Lecture 2: Image Classification with Linear Classifiers

Administrative: Assignment 1

Out tomorrow, Due 4/15 11:59pm

- K-Nearest Neighbor
- Linear classifiers: SVM, Softmax
- Two-layer neural network
- Image features

Administrative: Course Project

Project proposal due 4/18 (Monday) 11:59pm
Find your teammates on Ed (the pinned "Search for Teammates" post)
"Is X a valid project for 231n?" --- Ed private post / TA Office Hours
More info on the website

Administrative: Discussion Sections

This Friday 1:30pm-2:30 pm (recording will be made available)
Python / Numpy, Google Colab
Presenter: Manasi Sharma (TA)

Syllabus

Deep Learning Basics	Convolutional Neural Networks	Computer Vision Applications
Data-driven approaches	Convolutions	RNNs / Attention / Transformers
Linear classification \& kNN	PyTorch / TensorFlow	Image captioning
Loss functions	Activation functions	Object detection and segmentation
Optimization	Batch normalization	Style transfer
Backpropagation	Transfer learning	Video understanding
Multi-layer perceptrons	Data augmentation	Generative models
Neural Networks	Momentum / RMSProp / Adam	Self-supervised learning
	Architecture design	3D vision
		Human-centered AI
		Fairness \& ethics

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Image Classification
 A Core Task in Computer Vision

Today:

- The image classification task
- Two basic data-driven approaches to image classification
- K-nearest neighbor and linear classifier

Image Classification: A core task in Computer Vision

(assume given a set of possible labels) \{dog, cat, truck, plane, ...\}

cat

The Problem: Semantic Gap

An image is a tensor of integers between [0, 255]:
e.g. $800 \times 600 \times 3$
(3 channels RGB)

Challenges: Viewpoint variation

All pixels change when the camera moves!

Challenges: Illumination

This image is CCO 1.0 public domain

This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

This image is CCO 1.0 public domain

Challenges: Background Clutter

This image is CCO 1.0 public domain

This image is CCO 1.0 public domain

Challenges: Occlusion

This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

This image by ionsson is licensed
under CC-BY 2.0

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by sare bear is

This image by Tom Thai is licensed under CC-BY 2.0

Challenges: Intraclass variation

This image is CCO 1.0 public domain

Challenges: Context

Image source:
https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq
?utm_source=linkedin_share\&utm_medium=member_desktop_web

Modern computer vision algorithms

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers, no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Attempts have been made

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

def train(images, labels):	airplane
\# Machine learning! return model	automobile
	bird
def predict(model, test_images): \# Use model to predict labels return test_labels	cat

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label
of the most similar training image

First classifier: Nearest Neighbor

Distance Metric

Distance Metric to compare images

L1 distance: $\quad d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|$
test image

56	32	10	18						
90	23	128	133						
24	26	178	200						
2	0	255	220						
10	20	24	17						
8	10	89	100						
12	16	178	170						
4	32	233	112	$	=$	46	12	14	1
:---:	:---:	:---:	:---:	:---:					
82	13	39	33						
12	10	0	30						
2	32	22	108						

Nearest Neighbor classifier

class NearestNeighbor:

\qquad
pass
def train(self, X, y):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example. Y is 1 -dimension of size N """
\# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr $=y$
def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for """ num_test $=\mathrm{X}$.shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros(num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for i in xrange(num test):
\# find the nearest training image to the i 'th test image \# using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index $=$ np.argmin(distances) \# get the index with smallest distance Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
return Ypred

Fei-Fei Li, Jiajun Wu, Ruohan Gao

class NearestNeighbor:
def __init__(self):
pass
def train(self, X, y):
""" X is N x D where each row is an example. Y is l-dimension of size N ""."
\# the nearest neighbor classifier simply remembers all the training data
self.Xtr $=X$
self.ytr $=\mathbf{y}$
def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for """
num_test $=X$.shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros (num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for i in xrange(num test):
\# find the nearest training image to the i 'th test image
\# using the LI distance (sum of absolute value differences)
distances $=n p . \operatorname{sum}(n p . a b s(s e l f . X t r-X[i,:])$, axis $=1)$
min_index $=n p$.argmin(distances) \# get the index with smallest distance
Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
return Ypred
class NearestNeighbor:
def __init__(self):
pass
def train(self, X, y):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example. Y is 1 -dimension of size N """
\# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr $=\mathbf{y}$
def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for ""."
num_test $=X$.shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros(num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for in i xrange(num_test):
\# find the nearest training image to the i 'th test image
\# using the $L 1$ distance (sum of absolute value differences)
distances $=n p . \operatorname{sum}(n p . a b s(s e l f . X t r-X[i,:])$, axis $=1$)
min_index $=$ np.argmin(distances) \# get the index with smallest distance
Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
Nearest Neighbor classifier

For each test image:

 Find closest train image Predict label of nearest image return Ypred
 import numpy as np
class NearestNeighbor: def __init__(self):
pass
def train(self, X, y):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example. Y is 1-dimension of size N ""u"
\# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr $=\mathbf{y}$
def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for "u" num_test $=X$.shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros(num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for in i xrange(num_test):
\# find the nearest training image to the i 'th test image \# using the Ll distance (sum of absolute value differences) distances $=$ np. sum(np.abs(self.Xtr $-X[i,:])$, axis = 1) min_index = np.argmin(distances) \# get the index with smallest distance Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
return Ypred

Nearest Neighbor classifier

> Q: With N examples, how fast are training and prediction?

Ans: Train $O(1)$, predict $\mathrm{O}(\mathrm{N})$

This is bad: we want classifiers that are fast at prediction; slow for training is ok
import numpy as np
class NearestNeighbor: def _init (self): pass
def train(self, X, y):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example. Y is l-dimension of size N "u"
\# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr $=y$
def predict(self, X):
""" X is $\mathrm{N} \times \mathrm{D}$ where each row is an example we wish to predict label for "u" num_test $=\mathrm{X}$. shape[0]
\# lets make sure that the output type matches the input type
Ypred $=$ np.zeros(num_test, dtype $=$ self.ytr.dtype)
\# loop over all test rows
for in in i range(num test):
\# find the nearest training image to the i 'th test image \# using the Ll distance (sum of absolute value differences) distances $=$ np. sum(np.abs(self.Xtr $-X[i,:])$, axis = 1) min_index = np.argmin(distances) \# get the index with smallest distance Ypred[i] = self.ytr[min_index] \# predict the label of the nearest example
return Ypred

Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

What does this look like?

1-nearest neighbor

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points

$K=1$

$K=3$

$K=5$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

$$
d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|
$$

L2 (Euclidean) distance

$$
d_{2}\left(I_{1}, I_{2}\right)=\sqrt{\sum_{p}\left(I_{1}^{p}-I_{2}^{p}\right)^{2}}
$$

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance $d_{1}\left(I_{1}, I_{2}\right)=\sum_{p}\left|I_{1}^{p}-I_{2}^{p}\right|$

$$
K=1
$$

L2 (Euclidean) distance

$$
d_{2}\left(I_{1}, I_{2}\right)=\sqrt{\sum_{p}\left(I_{1}^{p}-I_{2}^{p}\right)^{2}}
$$

$K=1$

K-Nearest Neighbors: try it yourself!

http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters
What is the best value of \mathbf{k} to use? What is the best distance to use?

These are hyperparameters: choices about the algorithms themselves.

Very problem/dataset-dependent.
Must try them all out and see what works best.

Setting Hyperparameters

Idea \#1: Choose hyperparameters
that work best on the training data

```
train
```


Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the training data

BAD: $\mathrm{K}=1$ always works perfectly on training data

```
train
```


Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the training data

BAD: $\mathrm{K}=1$ always works perfectly on training data

train

Idea \#2: choose hyperparameters
that work best on test data

train	test

Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the training data

BAD: $\mathrm{K}=1$ always works perfectly on training data

train

Idea \#2: choose hyperparameters that work best on test data BAD: No idea how algorithm will perform on new data
train \quad test

Never do this!

Setting Hyperparameters

Idea \#1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data
\square
Idea \#2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train	test

Idea \#3: Split data into train, val; choose hyperparameters on val and evaluate on test

Better!

train

Setting Hyperparameters

train

Idea \#4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1 fold 2 fold 3 fold 4 fold 5 test fold 1 fold 2 fold 3 fold 4 fold 5 test					

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes
50,000 training images

10,000 testing images
airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Test images and nearest neighbors

Setting Hyperparameters

5-fold cross-validation for the value of \mathbf{k}.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation
(Seems that $\mathrm{k} \sim=7$ works best for this data)

What does this look like?

What does this look like?

k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative

(All three images on the right have the same pixel distances to the one on the left)

k-Nearest Neighbor with pixel distance never used.

- Curse of dimensionality

> Dimensions $=3$
> Points $=4^{3}$

K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the K nearest training examples

Distance metric and K are hyperparameters
Choose hyperparameters using the validation set;
Only run on the test set once at the very end!

Linear Classifier

Parametric Approach

Image

Parametric Approach: Linear Classifier

Image $\quad f(x, W)=W x$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

10 numbers giving class scores

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Recall CIFAR10

50,000 training images each image is $32 \times 32 \times 3$

10,000 test images.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint

Flatten tensors into a vector

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Geometric Viewpoint

Hard cases for a linear classifier

Class 1:
First and third quadrants
Class 2:
Second and fourth quadrants

Class 1:
$1<=$ L2 norm <= 2
Class 2:
Everything else

Class 1:

Three modes

Class 2:

Everything else

Linear Classifier - Choose a good W

TODO:

1. Define a loss function that quantifies our unhappiness with the scores across the training data.
2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

cat
3.2
1.3
2.2
car
5.1
4.9
2.5
frog
-1.7
2.0
-3.1

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat
car
frog
3.2
1.3
2.2
5.1
4.9
2.5
-1.7
2.0 -3.1
2.0 -3.1

A loss function tells how good our current classifier is

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:
cat
car
frog

3.2
1.3
2.2
4.9
2.5
2.0 -3.1
5.1
-1.7

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i}, is image and y_{i} is (integer) label

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

3.2
1.3
2.2
5.1
-1.7
2.0

A loss function tells how good our current classifier is

Given a dataset of examples

$$
\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where x_{i} is image and y_{i} is (integer) label

Loss over the dataset is a average of loss over examples:

$$
L=\frac{1}{N} \sum_{i} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

cat3.21.32.2
car 5.1
frog -1.7
2.0 -3.1the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,5.1-3.2+1)
$$

$$
+\max (0,-1.7-3.2+1)
$$

$$
=\max (0,2.9)+\max (0,-3.9)
$$

$$
=2.9+0
$$

$$
=2.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

$$
\begin{array}{r}
2.2 \\
2.5 \\
-3.1
\end{array}
$$

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,1.3-4.9+1)
$$

$$
+\max (0,2.0-4.9+1)
$$

$$
=\max (0,-2.6)+\max (0,-1.9)
$$

$$
=0+0
$$

$$
=0
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

$$
=\max (0,2.2-(-3.1)+1)
$$

$$
+\max (0,2.5-(-3.1)+1)
$$

$$
=\max (0,6.3)+\max (0,6.6)
$$

$$
=6.3+6.6
$$

$$
=12.9
$$

Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$
 where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Loss over full dataset is average:

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i} \\
L= & (2.9+0+12.9) / 3 \\
= & 5.27
\end{aligned}
$$

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Q1: What happens to loss if car scores decrease by 0.5 for this training example?
cat
1.3
4.9
2.0 0

Q2: what is the min/max possible SVM loss L_{i} ?

Q3: At initialization W is small so all $s \approx 0$. What is the loss L_{i}, assuming N examples and C classes?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$
 where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q4: What if the sum was over all classes? (including j = y_i)

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
Q5: What if we used mean instead of sum?

Suppose: 3 training examples, 3 classes.
With some W the scores $f(x, W)=W x$ are:

Multiclass SVM loss:

Given an example $\left(x_{i}, y_{i}\right)$ where x_{i} is the image and where y_{i} is the (integer) label,
and using the shorthand for the scores vector: $s=f\left(x_{i}, W\right)$
the SVM loss has the form:
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$

Q6: What if we used

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:

With some W the scores $f(x, W)=W x$ are:

Q6: What if we used

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)^{2}
$$

Multiclass SVM Loss: Example code

$$
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1) # Then calculate the margins s 
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```


Softmax classifier

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
cat
3.2
car $\quad 5.1$
frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

cat
3.2
car 5.1
frog -1.7

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Probabilities
must be >= 0

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned}
& \text { Softmax } \\
& \text { Function }
\end{aligned}
$$

Probabilities
must be $>=0$
Probabilities
must sum to 1

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be $>=0$
Probabilities
must sum to 1

cat	3.2		24.5		0.13
car	5.1		164.0	$\xrightarrow{\text { normalize }}$	0.87
frog	-1.7		0.18		0.00
	malized ties / log		nnormalized probabilities		obabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities must be >= 0

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

\(\left.$$
\begin{array}{r}24.5 \\
164.0 \\
0.18\end{array}
$$ \xrightarrow{normalize} \begin{array}{l}0.13

0.87

0.00\end{array}\right]\)| $L_{i}=-\log (0.13)$ |
| :--- |
| $=2.04$ |

Unnormalized log-probabilities / logits
unnormalized probabilities
probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0

\rightarrow| 24.5 |
| ---: |
| 164.0 |
| 0.18 |$\xrightarrow{\text { normalize }}$

Probabilities must sum to 1

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

0.13

$$
\begin{aligned}
\rightarrow L_{i}= & -\log (0.13) \\
& =2.04
\end{aligned}
$$

0.87
0.00
probabilities

Maximum Likelihood Estimation Choose weights to maximize the likelihood of the observed data (See CS 229 for details)
unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities must be >= 0

Unnormalized log-probabilities / logits

probabilities

Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities
must be >= 0
cat
car
frog

Unnormalized log-probabilities / logits

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Probabilities must be >= 0

Probabilities

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

unnormalized probabilities
probabilities
Correct probs

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right) \quad P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Maximize probability of correct class

$$
3.2
$$

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Putting it all together:

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right)
$$

car 5.1
frog
-1.7

Softmax Classifier (Multinomial Logistic Regression)

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Want to interpret raw classifier scores as probabilities

$$
s=f\left(x_{i} ; W\right)
$$

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Q1: What is the min/max possible softmax loss L_{i} ?
Q2: At initialization all s_{j} will be approximately equal; what is the softmax loss L_{i}, assuming C classes?

Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

Maximize probability of correct class

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

cat

$$
3.2
$$

$$
5.1
$$

$$
s=f\left(x_{i} ; W\right)
$$

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

Softmax vs. SVM

W

-15
22
-44
56

$y_{i} 2$

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{j}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and

$$
y_{i}=0
$$

Q: What is the softmax loss and the SVM loss?

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{j} e^{s_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

assume scores:
[20, -2, 3]
[20, 9, 9]
[20, -100, -100]
and $y_{i}=0$

Q: What is the softmax loss and the SVM loss if I double the correct class score from 10 -> 20?

Coming up:

- Regularization - Optimization

$f(x, W)=W x+b$

