CS 231N Lecture 16: 3D Vision

Slide credit: Ren Ng, Hao Su, Leo Guibas

Each choice best suited to a different task/type of geometry

Representation Considerations

- Needs to be stored in the computer
- Creation of new shapes
 - Input metaphors, interfaces...
- Operations
 - Editing, simplification, smoothing, filtering, repairing...
- Rendering
 - Rasterization, ray tracing...
- Animation

Point Clouds

- Simplest representation: only points, no connectivity
- Collection of (x,y,z) coordinates, possibly with normal
- Points with orientation are called surfels

Output of Acquisition

Slide credit: Hao Su

Point Clouds

- Simplest representation: only points, no connectivity
- Collection of (x,y,z) coordinates, possibly with normal
- Points with orientation are called surfels
- Often results from scanners
- Potentially noisy
- Registration of multiple images

set of raw scans

Point Clouds

- Easily represent any kind of geometry
- Useful for large datasets
- Difficult to draw in undersampled regions
- Other limitations:
 - No simplification or subdivision
 - No direction smooth rendering
 - No topological information

• Boundary representations of objects

Slide credit: Hao Su

A Large Triangle Mesh

David

Digital Michelangelo Project 28,184,526 vertices 56,230,343 triangles

A Very Large Triangle Mesh

Mesh Upsampling – Subdivision

Increase resolution via interpolation

Mesh Downsampling – Simplification

Decrease resolution; try to preserve shape/appearance

Mesh Regularization

Modify sample distribution to improve quality

Meshes as Approximations of Smooth Surfaces

- Piecewise linear approximation
 - Error is O(h²)

Slide credit: Hao Su

- Polygonal meshes are a good representation
 - approximation $O(h^2)$
 - arbitrary topology
 - adaptive refinement
 - efficient rendering

Polygon

- Vertices: $v_0, v_1, ..., v_{n-1}$
- Edges: $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$

Polygon

- Vertices: $v_0, v_1, ..., v_{n-1}$
- Edges: $\{(v_0, v_1), \dots, (v_{n-2}, v_{n-1})\}$
- Closed: $v_0 = v_{n-1}$
- Planar: all vertices on a plane
- Simple: not self-intersecting

- A finite set *M* of closed, simple polygons *Q_i* is a polygonal mesh
- The intersection of two polygons in *M* is either empty, a vertex, or an edge

Polygonal Mesh A finite set *M* of closed, simple polygons *Q_i* is a polygonal mesh

- The intersection of two polygons in M is either empty, a vertex, or an edge
 - Every edge belongs to at least one polygon

- A finite set *M* of closed, simple polygons *Q_i* is a polygonal mesh
- The intersection of two polygons in *M* is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

- A finite set *M* of closed, simple polygons *Q_i* is a polygonal mesh
- The intersection of two polygons in *M* is either empty, a vertex, or an edge
- Every edge belongs to at least one polygon
- Each Q_i defines a face of the polygonal mesh

 Vertex degree or valence = number of incident edges

 Vertex degree or valence = number of incident edges

- Boundary: the set of all edges that belong to only one polygon
 - Either empty or forms closed loops
 - If empty, then the polygonal mesh is closed

Triangulation

Polygonal mesh where every face
 is a triangle

Triangulation

Polygonal mesh where every face
 is a triangle

Triangulation

- Polygonal mesh where every face
 is a triangle
- Simplifies data structures
- Simplifies rendering
- Simplifies algorithms
- Each face planar and convex
- Any polygon can be triangulated

Data Structures

- What should be stored?
 - Geometry: 3D coordinates

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships

Data Structures

- What should be stored?
 - Geometry: 3D coordinates
 - Connectivity
 - Adjacency relationships
 - Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge
Simple Data Structures: Indexed Face Set

- Used in formats
- OBJ , OFF, WRL
- Storage
 - Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex
 - 12 bytes per face
 - 36*v bytes for the mesh

Vertices				
v0	x0	УO	z0	
v1	x1	x1	z1	
v2	x2	у2	z2	
v3	x3	үЗ	z3	
v4	x4	у4	z4	
v5	x5	у5	z5	
v6	x6	у6	z6	
•••	•••	•••	•••	

Tria	Triangles				
t0	v0	v1	v2		
t1	v0	v1	v3		
t2	v2	v4	v3		
t3	v5	v2	v6		
•••	••••	•••	•••		

• No explicit neighborhood info

Shape Representations

Non-parametric

Parametric Representation

- Range of a function $f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$
 - Surface in 3D: m = 2, n = 3

Parametric Representation

- Range of a function $f: X \to Y, X \subseteq \mathbb{R}^m, Y \subseteq \mathbb{R}^n$
 - Surface in 3D: m = 2, n = 3

$$s(u,v) = (x(u,v), y(u,v), z(u,v))$$

Parametric Curves

• Example: Explicit curve/circle in 2D

$$\mathbf{p} : \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \mathbf{p}(t) = (x(t), y(t))$$

Parametric Curves

• Example: Explicit curve/circle in 2D

$$\mathbf{p} : \mathbb{R} \to \mathbb{R}^2$$
$$t \mapsto \mathbf{p}(t) = (x(t), y(t))$$
$$\mathbf{p}(t) = r \left(\cos(t), \sin(t)\right)$$
$$t \in [0, 2\pi)$$

Parametric Surfaces

• Sphere in 3D

$$s: \mathbb{R}^2 \to \mathbb{R}^3$$

Parametric Surfaces

• Sphere in 3D

$$s: \mathbb{R}^2 \to \mathbb{R}^3$$

 $s(u, v) = r\left(\cos(u)\cos(v), \sin(u)\cos(v), \sin(v)\right)$ $(u, v) \in [0, 2\pi) \times [-\pi/2, \pi/2]$

Bézier Curves

Bézier Curves

Bézier Surfaces

Use tensor product of Bézier curves to get a patch:

Bézier Surfaces

Use tensor product of Bézier curves to get a patch:

Multiple Bézier patches form a surface

Shape Representations

Explicit

Parametric

"Explicit" Representations of Geometry

All points are given directly

"Explicit" Representations of Geometry

All points are given directly

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

 $f(u, v) = ((2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u)$

Explicit representations make some tasks easy

Explicit Surface – Inside/Outside Test Hard

Explicit Surface – Inside/Outside Test Hard

Explicit Surface – Inside/Outside Test Hard

Some tasks are hard with explicit representations

"Implicit" Representations of Geometry

Based on classifying points

Points satisfy some specified relationship

"Implicit" Representations of Geometry

Based on classifying points

- Points satisfy some specified relationship
- E.g. sphere: all points in 3D, where $x^2+y^2+z^2 = 1$

"Implicit" Representations of Geometry

Based on classifying points

• Points satisfy some specified relationship E.g. sphere: all points in 3D, where $x^2+y^2+z^2 = 1$ f(x More generally, f(x,y,z) = 0

Implicit Surface – Sampling Can Be Hard

Implicit Surface – Sampling Can Be Hard

Implicit Surface – Sampling Can Be Hard

Some tasks are hard with implicit representations

Implicit representations make some tasks easy

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z

Algebraic Surfaces (Implicit)

Surface is zero set of a polynomial in x, y, z

More complex shapes?

Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations

Constructive Solid Geometry (Implicit)

Combine implicit geometry via Boolean operations

Distance Functions (Implicit)

Instead of Booleans, gradually blend surfaces together using

Distance functions: giving minimum distance (could be **signed** distance) from anywhere to object

Distance Functions (Implicit)

An Example: Blending (linear interp.) a moving boundary

Scene of Pure Distance Functions (Not Easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

Shape Representations

Explicit

Implicit

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form Alternative: store a grid of values approximating function

Level Set Methods (Implicit)

Implicit surfaces have some nice features (e.g., merging/splitting) But, hard to describe complex shapes in closed form Alternative: store a grid of values approximating function

Surface is found where interpolated values equal zero

Provides much more explicit control over shape (like a texture)

Slide credit: Ren Ng

Level Sets from Medical Data (CT, MRI, etc.)

Level sets encode, e.g., constant tissue density

Slide credit: Ren Ng

Related Representation: Voxels

• Binary thresholding the volumetric grid

Shape Representations

Explicit

Implicit (Eulerian)

AI + Shapes

• In 3D ...

Princeton Shape Benchmark

- •1814 Models
- 182 Categories

Shilane et al, 2004

Datasets Prior to 2014

Benchmarks	Types	# models	# classes	Avg # models per class
SHREC14LSGTB	Generic	8,987	171	53
PSB	Generic	907+907 (train+test)	90+92 (train+test)	10+10 (train+test)
SHREC12GTB	Generic	1200	60	20
TSB	Generic	10,000	352	28
CCCC	Generic	473	55	9
WMB	Watertight (articulated)	400	20	20
MSB	Articulated	457	19	24
BAB	Architecture	2257	183+180 (function+form)	12+13 (function+form)
ESB	CAD	867	45	19

Table 1. Source datasets from SHREC 2014: Princeton Shape Benchmark (PSB) [27], SHREC 2012 generic Shape Benchmark (SHREC12GTB) [16], Toyohashi Shape Benchmark (TSB) [29], Konstanz 3D Model Benchmark (CCCC) [32], Watertight Model Benchmark (WMB) [31], McGill 3D Shape Benchmark (MSB) [37], Bonn Architecture Benchmark (BAB) [33], Purdue Engineering Shape Benchmark (ESB) [9].

Datasets for 3D Objects

- Large-scale Synthetic Objects: ShapeNet, 3M models
- ModelNet: absorbed by ShapeNet
- ShapeNetCore: 51.3K models in 55 categories

Chang et al. ShapeNet. arXiv 2015 Wu et al. 3D ShapeNets. CVPR 2015

Object Scan

- 10,933 RGBD scans
- 441 models

1200

Choi et al, arXiv 2016

Pascal 3D+

- Retrieve a nearest-neighbor 3D model for objects in real images
- 8,505 PASCAL images (13,898 instances) + 22,394 ImageNet images
- 12 riaid estagorias 2 000± instances par estagory on average

Pix3D

- 10,069 images
- 395 shapes (IKEA furniture + 3D scan)

Sun et al. CVPR 2018, building upon Lim et al. ICCV 2013

Figure from the ShapeNet paper, Chang et al. arXiv 2015

Datasets for 3D Object Parts

Fine-grained Parts: PartNet

- Fine-grained (+mobility)
- Instance-level
- Hierarchical

Mo et al. CVPR 2019 Slide credit: Hao Su

Datasets for Indoor 3D Scenes

Large-scale Scanned Real Scenes: ScanNet

- 2.5M Views in 1,500 RGBD scans
- 3D camera poses
- Surface reconstructions
- Instance-level semantic segmentations

Dai et al. CVPR 2017. Slide credit: Hao Su

Physical Interaction with Articulated Objects

300+ door annotations

support articulated objects

(cabinets, doors, fridge, oven, window etc.)

http://svl.stanford.edu/igibson/

AI + Geometry

- P(S) or P(S|c) --- Generative models
 - Learning (conditional) shape priors
 - Shape generation, completion, & geometry data processing
- P(c|S) --- Discriminative models
 - Learning shape descriptors
 - Shape classification, segmentation, view estimation, etc.
- Joint modeling of 3D and 2D data
 - Large-scale 2D datasets & very good pretrained models
 - Differentiable projection/back-projection & differentiable/neural rendering

Which Shape Representation?

Explicit

Implicit (Eulerian)

Su et al. ICCV 2015

Su et al. ICCV 2015

View pooling: element-wise max-pooling across all views

Su et al. ICCV 2015

Experiments – Classification & Retrieval

		Method	Classificatio n	Retrieval
Non-dee { p	ſ		(Accuracy)	(mAP)
	SPH	68.2%	33.3%	
		LFD	75.5%	40.9%
		3D ShapeNets	77.3%	49.2%
	FV, 12 views	84.8%	43.9%	
		CNN, 12 views	88.6%	62.8%
	MVCNN, 12 views	89.9%	70.1%	
	MVCNN+metric, 12 views	89.5%	80.2%	
		MVCNN, 80 views	90.1%	70.4%
		MVCNN+metric, 80 views	90.1%	79.5%

Multi-View Representations

- Indeed gives good performance
- Can leverage vast literature of image classification
- Can use pertained features
- Need projection
- What if the input is noisy and/or incomplete? e.g., point cloud

Pixels -> Voxels

• 3D Conv Deep Belief Networks (CDBN)

Wu et al. CVPR 2015

Generative Modeling

10 classes	SPH [18]	LFD [8]	Ours
classification	79.79 %	79.87 %	83.54%
retrieval AUC	45.97%	51.70%	69.28 %
retrieval MAP	44.05%	49.82%	68.26 %
40 classes	SPH [18]	LFD [<mark>8</mark>]	Ours
classification	68.23%	75.47%	77.32%
retrieval AUC	34.47%	42.04%	49.94 %
retrieval MAP	33.26%	40.91%	49.23%

Table 1: Shape Classification	and Retrieval Results.
-------------------------------	------------------------

Wu et al. CVPR 2015

Volumetric Autoencoders

Binary Cross-Entropy Loss: $\mathcal{L} = - l \log(o) - (1-l) \log(1-o)$

Brock et al. NeurIPS Workshop 2016

3D-GANs

Wu et al. NeurIPS 2016
Visual Object Networks

Wu et al. NeurIPS 2016

Zhu et al. NeurIPS 2018

Zhu et al. NeurIPS 2018

Octave Tree Representations

- Store the sparse surface signals
- Constrain the computation near the surface

Slide Credit: Hao Su

Octree: Recursively Partition the Space

Wang et al. O-CNN. SIGGRAPH 2017

Riegler et al. OctNet. CVPR 2017

Memory Efficiency

Slide Credit: Hao Su

Octree Generating Networks

Tatarchenko et al. ICCV 2017 Slide Credit: Hao Su

Eulerian -> Lagrangian

Explicit

Implicit (Eulerian)

PointNet: First Learning Tool for Point Clouds

Object Classification

Object Part Segmentation

Semantic Scene Parsing

End-to-end learning for irregular point data Unified framework for various tasks

Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. (CVPR'17)

The model has to respect key desiderata for point clouds:

Point Permutation Invariance

Point cloud is a set of unordered points

Sampling Invariance

Output a function of the underlying geometry and not the sampling

Permutation Invariance: Symmetric Functions

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \ x_i \in \mathbb{R}^D$$

Examples:

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

How can we construct a universal family of symmetric functions by neural networks?

Construct Symmetric Functions by Neural Networks

Simplest form: directly aggregate all points with a symmetric operator **Just discovers simple extreme/aggregate properties of the geometry.**

Slide credit: He Wang

g

Construct Symmetric Functions by Neural Networks

$$f(x_1, x_2, \dots, x_n) = \gamma \circ g(h(x_1), \dots, h(x_n))$$
 is symmetric if g is symmetric

Distance Metrics for Point Cloud

Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

Distance Metrics for Point Cloud

Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal size $s = |S_1| = |S_2|$. The EMD between A and B is defined as:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

where $\phi: S_1 \to S_2$ is a bijection.

A Point Set Generation Network for 3D Object Reconstruction from a Single Image, CVPR 2016

Chamfer distance We define the Chamfer distance between $S_1, S_2 \subseteq \mathbb{R}^3$ as:

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2$$

Earth Mover's distance Consider $S_1, S_2 \subseteq \mathbb{R}^3$ of equal size $s = |S_1| = |S_2|$. The EMD between A and B is defined as:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$

where $\phi: S_1 \to S_2$ is a bijection.

Sum of closest distances

Insensitive to sampling (only relatively)

Sum of matched closest distances

Sensitive to sampling

Point Cloud AE

Encoder: PointNet Decoder: MLP

ICM L, 2018, Learning Representations and Generative M odels for 3D Point Clouds, Panos Achlioptas, et. al.

Graph NNs on Point Clouds

- Points -> Nodes
- Neighborhood -> Edges
- Graph NNs for point cloud processing

Wang et al. TOG 2019

Message-Passing GNNs are not Geometry-Aware

- Points are **sampled** from surfaces.
- Ideally, features describe the geometry of underlying surface. They should be sample invariant.
- Message-passing GNNs do not address sample invariance.

• **Solution**: Estimate the continuous kernel and point density for continuous convolution (KPConv)

Kernel Point Convolution (KPConv)

Thomas et al. ICCV 2019

Deformable Kernel for Deformable Objects

Deformable point-based kernel

• 3D version of 2D deformable convolution

Slide Credit: Hao Su

Pixel2Mesh

Learn to deform a template

Cannot change the topology of the template mesh

Wang et al. Pixel2Mesh. ECCV 2018

More on Mesh Deformation

Gao et al. SDM-NET: Deep generative network for structured deformable mesh. SIGGRAPH Asia 2019

Pan et al., Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks. ICCV 2019

Slide: Hao Su

Non-Parametric -> Parametric

Surfaces

Surfaces Solid

Parametric Decoder: AtlasNet

Groueix et al. CVPR 2018

Results

Groueix et al. CVPR 2018

FoldingNet

Yang et al. CVPR 2018

Assembling Volumetric Primitives

Tulsiani et al. CVPR 2017

Incorporating Shape Structure

Explicit -> Implicit

Explicit

Implicit (Eulerian)

Deep Implicit Functions

2019

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019

Deep Level Sets: Implicit Surface Representations for 3D Shape Inference. 2019

DeepSDF. CVPR 2019

Neural Radiance Fields (NeRF) for View Synthesis

Input: Many images of the same scene (with known camera parameters) **Output**: Images showing the scene from novel viewpoints

Image source: Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV

Shape Representations

Next: Human-Centered Artificial Intelligence