Lecture 14: Self-Supervised Learning

Fei-Fei Li, Jiajun Wu, Ruohan Gao

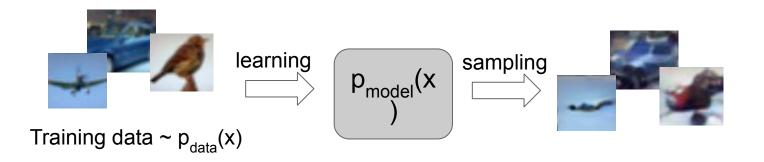
Lecture 14 - 1

Administrative

- Assignment 3 due in two weeks 5/25
- Midterm grade is out
- Regrade request:
 - Gradescope regrade only for mistakes according to the current rubric
 - Teaching team will discuss concerns in MC & T/F next Monday

Last Lecture: Generative Modeling

Given training data, generate new samples from same distribution



Objectives:

- 1. Learn $p_{model}(x)$ that approximates $p_{data}(x)$
- 2. Sampling new x from $p_{model}(x)$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 3

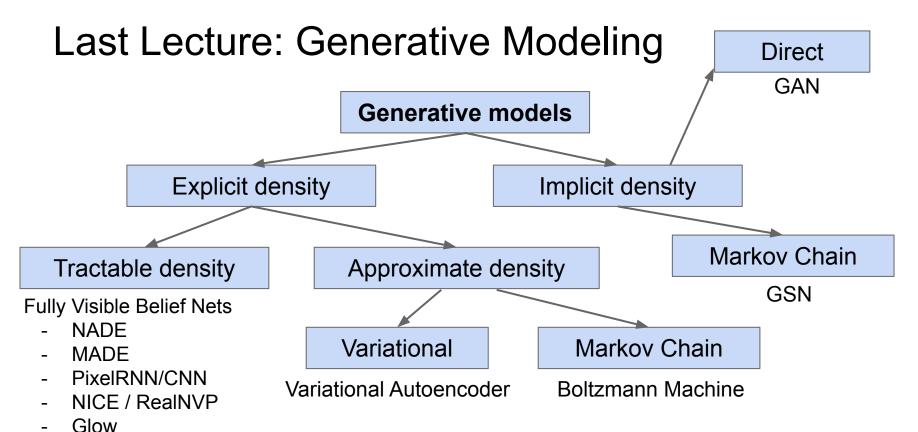


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Ffjord

Lecture 14 - 4

Generative vs. Self-supervised Learning

- Both aim to learn from data without manual label annotation.
- Generative learning aims to model **data distribution** $p_{data}(x)$, e.g., generating realistic images.
- Self-supervised learning methods solve "pretext" tasks that produce **good features** for downstream tasks.
 - Learn with supervised learning objectives, e.g., classification, regression.

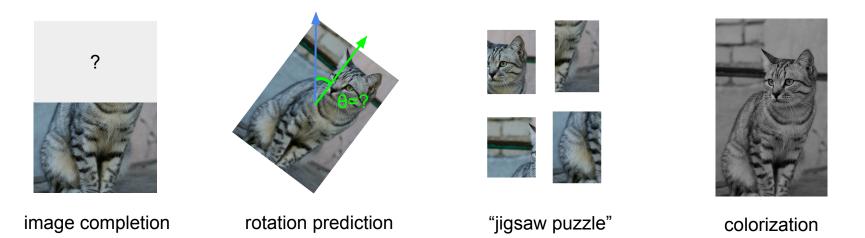
Lecture 14 - 5

May 17, 2022

• Labels of these pretext tasks are generated *automatically*

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

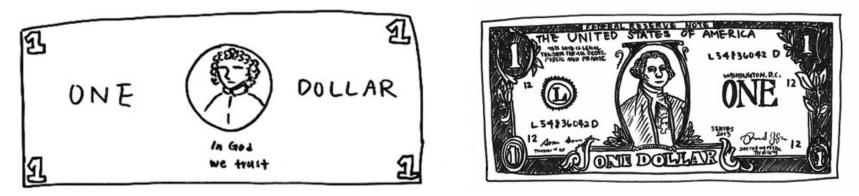


- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 6

Generative vs. Self-supervised Learning



Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein, 2016</u>

Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

Lecture 14 - 7

Source: Anand, 2020

May 17, 2022

How to evaluate a self-supervised learning method?

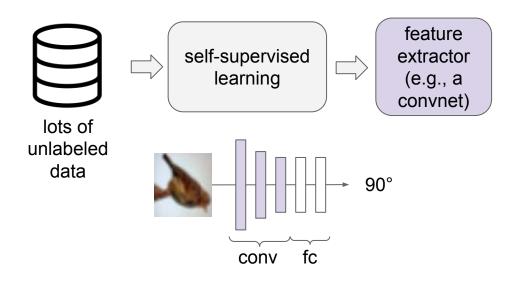
We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 8

How to evaluate a self-supervised learning method?

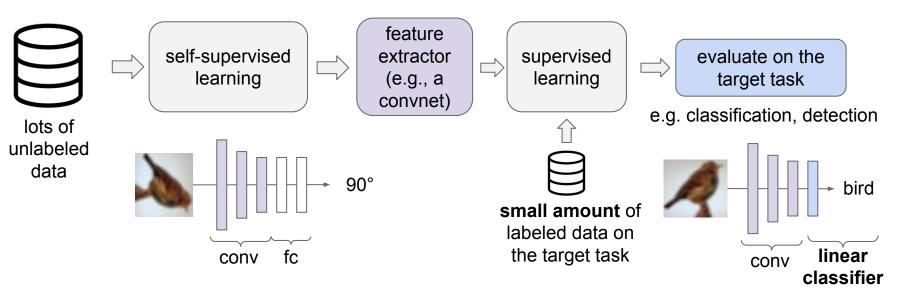


1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 9

How to evaluate a self-supervised learning method?



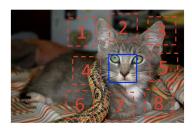
- 1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations
- 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Broader picture

computer vision



Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

Language Models are Few-Shot Learners

Tom B. Brow	vn* Benjamin	Mann* Nick I	Ryder* Me	anie Subbiah*	
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	Girish Sastry	
Amanda Askell	Sandhini Agarwal	Ariel Herbert-Voss	Gretchen Krueger	Tom Henigha	
Rewon Child	Aditya Ramesh	Daniel M. Ziegler	Jeffrey Wu	Clemens Winter	
Christopher He	sse Mark Chen	Eric Sigler	Mateusz Litwin	Scott Gray	
Benjamin Chess		Jack Clark	Christopher Berner		
Sam McCan	dlish Alec Ra	adford Ilya Su	ıtskever I	Dario Amodei	

OpenAI

Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

speech synthesis

Wavenet (van den Oord et al., 2016)

- - -

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 14 - 12

May 17, 2022

- Sequence contrastive learning: CPC

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning**
 - Intuition and formulation
 - Instance contrastive learning: SimCLR and MOCO

Lecture 14 - 13

May 17, 2022

- Sequence contrastive learning: CPC

Pretext task: predict rotations

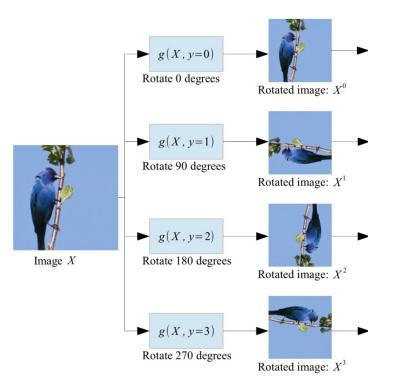
Lecture 14 - 14

Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

(Image source: Gidaris et al. 2018)

May 17, 2022

Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

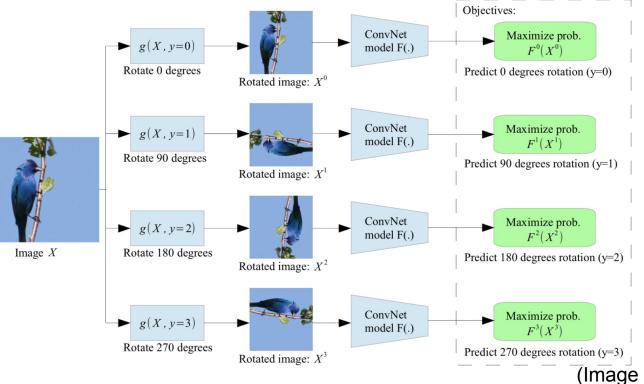
The model learns to predict which rotation is applied (4-way classification)

May 17, 2022

(Image source: Gidaris et al. 2018)

Lecture 14 - 15

Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

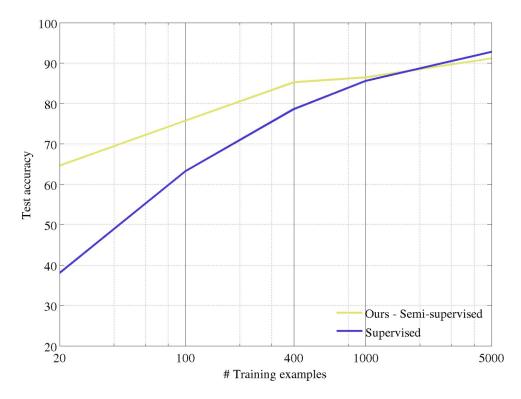
The model learns to predict which rotation is applied (4-way classification)

May 17, 2022

(Image source: Gidaris et al. 2018)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Evaluation on semi-supervised learning



Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

(Image source: Gidaris et al. 2018)

May 17, 2022

Lecture 14 - 17

Transfer learned features to supervised learning

		ication AP)	Detection (%mAP)	Segmentation (%mIoU)	_
Trained layers	fc6-8	all	all	all	Pretrained with
ImageNet labels	78.9	79.9	56.8	48.0	ImageNet super
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	 No pretraining
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b) Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015) Colorization (Zhang et al., 2016a) BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016) NAT (Bojanowski & Joulin, 2017)	31.0 34.6 55.6 55.1 61.5 52.3 - 56.7	54.2 56.5 63.1 65.3 65.6 60.1 67.6 65.3	43.9 44.5 47.4 51.1 46.9 46.9 53.2 49.4	29.7 35.6 34.9 37.6	Self-supervis ImageNet (e set) with Ale
Split-Brain (Zhang et al., 2016b) ColorProxy (Larsson et al., 2017) Counting (Noroozi et al., 2017) (Ours) RotNet	63.0 - 70.87	67.1 65.9 67.7 72.97	46.7 51.4 54.4	36.0 38.4 36.6 39.1	Finetune on from Pascal

retrained with full nageNet supervision

Self-supervised learning on mageNet (entire training) set) with AlexNet.

Finetune on labeled data rom Pascal VOC 2007.

Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Visualize learned visual attentions

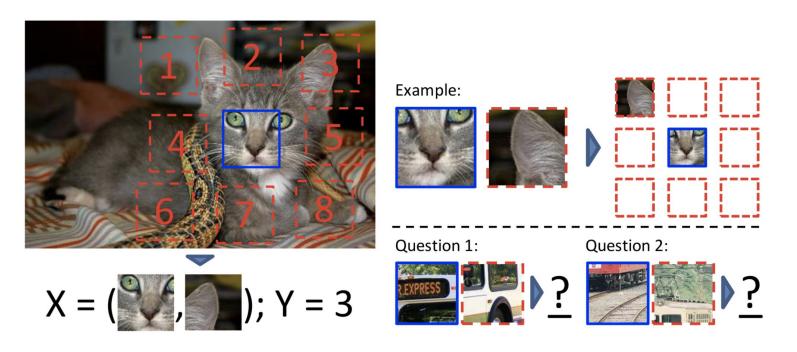
(a) Attention maps of supervised model

Fei-Fei Li, Jiajun Wu, Ruohan Gao

(b) Attention maps of our self-supervised model (Image source: <u>Gidaris et al. 2018</u>)

Lecture 14 - 19

Pretext task: predict relative patch locations

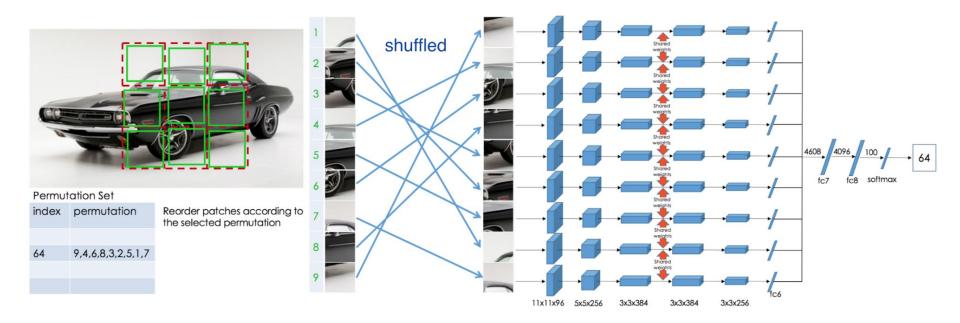


(Image source: Doersch et al., 2015)

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Pretext task: solving "jigsaw puzzles"



(Image source: Noroozi & Favaro, 2016)

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

Method	Pretraining time	Supervision	Classification	Detection	Segmentation
Krizhevsky <i>et al.</i> [25]	$3 \mathrm{~days}$	1000 class labels	78.2%	56.8%	48.0%
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	$\operatorname{context}$	55.3%	46.6%	-
Pathak et al. [30]	14 hours	$\operatorname{context}$	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{~days}$	$\operatorname{context}$	67.6%	$\mathbf{53.2\%}$	37.6%

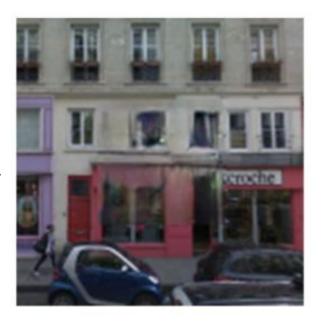
"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

May 17, 2022

Lecture 14 - 22

Pretext task: predict missing pixels (inpainting)



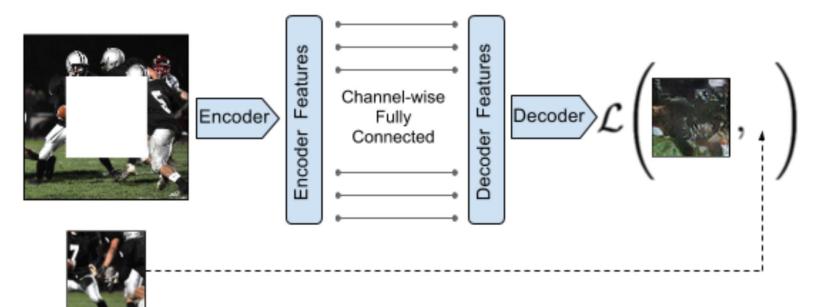
Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al., 2016

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Learning to inpaint by reconstruction



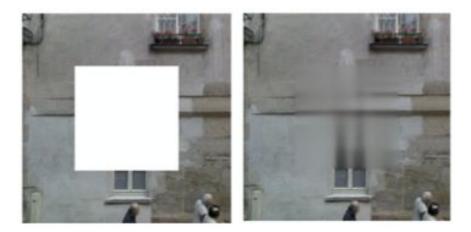
Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Inpainting evaluation



Input (context) reconstruction

Source: Pathak et al., 2016

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= ||M*(x-F_{ heta}((1-M)*x))||_2^2 \ L_{adv} &= \max_D \mathbb{E}[\log(D(x))] + \log(1-D(F(((1-M)*x)))] \end{aligned}$$

Lecture 14 - 26

Adversarial loss between "real" images and inpainted images

Source: Pathak et al., 2016

May 17, 2022

Inpainting evaluation

Input (context)

reconstruction

adversarial

recon + adv

Source: Pathak et al., 2016

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal <i>et al</i> . [1]	egomotion	10 hours	52.9%	41.8%	-
Wang <i>et al</i> . [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

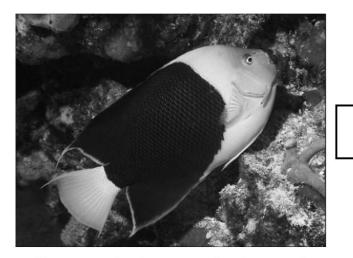
Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

Source: Pathak et al., 2016

May 17, 2022

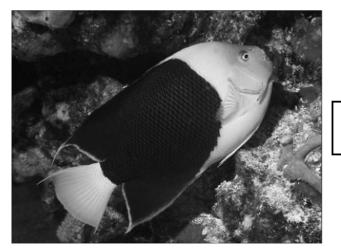
Fei-Fei Li, Jiajun Wu, Ruohan Gao

Pretext task: image coloring

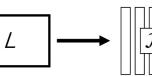


Grayscale image: L channelColor information: ab channels $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$ $\mathcal{L} \longrightarrow \mathbb{F}$ $\mathbf{J} \longrightarrow \mathbb{R}^{d}$ Source: Richard Žhang / Phillip IsolaFei-Fei Li, Jiajun Wu, Ruohan GaoLecture 14 - 29

Pretext task: image coloring



Grayscale image: L channel $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$



Concatenate (*L*,*ab*) channels $(\mathbf{X}, \widehat{\mathbf{Y}})$

ab

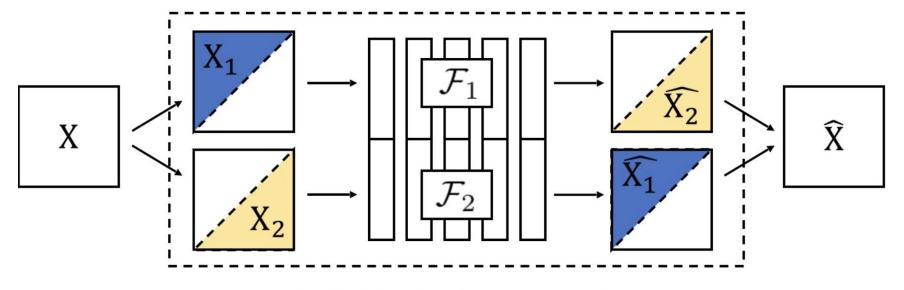
Lecture 14 - 30

Source: Richard Zhang / Phillip Isola

May 17, 2022

Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions



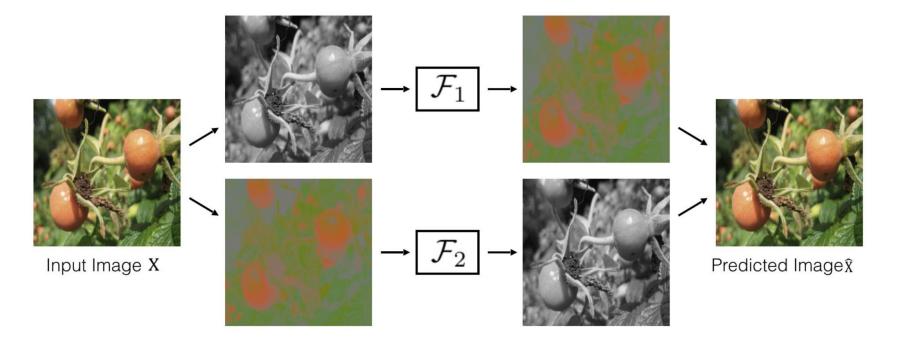
Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Learning features from colorization: Split-brain Autoencoder

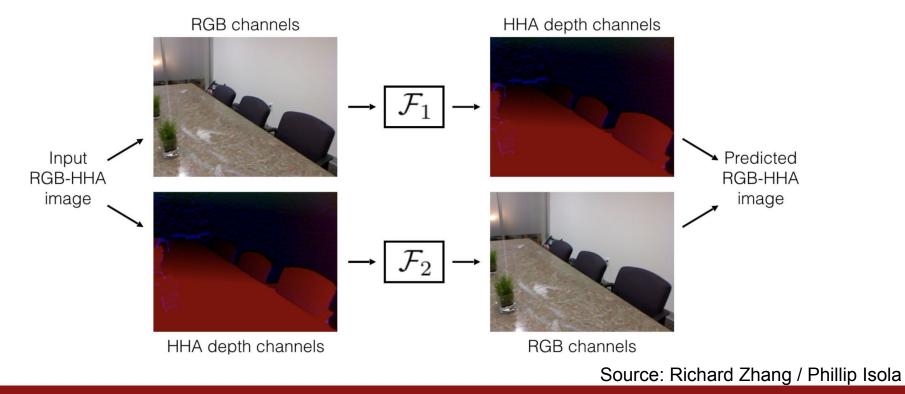


Source: Richard Zhang / Phillip Isola

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

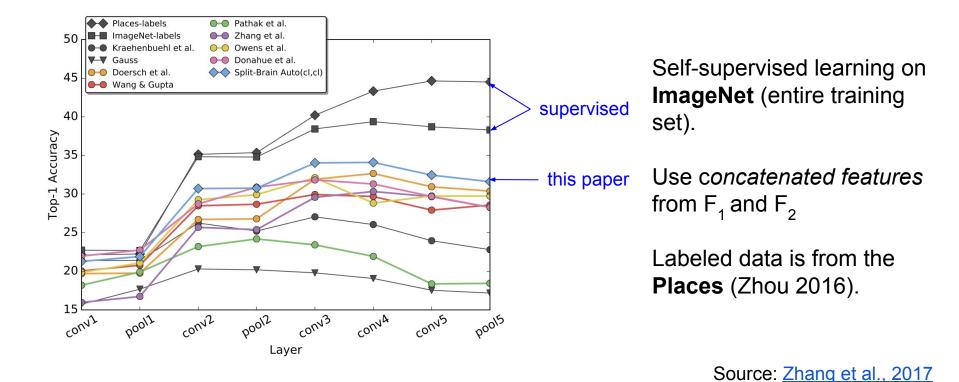
Learning features from colorization: Split-brain Autoencoder



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 33

Transfer learned features to supervised learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 34

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Pretext task: image coloring

Source: Richard Zhang / Phillip Isola

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

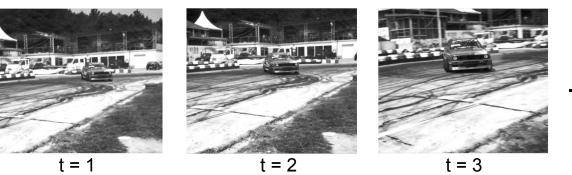
Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos

reference frame

how should I color these frames?

t = 0



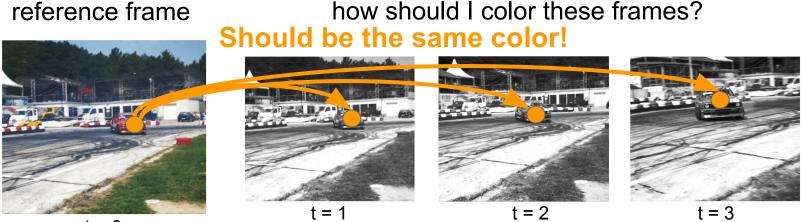
Source: Vondrick et al., 2018

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos



t = 0

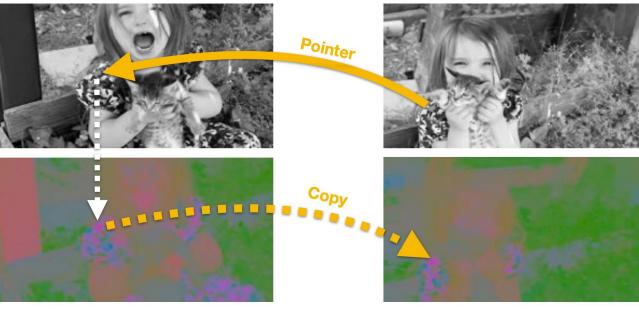
Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

Source: Vondrick et al., 2018

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Reference Frame



Input Frame

Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).

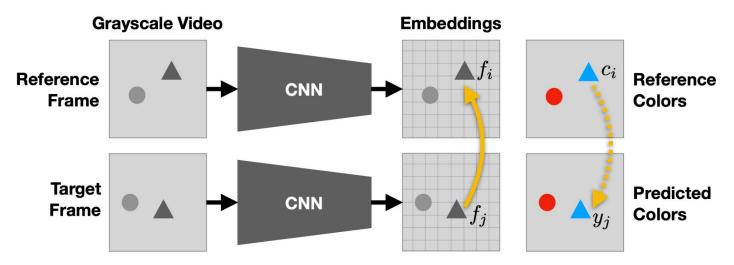
Reference Colors

Target Colors

Source: Vondrick et al., 2018

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao



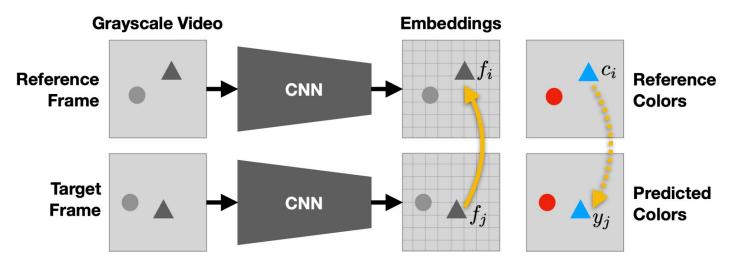
Lecture 14 - 40

attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

Source: Vondrick et al., 2018

May 17, 2022



attention map on the reference frame

predicted color = weighted sum of the reference color

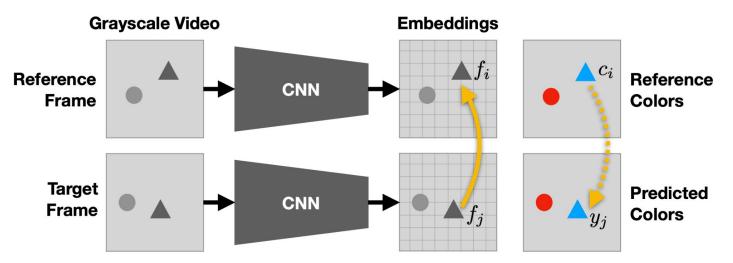
$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

Lecture 14 - 41

Source: Vondrick et al., 2018

May 17, 2022



attention map on the reference frame

 A_{ij}

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{\theta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}\right)$$
Source: Vondrick et al. 20

Fei-Fei Li, Jiajun Wu, Ruohan Gao

 $\frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_i\right)}$

Lecture 14 - 42

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google AI blog post

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Colorizing videos (qualitative)

reference frame

target frames (gray)

predicted color

Source: Google AI blog post

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Tracking emerges from colorization Propagate segmentation masks using learned attention

Source: Google AI blog post

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Tracking emerges from colorization Propagate pose keypoints using learned attention

Source: Google Al blog post

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Lecture 14 - 47

May 17, 2022

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Lecture 14 - 48

May 17, 2022

Pretext tasks from image transformations



image completion

rotation prediction

"jigsaw puzzle"

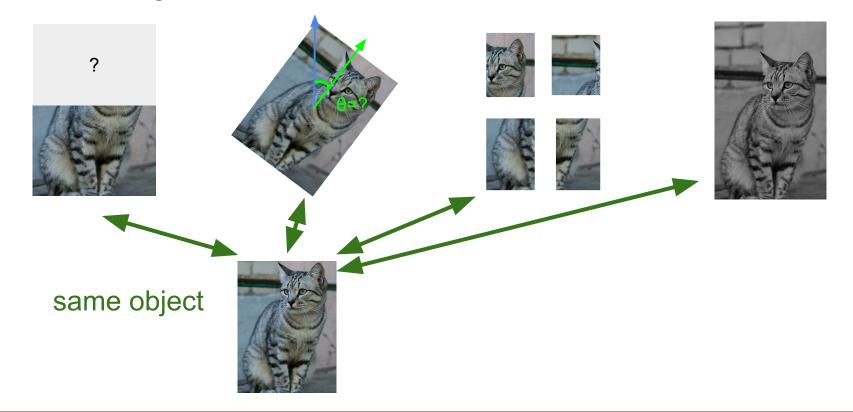
colorization

May 17, 2022

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

Fei-Fei Li, Jiajun Wu, Ruohan Gao

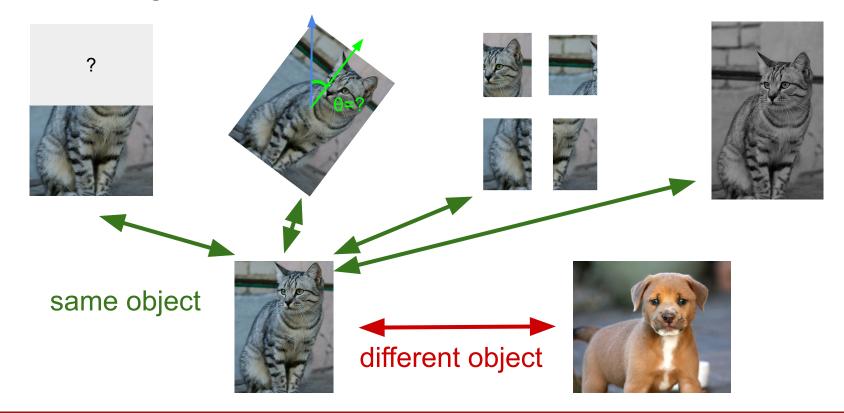
A more general pretext task?



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 50

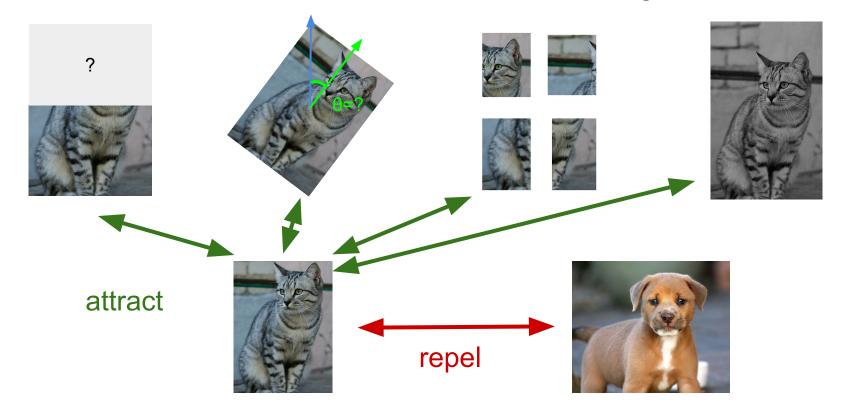
A more general pretext task?



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 51

Contrastive Representation Learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 52

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

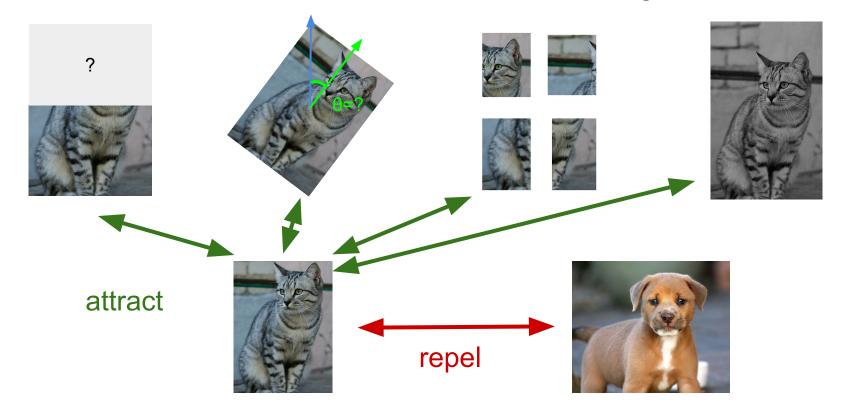
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 14 - 53

May 17, 2022

- Sequence contrastive learning: CPC

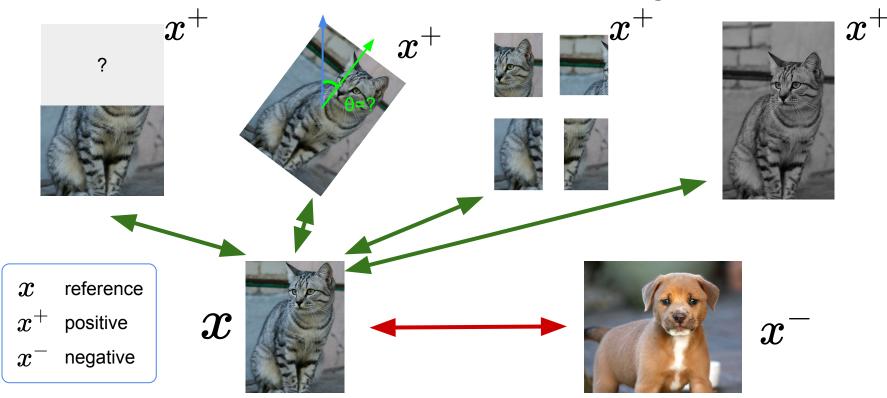
Contrastive Representation Learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 54

Contrastive Representation Learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 55 M

What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an **encoder** function *f* that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x).

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 56

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 57

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
$$\underset{x \quad x^+}{\overset{x \quad x^+}} \qquad \overbrace{x}^{N-1} \exp(s(f(x), f(x_j^-))) = x_1^{N-1}$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 58

May 17, 2022

. . .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive pair
This score for the N-1 negative pairs

Lecture 14 - 59

May 17, 2022

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

This seems familiar ...

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

Lecture 14 - 60

May 17, 2022

A formulation of contrastive learning
Loss function given 1 positive sample and N - 1 negative samples:
$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

Lecture 14 - 61

The larger the negative sample size (*N*), the tighter the bound

Detailed derivation: Poole et al., 2019

May 17, 2022

SimCLR: A Simple Framework for Contrastive Learning

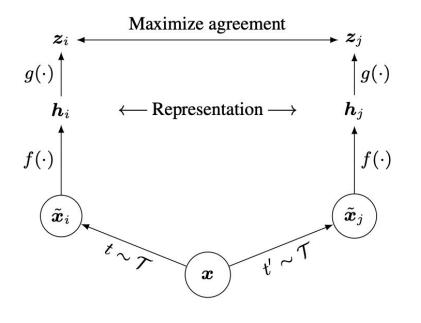
Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network $g(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

• random cropping, random color distortion, and random blur.

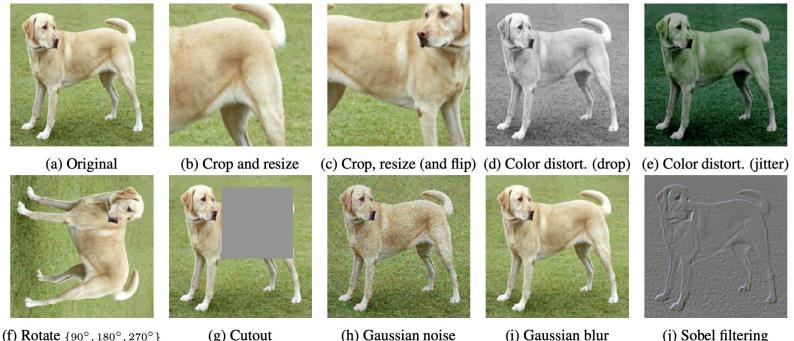


Source: Chen et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

SimCLR: generating positive samples from data augmentation



(j) Sobel filtering Source: <u>Chen et al., 2020</u>

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 63

Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{\lfloor k \neq i \rfloor} \exp(s_{i, k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 64

Source: <u>Chen et al., 2020</u> May 17, 2022

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive define $\ell(i, j)$ as $\left| \ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i, k}/\tau)} \right|$ samples in the $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x^{-} update networks f and q to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

<u>Fei-Fei Li, Jiajun Wu, Ruo</u>han Gao

Lecture 14 - 65

May 17, 2022

*We use a slightly different

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . You should follow the for sampled minibatch $\{x_k\}_{k=1}^N$ do assignment instructions. for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do InfoNCE loss: $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for Use all non-positive Iterate through and define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the use each of the 2N $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as x^{-} sample as reference, update networks f and q to minimize \mathcal{L} compute average loss end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$ Source: Chen et al., 2020

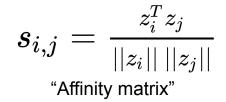
Fei-Fei Li, Jiajun Wu, Ruohan Gao

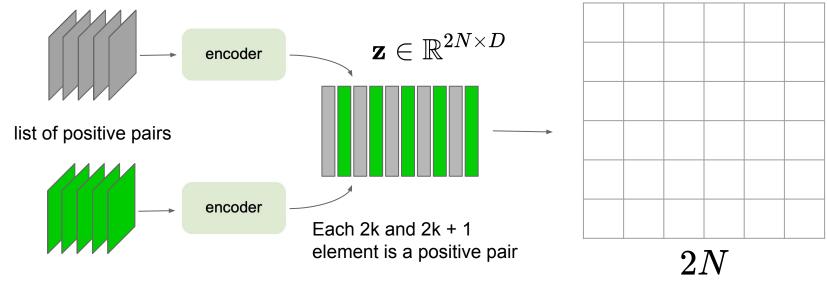
Lecture 14 - 66

May 17, 2022

*We use a slightly different

SimCLR: mini-batch training





*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

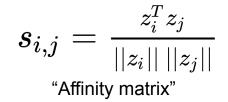
Fei-Fei Li, Jiajun Wu, Ruohan Gao

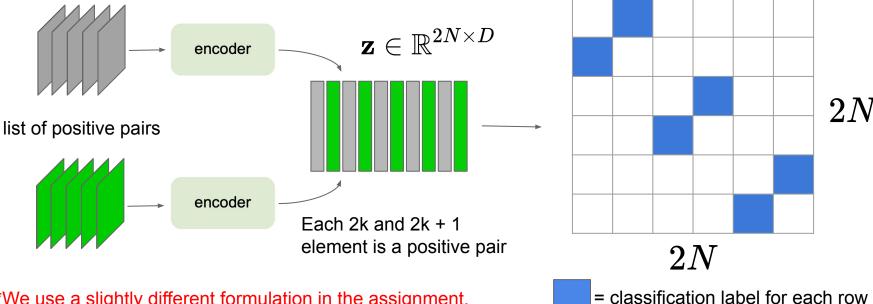
Lecture 14 - 67

May 17, 2022

2N

SimCLR: mini-batch training



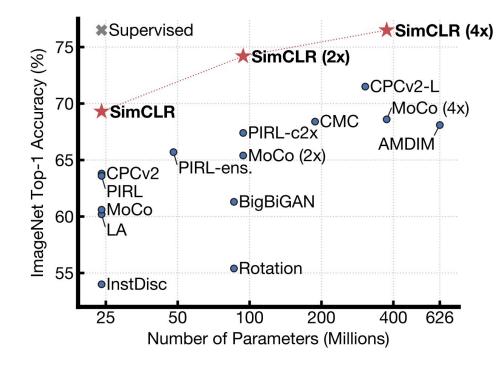


*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 68

Training linear classifier on SimCLR features



Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Lecture 14 - 69

Source: Chen et al., 2020

May 17, 2022

Semi-supervised learning on SimCLR features

Method	Architecture	Label fraction	
		1%	10%
		Top 5	
Supervised baseline	ResNet-50	48.4	80.4
Methods using other label-propagation:			
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	-	88.5
FixMatch (w. RandAug)	ResNet-50	-	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2
Methods using representation learning only:			
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 $(4 \times)$	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 (2 \times)	83.0	91.2
SimCLR (ours)	ResNet-50 $(4 \times)$	85.8	92.6

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

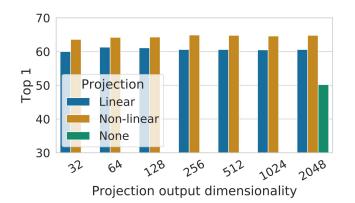
Lecture 14 - 70

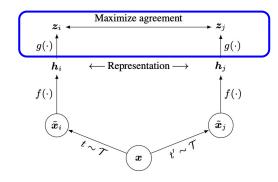
Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al., 2020

May 17, 2022

SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

A possible explanation:

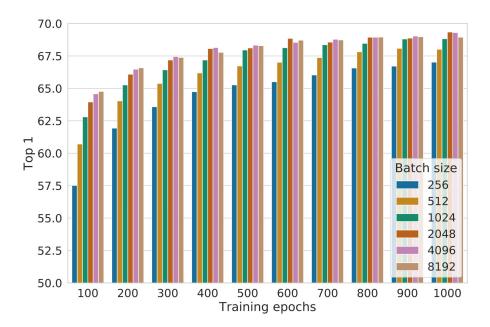
- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

Source: Chen et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

SimCLR design choices: large batch size



Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

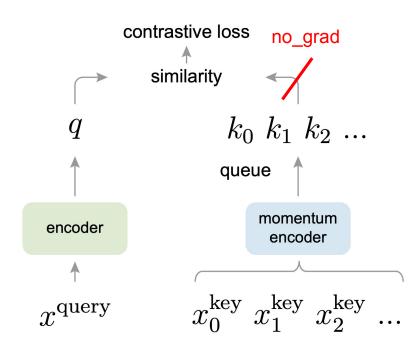
Lecture 14 - 72

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Source: Chen et al., 2020

May 17, 2022

Momentum Contrastive Learning (MoCo)



Key differences to SimCLR:

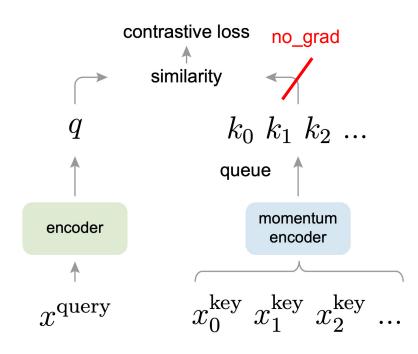
- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Momentum Contrastive Learning (MoCo)



Key differences to SimCLR:

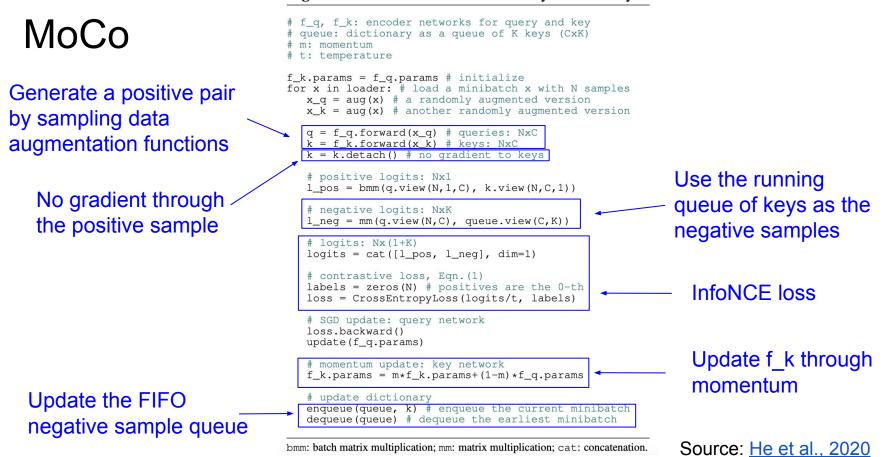
- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

$$\theta_{\mathbf{k}} \leftarrow m \theta_{\mathbf{k}} + (1-m) \theta_{\mathbf{q}}$$

Source: He et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao



Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 75

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

Lecture 14 - 76

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020

May 17, 2022

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	aug+	cos	epochs	acc.	AP ₅₀	AP	AP ₇₅
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	\checkmark			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	\checkmark	\checkmark		200	67.3	82.5	57.2	63.9
(d)	\checkmark	\checkmark	\checkmark	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

Source: Chen et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train					ImageNet
case	MLP	aug+	cos	epochs	batch	acc.
MoCo v1 [6]				200	256	60.6
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	256	61.9
SimCLR [2]	\checkmark	\checkmark	\checkmark	200	8192	66.6
MoCo v2	\checkmark	\checkmark	\checkmark	200	256	67.5
results of longer unsupervised training follow:						
SimCLR [2]	\checkmark	\checkmark	\checkmark	1000	4096	69.3
MoCo v2	\checkmark	\checkmark	\checkmark	800	256	71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** \times **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

Source: Chen et al., 2020

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

MoCo vs. SimCLR vs. MoCo V2

mechanism	batch	memory / GPU	time / 200-ep.
MoCo	256	5.0G	53 hrs
end-to-end	256	7.4G	65 hrs
end-to-end	4096	93.0G [†]	n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch. † : based on our estimation.

Key takeaways:

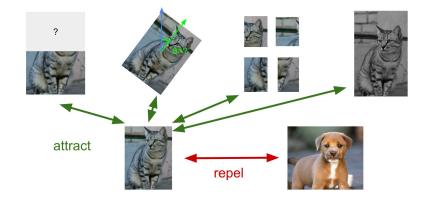
Lecture 14 - 79

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Source: Chen et al., 2020

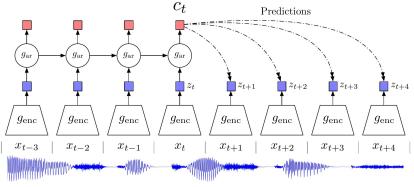
May 17, 2022

Instance vs. Sequence Contrastive Learning



Instance-level contrastive learning:

contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo



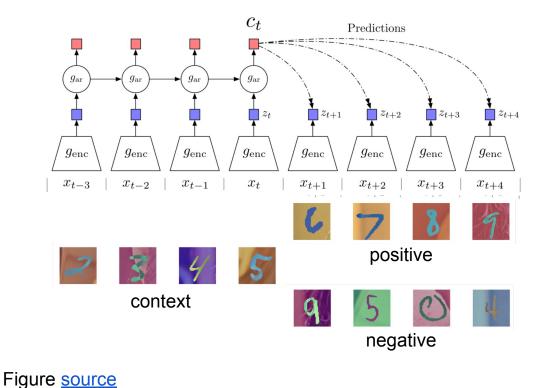
Source: van den Oord et al., 2018

Sequence-level contrastive learning:

contrastive learning based on sequential / temporal orders. Example: Contrastive Predictive Coding (CPC)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 80



Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

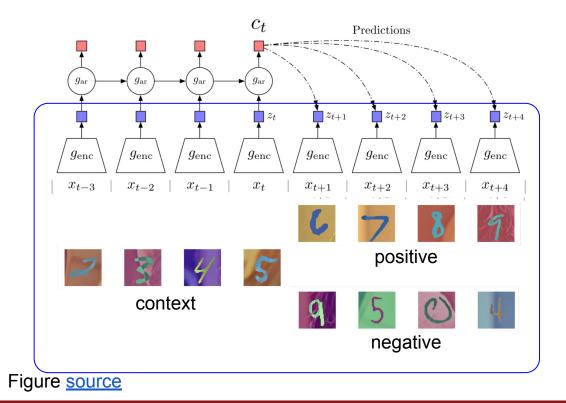
Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Lecture 14 - 81

Source: van den Oord et al., 2018,

May 17, 2022

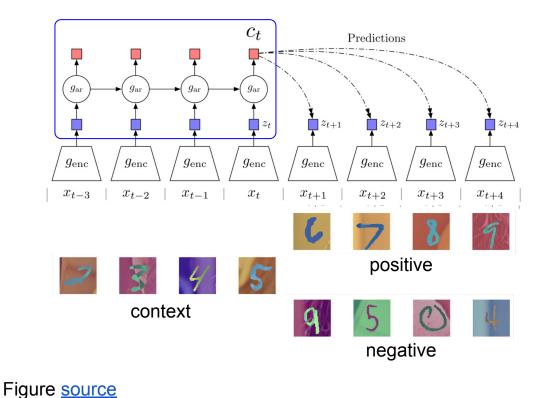


1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: van den Oord et al., 2018,

May 17, 2022

Lecture 14 - 82



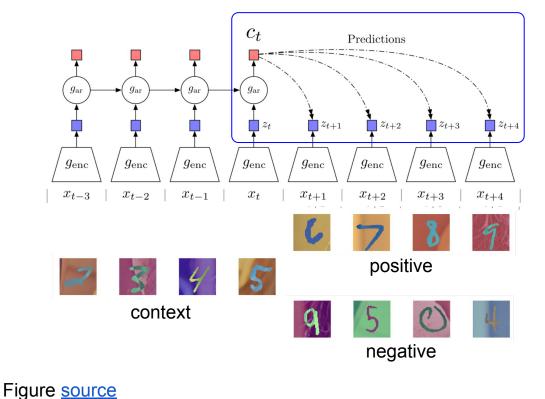
1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}) . The original paper uses GRU-RNN here.

Lecture 14 - 83

Source: van den Oord et al., 2018,

May 17, 2022



1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})

3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$

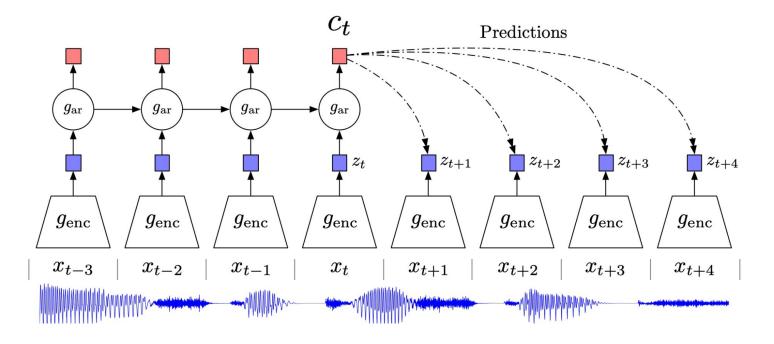
, where W_k is a trainable matrix.

Source: van den Oord et al., 2018,

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC example: modeling audio sequences



Source: van den Oord et al., 2018,

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC example: modeling audio sequences

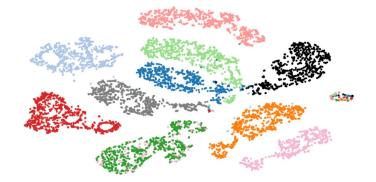


Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset)

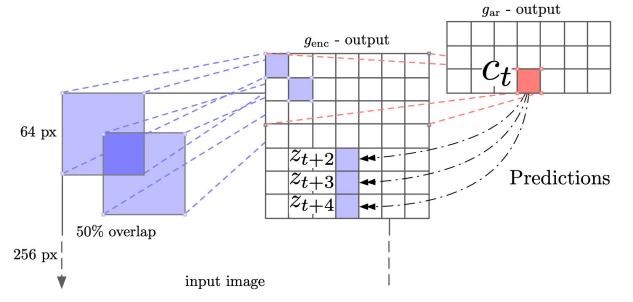
Source: van den Oord et al., 2018,

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.



Source: van den Oord et al., 2018,

May 17, 2022

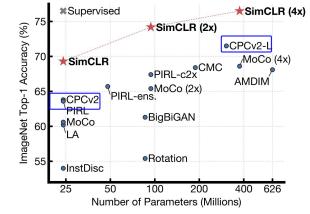
Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext task-based self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.



Source: van den Oord et al., 2018,

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+))>>\operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples $L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and $f(x^+)$

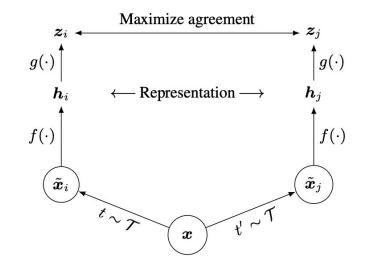
$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 89

SimCLR: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint

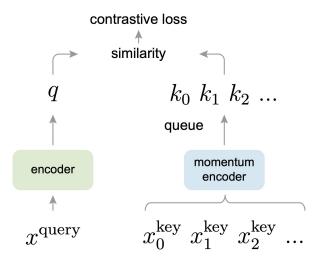


May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning

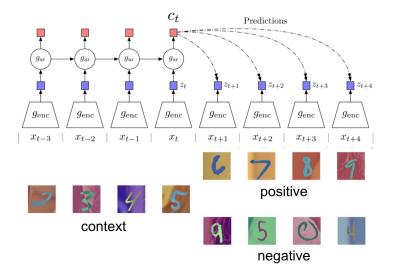


May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.



May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Contrastive learning between image and natural language sentences

plane car pepper the Text aussie pup a photo of Text Encoder dog a {object}. Encoder bird I₁ $I_1 \cdot T_1 \quad I_1 \cdot T_2$ I1.TN 3. Use for zero-shot prediction I_2 $I_2 \cdot T_1 \quad I_2 \cdot T_2$ T₁ Τ, Image I_3 Encoder Image $I_1 \cdot T_1 \quad I_1 \cdot T_2 \quad I_1 \cdot T_3$ $I_1 \cdot T_N$ Encoder : I_N INTN $I_N \cdot T_1 \quad I_N \cdot T_2 \quad I_N \cdot T_3$ a photo of a dog.

2. Create dataset classifier from label text

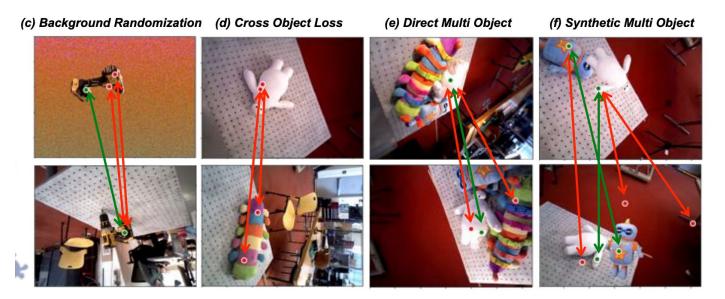
Lecture 14 - 93

May 17, 2022

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

1. Contrastive pre-training

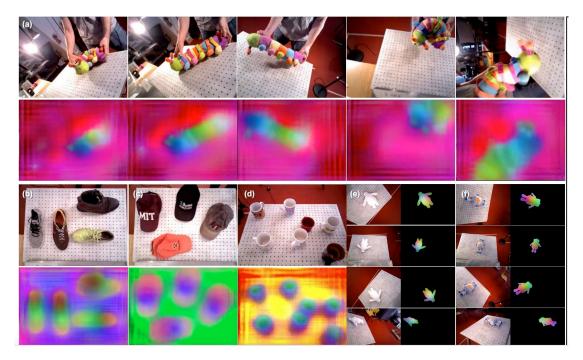
Contrastive learning on pixel-wise feature descriptors



Dense Object Net, Florence et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao

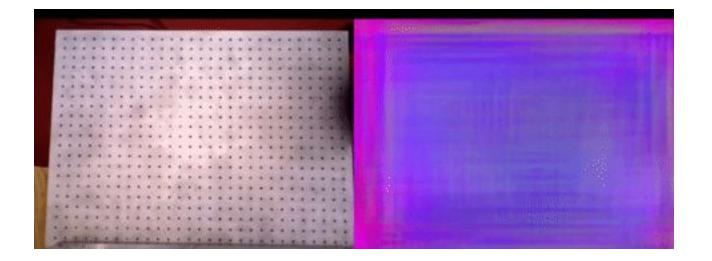
Lecture 14 - 94



Dense Object Net, Florence et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 95



Dense Object Net, Florence et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 96

Next time: Low-Level Vision

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 97

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning**
 - Intuition and formulation
 - Instance contrastive learning: SimCLR and MOCO
 - Sequence contrastive learning: CPC

Frontier:

- Contrastive Language Image Pre-training (CLIP)

Lecture 14 - 98

May 17, 2022

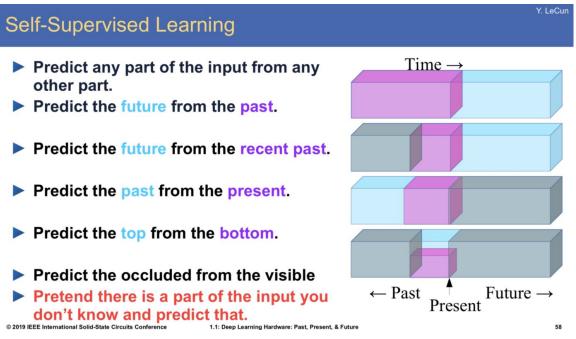
Frontier: Contrastive Language–Image Pre-training (CLIP)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 99

Self-Supervised Learning

General idea: pretend there is a part of the data you don't know and train the neural network to predict that.



Lecture 14 - 100

May 17, 2022

Source: Lecun 2019 Keynote at ISSCC

"The Cake of Learning"

How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once ir a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data

> 10 \rightarrow 10,000 bits per sample

Learn good features through self-supervision

downstream tasks

feature

extractor

- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
 2019 IEEE International Solid-State Circuits Conference

1.1: Deep Learning Hardware: Past, Present, & Future

Lecture 14 - 101

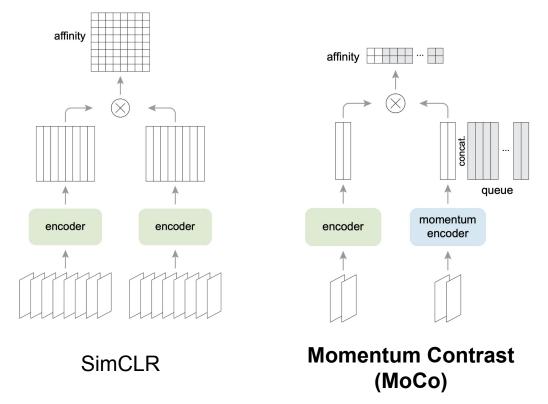
59

May 17, 2022

Y. LeCun

Source: Lecun 2019 Keynote at ISSCC

Can we do better?



Source: Chen et al., 2020b

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao