add a learnable bias at each layer as well)

\section*{Neural networks: 3 layers}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\) or 3-layer Neural Network
\[
\begin{array}{r}
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right) \\
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H_{1} \times D}, W_{2} \in \mathbb{R}^{H_{2} \times H_{1}}, W_{3} \in \mathbb{R}^{C \times H_{2}}
\end{array}
\]
(In practice we will usually add a learnable bias at each layer as well)

\section*{Neural networks: hierarchical computation}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)


\section*{Neural networks: learning 100s of templates}
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)


Learn 100 templates instead of 10.
Share templates between classes

Neural networks: why is max operator important?
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
The function \(\max (0, z)\) is called the activation function. Q: What if we try to build a neural network without one?
\[
f=W_{2} W_{1} x
\]

Neural networks: why is max operator important?
(Before) Linear score function: \(\quad f=W x\)
(Now) 2-layer Neural Network \(\quad f=W_{2} \max \left(0, W_{1} x\right)\)
The function \(\max (0, z)\) is called the activation function. Q: What if we try to build a neural network without one?
\[
f=W_{2} W_{1} x \quad W_{3}=W_{2} W_{1} \in \mathbb{R}^{C \times H}, f=W_{3} x
\]

A: We end up with a linear classifier again!

\section*{Activation functions}

ReLU is a good default choice for most problems

Sigmoid
\(\sigma(x)=\frac{1}{1+e^{-x}}\)

tanh
\(\tanh (x)\)


\section*{Leaky ReLU \(\max (0.1 x, x)\)}


\section*{Maxout}
\(\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)\)

ELU
\(\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}\)


\section*{Neural networks: Architectures}


\section*{Example feed-forward computation of a neural network}

hidden layer 1 hidden layer 2
```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3,1) \# random input vector of three numbers (3\times1)
h1 = f(np.dot(W1, x) + bl) \# calculate first hidden layer activations (4xl)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1\times1)

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad w1 = x.T.dot(grad h * h * (1 - h))
w1 -= 1e-4 * grad_w1
w2 -= 1e-4 * grad_w2
Define the network
Forward pass
Calculate the analytical gradients

```

\section*{Full implementation of training a 2-layer Neural Network needs ~20 lines:}
```

import numpy as np
from numpy.random import randn
N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
w1, w2 = randn(D_in, H), randn(H, D_out)
for t in range(2000):
h = 1 / (1 + np.exp(-x.dot(w1)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
print(t, loss)
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = x.T.dot(grad_h * h * (1 - h))
w1 -= 1e-4 * grad_w1

```

Define the network

Forward pass

Calculate the analytical gradients

\author{
Gradient descent
}

\section*{Setting the number of layers and their sizes}

more neurons \(=\) more capacity
Lecture 4-33
April 07, 2022

Do not use size of neural network as a regularizer. Use stronger regularization instead:



This image by Fotis Bobolas is
licensed under CC-BY 2.0

Impulses carried toward cell body


This image by Felipe Perucho is licensed under CC-BY 3.0

Impulses carried toward cell body


Impulses carried toward cell body


Impulses carried toward cell body


Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

hidden layer 1 hidden layer 2

Biological Neurons:
Complex connectivity patterns


This image is CCO Public Domain

\section*{But neural networks with random connections can work too!}


Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

\section*{Be very careful with your brain analogies!}

\section*{Biological Neurons:}
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
[Dendritic Computation. London and Hausser]

\section*{Plugging in neural networks with loss functions}
\[
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right)^{\text {Total loss: data loss + regularization }}
\end{aligned}
\]

\section*{Problem: How to compute gradients?}
\[
\begin{aligned}
s & =f\left(x ; W_{1}, W_{2}\right)=W_{2} \max \left(0, W_{1} x\right) \quad \text { Nonlinear score function } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \quad \text { SVM Loss on predictions } \\
R(W) & =\sum_{k} W_{k}^{2} \quad \text { Regularization } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda R\left(W_{1}\right)+\lambda R\left(W_{2}\right) \text { Total loss: data loss + regularization } \\
& \text { If we can compute } \frac{\partial L}{\partial W_{1}}, \frac{\partial L}{\partial W_{2}} \text { then we can learn } \mathrm{W}_{1} \text { and } \mathrm{W}_{2}
\end{aligned}
\]

\section*{(Bad) Idea: Derive \(\nabla_{W} L\) on paper}
\[
\begin{array}{rlrl}
s & =f(x ; W)=W x & & \text { Probl } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & & \text { matrix } \\
& =\sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right) & & \text { Probl } \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+\lambda \sum_{k} W_{k}^{2} & & \text { insteang } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2} & \text { re-der } \\
\nabla_{W} L & =\nabla_{W}\left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, W_{j,:} \cdot x+W_{y_{i},:} \cdot x+1\right)+\lambda \sum_{k} W_{k}^{2}\right)
\end{array}
\]

\section*{Better Idea: Computational graphs + Backpropagation}


\section*{Convolutional network (AlexNet)}


\title{
Really complex neural networks!!
}
input image


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

\section*{Neural Turing Machine}


\section*{Solution: Backpropagation}

\section*{Backpropagation: a simple example}
\[
f(x, y, z)=(x+y) z
\]

Backpropagation: a simple example
\[
f(x, y, z)=(x+y) z
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]


Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\underbrace{\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}}
\]

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)


April 07, 2022

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\frac{\partial \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}}{\substack{\text { Upstream } \\ \text { gradient }}}
\]

Lecture 4-65
April 07, 2022

Backpropagation: a simple example
\[
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
\]
\[
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
\]
\[
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
\]

Want: \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\)

\[
\frac{\partial \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}}{\substack{\text { Upstream } \\ \text { gradient }}}
\]







\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


\section*{Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)}


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\(\begin{array}{lllll}f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow\end{array} \quad \begin{array}{ll} \\ f_{a}(x)=a x & \rightarrow\end{array} \quad \frac{d f}{d x}=a \quad \rightarrow-1 / x^{2}\)

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|ll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & & \(f(x)=\frac{1}{x}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|ll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & & \(f(x)=\frac{1}{x}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
& \(\rightarrow\) & \(\rightarrow\) & \(\rightarrow \frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
\hline f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\[
\begin{array}{|lll|lll}
\hline f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \[
f(x)=\frac{1}{x}
\] & \(\rightarrow\) & \[
\frac{d f}{d x}=-1 / x^{2}
\] \\
\hline \(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \[
\frac{d f}{d x}=1
\] \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|l}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(\rightarrow\) \\
\(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\hline
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & & \(\rightarrow\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)

[upstream gradient] \(\times\) [local gradient]
w0: \([0.2] \times[-1]=-0.2\)
\(\mathrm{x0}:[0.2] \times[2]=0.4\)

\begin{tabular}{lll|lll}
\(f(x)=e^{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=e^{x}\) & \(f(x)=\frac{1}{x}\) & \(\rightarrow\) & \(\frac{d f}{d x}=-1 / x^{2}\) \\
\(f_{a}(x)=a x\) & \(\rightarrow\) & \(\frac{d f}{d x}=a\) & \(f_{c}(x)=c+x\) & \(\rightarrow\) & \(\frac{d f}{d x}=1\)
\end{tabular}

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

\(\begin{aligned} & \text { Sigmoid local } \\ & \text { gradient: }\end{aligned} \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)\)

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!


Sigmoid local gradient:
\[
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\]

Another example: \(\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}\)


Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

\[
[1.00] \times[(1-0.73)(0.73)]=0.2
\]

Sigmoid local gradient:
\[
\frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\]

\section*{Patterns in gradient flow}

\author{
add gate: gradient distributor
}


\section*{Patterns in gradient flow}
add gate: gradient distributor

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"


\section*{Patterns in gradient flow}
add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router


\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\[
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)
\end{aligned}
\]
```

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

```

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
\[
\begin{aligned}
& \mathrm{s} 0=\mathrm{w} 0 * x 0 \\
& \mathrm{~s} 1=\mathrm{w} 1 * x 1 \\
& \mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1 \\
& \mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2 \\
& \mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)
\end{aligned}
\]

Base case
```

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0

```

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
grad_L = 1.0
Sigmoid

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(s 0=w 0 * x 0\)
\(s 1=w 1 * x 1\)
\(s 2=s 0+s 1\)
\(s 3=s 2+w 2\)
\(L=\operatorname{sigmoid}(s 3)\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad L } *(1-\mathrm{L}) * \mathrm{~L} \\
& \hline \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 *x1 } \\
& \text { grad_x1 }=\text { grad_s1 *w1 } \\
& \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\text { grad_L = } 1.0
\]
\[
\text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L}
\]
grad_w2 = grad_s3
grad_s2 = grad_s3

Add gate
\begin{tabular}{|l|}
\hline grad_s0 \(=\) grad_s2 \\
grad_s1 \(=\) grad_s2 \\
grad_w1 \(=\) grad_s1 \(*\) x1 \\
grad_x1 \(=\) grad_s1 \(* w 1\) \\
grad_w0 \(=\) grad_s0 \(* x 0\) \\
grad_x0 \(=\) grad_s0 \(* w 0\)
\end{tabular}

\section*{Backprop Implementation: "Flat" code}

def \(f(w 0, x 0, w 1, x 1, w 2):\)

Forward pass: Compute output
\(s 0=\mathrm{w} 0 * \mathrm{x} 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\text { grad_L = } 1.0
\]
\[
\text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * \mathrm{~L}
\]
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2

Multiply gate
\[
\begin{aligned}
& \text { grad_w1 }=\text { grad_s1 } * \text { x1 } \\
& \text { grad_x1 }=\text { grad_s1 } * \text { w1 } \\
& \hline \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{Backprop Implementation: "Flat" code}

def f(w0, x0, w1, x1, w2):

Forward pass: Compute output
\(\mathrm{s} 0=\mathrm{w} 0 * \times 0\)
\(\mathrm{~s} 1=\mathrm{w} 1 * \mathrm{x} 1\)
\(\mathrm{~s} 2=\mathrm{s} 0+\mathrm{s} 1\)
\(\mathrm{~s} 3=\mathrm{s} 2+\mathrm{w} 2\)
\(\mathrm{~L}=\operatorname{sigmoid}(\mathrm{s} 3)\)
\[
\begin{aligned}
& \text { grad_L }=1.0 \\
& \text { grad_s3 }=\text { grad_L } *(1-\mathrm{L}) * L \\
& \text { grad_w2 }=\text { grad_s3 } \\
& \text { grad_s2 }=\text { grad_s3 } \\
& \text { grad_s0 }=\text { grad_s2 } \\
& \text { grad_s1 }=\text { grad_s2 } \\
& \text { grad_w1 }=\text { grad_s1 } * x 1 \\
& \text { grad_x1 }=\text { grad_s1 } * w 1 \\
& \hline \text { grad_w0 }=\text { grad_s0 } * x 0 \\
& \text { grad_x0 }=\text { grad_s0 } * w 0
\end{aligned}
\]

\section*{"Flat" Backprop: Do this for assignment 1!}

\section*{Stage your forward/backward computation!}

\section*{E.g. for the SVM:}


\section*{"Flat" Backprop: Do this for assignment 1!}
E.g. for two-layer neural net:
```


receive W1,W2,b1,b2 (weights/biases), X (data)

forward pass:

h1 = \#... function of X,W1,b1
scores = \#... function of h1,W2,b2
loss = \#... (several lines of code to evaluate Softmax loss)

backward pass:

dscores = \#...
dh1,dW2,db2 = \#...
dW1,db1 = \#. . .

```

\section*{Backprop Implementation: Modularized API}

\section*{Graph (or Net) object (rough pseudo code)}
```

class ComputationalGraph(object):
\#...
def forward(inputs):
\# 1. [pass inputs to input gates...]
\# 2. forward the computational graph:
for gate in self.graph.nodes_topologically_sorted():
gate.forward()
return loss \# the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes_topologically_sorted()):
gate.backward() \# little piece of backprop (chain rule applied)
return inputs_gradients

```

\section*{Modularized implementation: forward / backward API}

Gate / Node / Function object: Actual PyTorch code


\section*{Example: PyTorch operators}


\section*{\#ifndef TH_GENERIC_FILE}
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```

\section*{Forward}

```

void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)
{
THNN_CHECK_NELEMENT(output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = *output_data;
*gradInput_data = *gradOutput_data * (1. - z) * z;
);
}

```
\#endif

\section*{\#ifndef TH_GENERIC_FILE}
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

\section*{PyTorch sigmoid layer}
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THTensor *input,
THTensor *output)
{
THTensor_(sigmoid)(output, input);
}

```

\section*{Forward}
\[
\sigma(x)=\frac{1}{1+e^{-x}}
\]
static void sigmoid_kernel(TensorIterator\& iter) \{
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [\&]() \{

\section*{unary_kernel_vec(}
iter,
[=](scalar_t a) -> scalar_t \{ return (1 / (1 + std:: exp((-a)))); [=](Vec256<scalar_t> a) \{
a = Vec256<scalar_t>((scalar_t)(0)) - a; \(\mathrm{a}=\mathrm{a} \cdot \exp ()\);
a = Vec256<scalar_t>((scalar_t)(1)) + a;
\(\mathrm{a}=\mathrm{a}\).reciprocal();

\section*{return a;}
\});
Forward actually
\});
\}
return (1 / (1 + std:: exp((-a))));
\{

THNN_CHECK_NELEMENT(output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output, scalar_t z = *output_data; *gradInput_data \(=\) *grad0utput_data \(*(1 .-z) * z\);
    );
\}

\section*{\#ifndef TH_GENERIC_FILE}
\#define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
\#else

\section*{PyTorch sigmoid layer}
    Forward
    ~}\sigma(x)=\frac{1}{1+\mp@subsup{e}{}{-x}
```

```
```

void THNN_(Sigmoid_updateOutput)(

```
```

void THNN_(Sigmoid_updateOutput)(
THNNState *state,
THNNState *state,
THTensor *input,
THTensor *input,
THTensor *output)
THTensor *output)
{
{
THTensor_(sigmoid)(output, input);
THTensor_(sigmoid)(output, input);
}

```
}
```

void THNN_(Sigmoid_updateGradInput)(
THNNState *state,
THTensor *gradOutput,
THTensor *gradInput,
THTensor *output)
\{
THNN_CHECK_NELEMENT (output, gradOutput);
THTensor_(resizeAs)(gradInput, output);
TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
scalar_t z = *output_data;
*gradInput_data $=$ *gradOutput_data $*(1 .-z) * z$;
);
\}
\#endif

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a
small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}
$$

Derivative is Gradient:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N}\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}}
$$

For each element of x, if it changes by a small amount then how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$x \in \mathbb{R}, y \in \mathbb{R}$
Regular derivative:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}
$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}
$$

Derivative is Gradient:

$$
\frac{\partial y}{\partial x} \in \mathbb{R}^{N} \quad\left(\frac{\partial y}{\partial x}\right)_{n}=\frac{\partial y}{\partial x_{n}} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}\left(\frac{\partial y}{\partial x}\right)_{n, m}=\frac{\partial y_{m}}{\partial x_{n}}
$$

For each element of x, if it changes by a small amount then how much will y change?

Vector to Vector

$$
x \in \mathbb{R}^{N}, y \in \mathbb{R}^{M}
$$

Derivative is Jacobian:

For each element of x, if it changes by a small amount then how much will each element of y change?

Backprop with Vectors

Gradients of variables wrt loss have same dims as the original variable

Backprop with Vectors

Backprop with Vectors

Jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use implicit multiplication

4D input x :

4D dL/dx: $\quad[\mathrm{dz} / \mathrm{dx}][\mathrm{dL} / \mathrm{dz}]$
[4] ఒ[1000][4]

4D output z:

4D dL/dz:
 gradient

Backprop with Vectors

Jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use implicit multiplication

4D input x :
4D output z:

4D dL/dx: $\quad[d z / d x][d L / d z]$

Backprop with Matrices (or Tensors)

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices (or Tensors)

Loss L still a scalar!

Backprop with Matrices

$x:[N \times D]$

$\begin{array}{ccc} {\left[\begin{array}{rrr} 2 & 1 & -3 \\ {[-3} & 4 & 2 \end{array}\right]} \end{array}$
3 1-1
213
32

Matrix Multiply $y_{n, m}=\sum_{d} x_{n, d} w_{d, m}$

$y:[N \times M]$

$\left.\begin{array}{cccc}{[13} & 9 & -2 & -6\end{array}\right]$
$\left[\begin{array}{llll}5 & 2 & 17 & 1\end{array}\right]$
dL/dy: [$\mathrm{N} \times \mathrm{M}$]
[2 3-3 9]
$\left[\begin{array}{llll}-8 & 1 & 4 & 6\end{array}\right]$

Also see derivation in the course notes: http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Backprop with Matrices

$x:[\mathrm{N} \times \mathrm{D}]$

Matrix Multiply

Jacobians:

$d y / d x:[(N \times D) \times(N \times M)]$
dy/dw: [(D×M)×(N×M)]
$\left.\begin{array}{llll}{[13} & 9 & -2 & -6\end{array}\right]$
$\left[\begin{array}{llll}5 & 2 & 17 & 1\end{array}\right]$
dL/dy: $[\mathrm{N} \times \mathrm{M}]$
[2 3-3 9]
$\left[\begin{array}{llll}-8 & 1 & 4 & 6\end{array}\right]$

For a neural net we may have

$$
\mathrm{N}=64, \mathrm{D}=\mathrm{M}=4096
$$

Each Jacobian takes ~ 256 GB of memory! Must work with them implicitly!

Backprop with Matrices

$$
\begin{aligned}
& \mathrm{x}:[\mathrm{N} \times \mathrm{D}] \longrightarrow \quad \text { Matrix Multiply } \\
& y_{n, m}=\sum_{d} x_{n, d} w_{d, m} \\
& \text { [} \left.\begin{array}{llll}
3 & 2 & 1 & -1
\end{array}\right] \\
& \text { [} \left.\begin{array}{llll}
2 & 1 & 3 & 2
\end{array}\right] \\
& \text { [} \left.\begin{array}{llll}
2 & 2 & 1 & -2
\end{array}\right] \\
& \text { Q: What parts of } y \\
& \text { element of } x \text { ? }
\end{aligned}
$$

Backprop with Matrices

$$
\begin{gathered}
\mathrm{x}:[\mathrm{N} \times \mathrm{D}] \\
{\left[\begin{array}{llll}
2 & 1 & -3
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-3 & 4 & 2
\end{array}\right]} \\
\mathrm{w}:\left[\begin{array}{lll}
{[\mathrm{D}} & \mathrm{M}]
\end{array}\right. \\
{\left[\begin{array}{ccc}
3 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
2 & 1 & 3
\end{array}\right]} \\
{\left[\begin{array}{llll}
3 & 2 & 1 & -2
\end{array}\right]}
\end{gathered}
$$

\rightarrow

Matrix Multiply

$$
y_{n, m}=\sum_{d} x_{n, d} w_{d, m}
$$

Q: What parts of y are affected by one element of x ?
A: $x_{n, d}$ affects the whole row y_{n}.

$$
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}
$$

$$
\longrightarrow
$$

dL/dy: $[\mathrm{N} \times \mathrm{M}]$
$\left[\begin{array}{llll}2 & 3 & -3 & 9\end{array}\right]$
$\left[\begin{array}{cccc}-8 & 1 & 4 & 6\end{array}\right]$

Backprop with Matrices

$$
\mathrm{w}:[\mathrm{D} \times \mathrm{M}]
$$

$$
\begin{array}{ccccc}
{\left[\begin{array}{rrrrr}
3 & 2 & 1 & -1
\end{array}\right]} \\
{\left[\begin{array}{r}
2
\end{array} 1\right.} & 3 & 2] \\
3 & 2 & 1 & -2]
\end{array}
$$

A: $x_{n, d}$ affects the whole row y_{n},

$$
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}
$$

Q: What parts of y are affected by one element of x ?

Matrix Multiply

 $y_{n, m}=\sum_{d} x_{n, d} w_{d, m}$Q: How much does $x_{n, d}$?

Backprop with Matrices

$$
\begin{aligned}
& x:[\mathrm{N} \times \mathrm{D}] \\
& \text { w: }[\mathrm{D} \times \mathrm{M}]
\end{aligned}
$$

Q: What parts of y are affected by one element of x ?
A: $x_{n, d}$ affects the whole row y_{n},

$$
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} w_{d, m}
$$

Backprop with Matrices

$$
\left.\begin{array}{c}
\mathrm{x}:[\mathrm{N} \times \mathrm{D}] \\
{\left[\begin{array}{rrrr}
2 & 1 & -3
\end{array}\right]} \\
{\left[\begin{array}{ccc}
-3 & 4 & 2
\end{array}\right]} \\
\mathrm{w}:[\mathrm{D} \times \mathrm{M}]
\end{array}\right] \begin{gathered}
{\left[\begin{array}{rrrr}
3 & 2 & 1 & -1
\end{array}\right]} \\
{\left[\begin{array}{llll}
2 & 1 & 3 & 2
\end{array}\right]} \\
{\left[\begin{array}{rrrr}
3 & 2 & 1 & -2
\end{array}\right]}
\end{gathered}
$$

$[\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]$

$$
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T}
$$

Q: What parts of y are affected by one element of x ?
A: $x_{n, d}$ affects the whole row y_{n}.

$$
\frac{\partial L}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} \frac{\partial y_{n, m}}{\partial x_{n, d}}=\sum_{m} \frac{\partial L}{\partial y_{n, m}} w_{d, m}
$$

Backprop with Matrices

By similar logic:
$[\mathrm{N} \times \mathrm{D}][\mathrm{N} \times \mathrm{M}][\mathrm{M} \times \mathrm{D}]$

$$
[\mathrm{D} \times \mathrm{M}][\mathrm{D} \times \mathrm{N}][\mathrm{N} \times \mathrm{M}]
$$

$$
\frac{\partial L}{\partial x}=\left(\frac{\partial L}{\partial y}\right) w^{T}
$$

$$
\frac{\partial L}{\partial w}=x^{T}\left(\frac{\partial L}{\partial y}\right)
$$

These formulas are easy to remember: they are the only way to make shapes match up!

Summary for today:

- (Fully-connected) Neural Networks are stacks of linear functions and nonlinear activation functions; they have much more representational power than linear classifiers
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward() API
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs

Next Time: Convolutional Neural Networks!

