CS231N: Low-Level Vision

Jia Deng

• Predict per-pixel 2D motion between a pair of frames

Applications

Robotics

Self-driving cars (Waymo)

Everydayrobots.com

Project starline (Google)

Hololens (Microsoft)

Robotics3D VisionGraphics

Optical Flow as Optimization

• Objective: appearance constancy + plausibility of flow field

 $E(\Delta x) = Distance(I(x_i), I(x_i + \Delta x_i)) + Regularization(I, \Delta x)$

[Horn and Schunck, 1981] [Black and Anandan, 1993] [Zach et al. 2007] [Brox et al. 2004] [Brox and Malik, 2010] [Weinzaepfel et al, 2013] [Liu et al. 2009] [Roth et al. 2009] [Menze et al, 2015] [Sun et al, 2010]

[Bailer et al. 2015] [Chen and Koltun, 2016] [Xu et al, 2017]

• Classical approaches:

The Model of Horn and Schunck [1] $\min_{u,v} \left\{ E = \int_{\Omega} |\nabla u|^2 + |\nabla v|^2 \ d^2x + \lambda \int_{\Omega} \rho(u,v)^2 \ d^2x \right\}$ Regularization Term Data Term (OFC)

+ Convex $\rho(u,v) = I_t + (u,v) \cdot \nabla I \approx 0$

- + Easy to solve
- Does not allow for sharp edges in the solution
- Sensitive to outliers violating the OFC

[1] Horn and Schunck. Determinig Optical Flow. Artificial Intelligence, 1981

- Classical approaches: TV-L1 Flow (TV: total variation)
 - Replace quadratic functions by L₁ norms
 - Done by Cohen, Aubert, Brox, Bruhn, ...

$$\min_{u,v} \left\{ E = \int_{\Omega} |\nabla u| + |\nabla v| \ d^2x + \lambda \int_{\Omega} |\rho(u,v)| \ d^2x \right\}$$

+Allows for discontinuities in the flow field +Robust to some extent to outliers in the OFC +Still convex

- Much harder to solve

See: Zach, C., Pock, T. and Bischof, H., 2007, September. A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg.

• Classical approaches: DeepFlow

Weinzaepfel P, Revaud J, Harchaoui Z, Schmid C. DeepFlow: Large displacement optical flow with deep matching. InProceedings of the IEEE international conference on computer vision 2013 (pp. 1385-1392).

FlowNet [Dosovitskiy et al. 2015]

- First optical flow network
- U-Net on concatenated frames
- Simple and Fast -- but underperforming the best optimization approaches

• Deep Learning: FlowNet

FlowNet S (Simple) architecture

- Input: two stacked images ([image(t), image(t-1)])
- Encode: 9 Convolutional layers (strides: 2)
 - conv 7*7: 1 layers
 - conv 5*5: 2 layers
 - conv 3*3:
 6 layers
- Decode: Refinement layers (described later)

Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D, Brox T. Flownet: Learning optical flow with convolutional networks. InProceedings of the IEEE international conference on computer vision 2015 (pp. 2758-2766).

• Deep Learning: FlowNet

FlowNet C (Correlation) architecture

• Input: two images ([image(t), image(t-1)]) Kernel-like processing

• Correlation layer calculating "correlation" of two images

Slide credit: K-Inoue @ki42 & Oscar @wang

• Deep Learning: FlowNet

Refinement layers in FlowNet S/C

- 1. 4 De-convolution layers & 4 Upsampled prediction layers
 - De-convolution: Transposed convolution + LeakyReLU
 - Upsampled prediction: Transposed convolution (evaluated)
 - De-conv + Previous feature map + Upsampled prediction
- 2. Bilinear upsampling (4x)

• Deep Learning: FlowNet 2.0

Deep Learning and Optical Flow

PWC-Net [Sun et at al., 2018]

- Inductive bias: warping, cost volume
- Iterative refinement limited to pyramid levels

[Ranjan and Black, 2017] [Ilg et al., 2017] [Hui et al, 2018] [Maurer and Bruhn, 2018] [Ilg et al., 2017] [Neoral et al, 2018] [Bar-Haim and Wolf, 2020] [Zhao et al, 2020] [Z Yin et al, 2019] [Yang and Ramanan, 2018] [Lu et al, 2020]

• Deep Learning: PWC-Net

Sun D, Yang X, Liu MY, Kautz J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018 (pp. 8934-8943).

• Deep Learning: VCN

Yang G, Ramanan D. Volumetric Correspondence Networks for Optical Flow. In Advances in Neural Information Processing Systems 2019 (pp. 793-803).

RAFT: Recurrent All-Pairs Field Transforms

Iterative updates of a single high-res flow field

[Teed & Deng, ECCV 2020] Best Paper Award

Strategy: Optimization-Inspired Neural Architectures

Design neural networks to behave like classical optimization algorithms

+ Recurrent iterative updates

RAFT: Recurrent All-Pairs Field Transforms

- *State-of-the-art accuracy*: 16% better on KITTI, 30% better on Sintel
- *High efficiency*: 10x faster training, 10fps on 436x1088 video
- Strong Generalization: 40% better synthetic to real generalization

All-Pairs Visual Similarities

• Dot product between all pairs

All-Pairs Visual Similarities

- Dot product between all pairs
- Repeated pooling of last two dimensions

All-Pairs Visual Similarities

- Dot product between all pairs
- Repeated pooling of last two dimensions
- Use current flow estimate to retrieve a feature vector

cues on how good the current flow is and where are better similarities

Update Operator

• GRU-Based recurrent update operator

- Designed to mimic updates of first order optimization algorithm [1]
- But no explicit objective or gradient

[1] Adler, Jonas, and Ozan Öktem. "Learned primal-dual reconstruction."2018

Convex Upsampling

- Upsamples flow to full resolution
- Convex combination of 3x3 coarse resolution neighbors

Coefficients Predicted by Network (w1, ..., w9)

Convex Upsampling

- Upsamples flow to **full resolution**
- Convex combination of 3x3 coarse resolution neighbors

Training

• Supervised directly on sequence of full resolution flow fields

$$Loss = \sum_{i}^{N} \frac{1.25^{i}}{1.25^{N}} \left| \left| f_{gt} - f_{i} \right| \right|_{1}$$

RAFT versus VCN

RAFT [Teed & Deng, 2020]

- Construct 4D cost volume
- 2D convolution on slices of cost volume

VCN [Yang & Ramanan, 2019]

- Construct 4D cost volume
- 4D convolution on entire cost volume

KITTI-2015[1] Results

[1]Menze, Moritz, and Andreas Geiger. "Object scene flow for autonomous vehicles" 2015

Butler, Daniel J., et al. "A naturalistic open source movie for optical flow evaluation." ECCV 2012.

Cross-Dataset Generalization

Models trained on FlyingChairs (Fischer et al. 2015) and FlyingThings3D (Mayer et al, 2016)

Convergence

Convergence Visualized

1 Iteration

2 Iterations

5 Iterations

32 Iterations

RAFT can recover the motion of small, fast moving objects

http://sintel.is.tue.mpg.de/

KITTI-2015: http://www.cvlibs.net/datasets/kitti/index.php

DAVIS (1080p) https://davischallenge.org/

Butler, Daniel J., et al. "A naturalistic open source movie for optical flow evaluation." ECCV 2012.

Robust Vision Challenge ECCV 2020

	Y	Method	Middlebury (Detailed subrankings)	KITTI (Detailed subrankings)	MPI Sintel (Detailed subrankings)	VIPER (Detailed subrankings)
[1	RAFT-TF_RVC	1	2	1	1
						Submitted by Deqing Sun (Google)
i	2	PRAFlow_RVC	2	1	2	3
9					Submitted by Zhexiong Wan (Northweste	ern Polytechnical University, Xi''an, China)
	3	C-RAFT_RVC	5	3	3	4
T					Submitted by I	Henrique Morimitsu (Tsinghua University)
	4	VCN_RVC	3	6	5	5
				Volumetric Correspondence Networks fo	or Optical Flow, NeurIPS 2019. [Project pa	age] - Submitted by Gengshan Yang (CMU)
	5	IRR-PWC_RVC	7	5	7	2
			Iterative Re	esidual Refinement for Joint Optical Flow ar	nd Occlusion Estimation [Project page] - S	Submitted by Junhwa Hur (TU Darmstadt)
	5	LSM_FLOW_RVC	6	4	4	7
			LSM:	Learning Subspace Minimization for Low-Le	evel Vision [Project page] - Submitted by C	Chengzhou Tang (Simon Fraser University)
	7	PWC-Net_RVC	4	7	6	6
			PWC-Net: CN	INs for Optical Flow Using Pyramid, Warping	g, and Cost Volume, CVPR 2018. [Project p	bage] - Submitted by Deqing Sun (Google)
	8	TVL1_RVC	8	8	8	8
					Baseline - Subr	nitted by Toby Weed (Middlebury College)
	9	H+S_RVC	9	9	9	9
					Baseline - Subn	nitted by Toby Weed (Middlebury College)

All top 3 submissions used RAFT

Winner

A TensorFlow Implementation of RAFT

Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu

Google Research

Google

Stereo

Many slides adapted from Steve Seitz and Svetlana Lazebnik

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 2

Dense depth map

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

Where does the depth information come from?

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Stereograms: Invented by Sir Charles Wheatstone, 1838

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
 - Humans can do it

Autostereograms: www.magiceye.com

• Given a calibrated binocular stereo pair, fuse it to produce a depth image

• Humans can do it

Autostereograms: www.magiceye.com

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then epipolar lines fall along the horizontal scan lines of the images

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

1

Basic stereo algorithm

- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = $B^*f/(x-x')$

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Data

Window-based matching

Ground truth

Better methods exist...

Graph cuts

Ground truth

43

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization</u> <u>via Graph Cuts</u>, PAMI 2001

For the latest and greatest: <u>http://www.middlebury.edu/stereo/</u>

How can we improve window-based matching?

- The similarity constraint is **local** (each reference window is matched independently)
- Need to enforce **non-local** correspondence constraints

Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

 $E(D) = \sum_{i} \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \sum_{\text{paighbors } i = i} \rho(D(i) - D(j))$ neighbors*i*, *j*

 $E(D) = \sum \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \qquad \sum \rho \left(D(i) - D(j) \right)$ neighbors i, j data term smoothness term

 $E(D) = \sum \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \qquad \sum \rho \left(D(i) - D(j) \right)$ neighbors i, j data term smoothness term

 $E(D) = \sum \left(W_1(i) - W_2(i + D(i)) \right)^2 + \lambda \qquad \sum \rho \left(D(i) - D(j) \right)$ neighbors i, j data term smoothness term

• Energy functions of this form can be minimized using graph cuts

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization via</u> <u>Graph Cuts</u>, PAMI 2001

Active stereo with structured light

- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and</u> <u>Multi-pass Dynamic Programming</u>. *3DPVT* 2002

Active stereo with structured light

- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. <u>Rapid Shape Acquisition Using Color Structured Light and</u> <u>Multi-pass Dynamic Programming.</u> *3DPVT* 2002

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

RAFT-Stereo: RAFT for rectified two-view stereo

[Teed, Lipson, Deng, 2020]

RAFT-Stereo: 1st on Middlebury

[Scharstein et al, 2014]

[Lipson, Teed, Deng, 3DV 2021] Best Student Paper Award

Middlebury Stereo Benchmark

Middleburry: bad 1.0 (%)

[Scharstein et al, 2014]

Visual SLAM:

Simultaneous Localization and Mapping

- Input: video of (largely) static scene
- Output: 3D map and camera trajectory

Classical Approach: Optimization with Multiview Geometry

2D motion (optical flow) is a known analytical function of 3D points and 3D motion

$$X T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \in SE(3)$$

$$f = F(X, T)$$

Step 1. Estimate 2D flow f \rightarrow Match pixels by manual features Step 2. Solve for 3D given flow $\min_{X,T} ||f - F(X,T)||^2$

Insufficient Robustness: Failures are frequent and catastrophic

Deep Visual SLAM

Train a network to directly regress 3D points (depth) and 3D motion

DeMoN [Ummenhofer et al., 2017]

TartanVO [Wang et al., 2021]
Problems with Deep Visual SLAM

- Lower Accuracy: large amounts of drift, global inconsistency
- Weaker Generalization: doesn't generalize to new datasets or cameras

DROID: Differentiable Recurrent Optimization-Inspired Design

- Accurate reduce error by 60%-80% over prior systems
- *Robust* 6X fewer catastrophic failures
- Generalizable trained only on synthetic data

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

Estimate 2D motion (optical flow)

• Predict per-pixel 2D motion between a pair of frames

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

DROID: Differentiable Recurrent Optimization-Inspired Design

Symbolic knowledge from classical approaches

End-to-end neural architecture

• **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}

- **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}
- *Want:* depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

- **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}
- *Want:* depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

- **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}
- *Want:* depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

• **Given:** co-visibility graph $(\mathcal{V}, \mathcal{E})$, predicted flow f_{ij}^{pred}

Co-visibility graph

• *Want:* depth maps $d = (d_1, ..., d_i, ...)$, camera poses $T = (T_1, ..., T_i, ...)$

- Non-linear least squares
- Iterative algorithms like Gauss-Newton

Naïve SLAM: RAFT + DBA

Works poorly, because of outliers: visibility, dynamic objects, prediction error

Naïve SLAM: RAFT + DBA

feedback

- Works poorly, because of outliers: visibility, dynamic objects, prediction error
- How to exclude outliers? (1) Predicted Confidence Map (2) Feedback

Recurrent Updates + Analytical Layer

DBA Layer: how to update depth and poses to make induced flow better?

Recurrent Updates + Analytical Layer

Recurrent Updates + Analytical Layer

DROID-SLAM: Full System

- Frontend: feature extraction, local bundle adjustment
- **Backend**: global bundle adjustment
- Building covisibility graph: thresholding inter-frame flow magnitude
- Real time on 2 3090 GPUs (with custom GPU kernels)
- Trained only on monocular input

Global BA

DROID-SLAM: extension to stereo and RGB-D

• Stereo: double the frames in graph, fixing relative poses between left & right frames

Co-visibility graph for stereo

DROID-SLAM: extension to stereo and RGB-D

- Stereo: double the frames in graph, fixing relative poses between left & right frames
- RGB-D: still estimate depth, but use sensor depth as a prior in DBA layer
 - Sensor depth can have noise and missing observations

Co-visibility graph for stereo

TartanAir – SLAM Challenge [Wang et al. 2020]

- Our system trained on TartanAir (training split) with monocular input
- 66% lower error on monocular, 60% lower error on stereo, 16x faster

- Our system trained only on TartanAir
- 82% less error among methods with zero failures
- 43% less error than ORB-SLAM3 on its successful sequences

- Our system trained only on monocular TartanAir
- 71% less error than ORB-SLAM3

- Our system trained only on monocular TartanAir
- 83% lower error than DeepFactors

ETH-3D SLAM (RGB-D)

- Our system trained only on monocular TartanAir
- Ranks 1st, 35% better AUC
- Successfully track 30/32 RGB-D datasets, next best method tracks 19/32

Strong Generalization

All results, across datasets and modalities (monocular, stereo, RGB-D),

are by *a single model*, trained only once, on synthetic data.

[ORB-SLAM3, Campos et al]

DeepV2D [ICLR 2020]: Video to Depth

Recurrent unit + analytical layer (PnP)

53% less error over prior SOTA on NYU Depth

RAFT-3D [CVPR 2021]: Scene Flow

Input: RGB-D video of dynamic scene Output: per-pixel 3D motion

Recurrent unit + analytical layer (DBA w/ soft pixel grouping)

 $T \in SE(3)^{H}$

FlyingThings3D [Mayer et al. 2016]

6D Multi-Object Pose [Lipson, Teed, Deng, CVPR 2022]

Input: RGB-D + known 3D models Output: 6D object poses

Recurrent unit + analytical layer (Bidirectional PnP)

SOTA on the BOP benchmark (YCB-V, T-LESS, LINEMOD-Occluded)