
Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 20221

Lecture 4:
Neural Networks and 
Backpropagation



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Announcements: Assignment 1

Assignment 1 due Fri 4/15 at 11:59pm

2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Administrative: Project Proposal

Due Mon 4/18

TA expertise are posted on the webpage.

(http://cs231n.stanford.edu/office_hours.html)

3

http://cs231n.stanford.edu/office_hours.html


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Administrative: Discussion Section

Discussion section tomorrow:

Backpropagation

4



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Recap
- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

5



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 20226

Finding the best W: Optimize with Gradient Descent

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 20227

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient

Gradient descent



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Stochastic Gradient Descent (SGD)

8

Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Last time: fancy optimizers

SGD

SGD+Momentum

RMSProp

Adam

9



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Last time: learning rate scheduling

Reduce learning rate

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear: 

Inverse sqrt: 

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

10



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202211

Today: 

  Deep Learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202212

“Teddy bears working on new AI research 
on the moon in the 1980s.”

Image source: Sam Altman, https://openai.com/dall-e-2/, https://twitter.com/sama/status/1511724264629678084

Released yesterday: dall-e-2

“Rabbits attending a college seminar on 
human anatomy.

“A wise cat meditating in the Himalayas 
searching for enlightenment.”

https://openai.com/dall-e-2/
https://twitter.com/sama/status/1511724264629678084


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202213

Ramesh et al., Hierarchical Text-Conditional 
Image Generation with CLIP Latents, 2022.



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202214

Neural Networks



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202215

Neural networks: the original linear classifier

(Before) Linear score function:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202216

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Why do we want non-linearity?

17

x

y

Cannot separate red 
and blue points with 
linear classifier



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202218

x

y

r

θ

f(x, y) = (r(x, y), θ(x, y)) 

Cannot separate red 
and blue points with 
linear classifier

After applying feature 
transform, points can 
be separated by linear 
classifier

Why do we want non-linearity?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202219

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: also called fully connected network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202220

Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
  or 3-layer Neural Network

      

(In practice we will usually add a learnable bias at each layer as well)



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202221

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202222

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: learning 100s of templates

x hW1 sW2

3072 100 10

Learn 100 templates instead of 10.                               Share templates between classes



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

The function                   is called the activation function.
Q: What if we try to build a neural network without one?

23

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

The function                   is called the activation function.
Q: What if we try to build a neural network without one?

24

(Before) Linear score function:

(Now) 2-layer Neural Network
      

Neural networks: why is max operator important?

A: We end up with a linear classifier again!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202225

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202226

“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202227

Example feed-forward computation of a neural network



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202228

Full implementation of training a 2-layer Neural Network needs ~20 lines:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202229

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202230

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202231

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202232

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients



Lecture 4 - April 07, 2022Fei-Fei Li, Jiajun Wu, Ruohan GaoFei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202233

Setting the number of layers and their sizes

more neurons = more capacity



Lecture 4 - April 07, 2022Fei-Fei Li, Jiajun Wu, Ruohan GaoFei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202234

(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo
/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202235

This image by Fotis Bobolas is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202236

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202237

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202238

sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 20223939

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell body

axon

presynaptic   
  terminal

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202240

This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202241

This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202242

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202243

Plugging in neural networks with loss functions

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

If we can compute                     then we can learn W1 and W2 

44

Problem: How to compute gradients? 

Nonlinear score function

SVM Loss on predictions

Regularization

Total loss: data loss + regularization



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202245

(Bad) Idea: Derive             on paper

Problem: What if we want to 
change loss? E.g. use softmax 
instead of SVM? Need to 
re-derive from scratch =(

Problem: Very tedious: Lots of 
matrix calculus, need lots of paper

Problem: Not feasible for very 
complex models!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202246

x

W

hinge 
loss

R

+ L
s (scores)

Better Idea: Computational graphs + Backpropagation

*



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202247

input image

loss

weights

Convolutional network
(AlexNet)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202248

Really complex neural 
networks!!

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

https://twitter.com/karpathy/status/597631909930242048?lang=en


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Neural Turing Machine

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

https://twitter.com/karpathy/status/597631909930242048?lang=en


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202250

Solution: Backpropagation



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202251

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202252

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202253

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202254

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202255

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202256

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202257

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202258

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202259

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202260

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202261

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202262

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202263

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202264

Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202265

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Chain rule:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202266

Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202267

f



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202268

f

“local gradient”



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202269

f

“local gradient”

“Upstream
gradient”



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202270

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202271

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202272

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202273

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202274

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202275

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202276

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202277

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202278

Another example:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202279

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202280

Another example:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202281

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202282

Another example:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202283

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202284

Another example:

Upstream 
gradient

Local
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202285

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202286

Another example:

[upstream gradient] x [local gradient]
[0.2] x [1] = 0.2
[0.2] x [1] = 0.2  (both inputs!)



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202287

Another example:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202288

Another example:

[upstream gradient] x [local gradient]
w0: [0.2] x [-1] = -0.2
x0: [0.2] x [2] = 0.4



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202289

Another example:

Sigmoid

Sigmoid 
function

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202290

Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202291

Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 1/(1+e-1)) (1/(1+e-1))] = 0.2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202292

Another example:

Sigmoid

Sigmoid 
function

Sigmoid local 
gradient:

Computational graph 
representation may not 
be unique. Choose one 
where local gradients at 
each node can be easily 
expressed!

[upstream gradient] x [local gradient]
[1.00] x [(1 - 0.73) (0.73)] = 0.2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202293

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202294

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

×
2

3
6
5

5*3=15

2*5=10



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202295

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

7

7
7

4+2=6

4

2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202296

add gate: gradient distributor

Patterns in gradient flow

+
3

4
7
2

2

2

mul gate: “swap multiplier”

max gate: gradient router

max

copy gate: gradient adder

×
2

3
6
5

5*3=15

2*5=10

4

5
5
9

0

9

7

7
7

4+2=6

4

2



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202297

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Backward pass:
Compute grads



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202298

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Base case



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 202299

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Sigmoid



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022100

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022101

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Add gate



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022102

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022103

Backprop Implementation: 
“Flat” code Forward pass:

Compute output

Multiply gate



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022104

Stage your forward/backward computation!
E.g. for the SVM:

margins

“Flat” Backprop: Do this for assignment 1!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022105

“Flat” Backprop: Do this for assignment 1!
E.g. for two-layer neural net:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022106

Backprop Implementation: Modularized API

Graph (or Net) object  (rough pseudo code)



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022107

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Need to cash some 
values for use in 
backward

Gate / Node / Function object: Actual PyTorch code

Upstream 
gradient

Multiply upstream 
and local gradients



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022108

Example: PyTorch operators



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022109

Source

Forward

PyTorch sigmoid layer

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022110

PyTorch sigmoid layer

Source

Forward

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022111

Source

Forward

Backward

PyTorch sigmoid layer

Forward actually 
defined elsewhere...

https://github.com/pytorch/pytorch/blob/517c7c98610402e2746586c78987c64c28e024aa/aten/src/THNN/generic/Sigmoid.c
https://github.com/pytorch/pytorch/blob/82b570528db0a43fc04bb90f5d4538c01e4a5582/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022112

So far: backprop with scalars

What about vector-valued functions?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022113

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022114

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how much 
will y change?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022115

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, 
if it changes by a small 
amount then how much 
will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it 
changes by a small amount 
then how much will each 
element of y change?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022116

f

Backprop with Vectors

Loss L still a scalar!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022117

f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022118

f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022119

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Backprop with Vectors



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022120

f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022121

f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

“Downstream 
gradients”

Backprop with Vectors



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022122

f

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Dy

Dx

Matrix-vector
multiply

Backprop with Vectors



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022123

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Dy

Dx

Gradients of variables wrt loss have same dims as the original variable



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022124

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022125

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Upstream
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022126

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Jacobian dz/dx
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ] 

Upstream
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022127

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022128

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022129

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022130

f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream
gradient

Jacobian is sparse: 
off-diagonal entries 
always zero! Never 
explicitly form 
Jacobian -- instead 
use implicit 
multiplication

z



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022131

f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

dL/dx always has the 
same shape as x!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022132

f

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022133

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022134

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

Matrix-vector
multiply

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022135

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

Also see derivation in the course notes:
http://cs231n.stanford.edu/handouts/linear-backprop.pdf

http://cs231n.stanford.edu/handouts/linear-backprop.pdf


Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022136

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net we may have 
N=64, D=M=4096

Each Jacobian takes ~256 GB of 
memory! Must work with them implicitly!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022137

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022138

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022139

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022140

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A:   



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022141

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A:   

[N×D]  [N×M] [M×D]  



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022142

Backprop with Matrices
x: [N×D]

[  2   1  -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

These formulas are 
easy to remember: they 
are the only way to 
make shapes match up!



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022143

● (Fully-connected) Neural Networks are stacks of linear functions and nonlinear 
activation functions; they have much more representational power than linear 
classifiers

● backpropagation = recursive application of the chain rule along a computational 
graph to compute the gradients of all inputs/parameters/intermediates

● implementations maintain a graph structure, where the nodes implement the 
forward() / backward() API

● forward: compute result of an operation and save any intermediates needed for 
gradient computation in memory

● backward: apply the chain rule to compute the gradient of the loss function with 
respect to the inputs

Summary for today:



Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 4 - April 07, 2022

Next Time: Convolutional Neural Networks!

144


