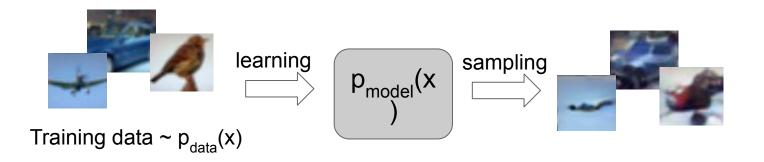
# Lecture 14: Self-Supervised Learning

Fei-Fei Li, Jiajun Wu, Ruohan Gao


Lecture 14 - 1

### Administrative

- Assignment 3 due in two weeks 5/25
- Midterm grade is out
- Regrade request:
  - Gradescope regrade only for mistakes according to the current rubric
  - Teaching team will discuss concerns in MC & T/F next Monday

### Last Lecture: Generative Modeling

Given training data, generate new samples from same distribution



Objectives:

- 1. Learn  $p_{model}(x)$  that approximates  $p_{data}(x)$
- 2. Sampling new x from  $p_{model}(x)$

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 3

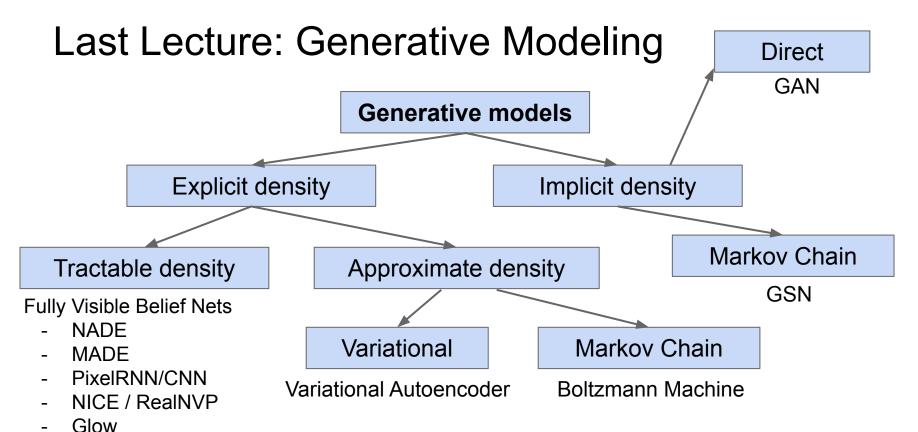



Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

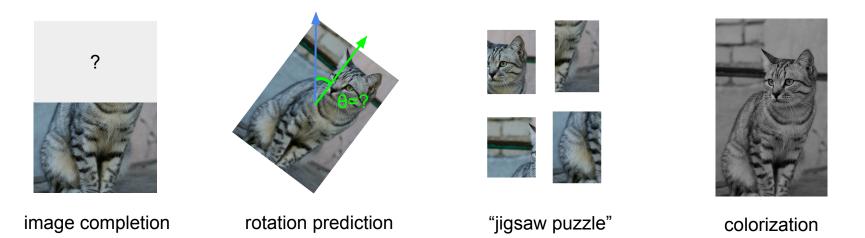
### Fei-Fei Li, Jiajun Wu, Ruohan Gao

Ffjord

### Lecture 14 - 4

## Generative vs. Self-supervised Learning

- Both aim to learn from data without manual label annotation.
- Generative learning aims to model **data distribution**  $p_{data}(x)$ , e.g., generating realistic images.
- Self-supervised learning methods solve "pretext" tasks that produce **good features** for downstream tasks.
  - Learn with supervised learning objectives, e.g., classification, regression.

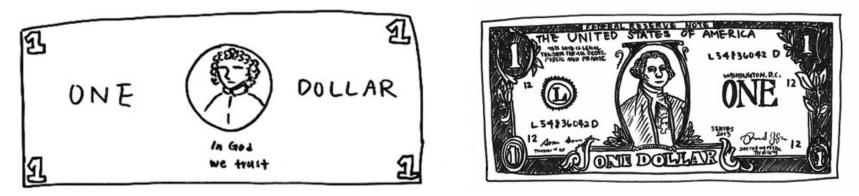

Lecture 14 - 5

May 17, 2022

• Labels of these pretext tasks are generated *automatically* 

### Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images




- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Lecture 14 - 6

### Generative vs. Self-supervised Learning



Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a dollar bill present. Image source: <u>Epstein, 2016</u>

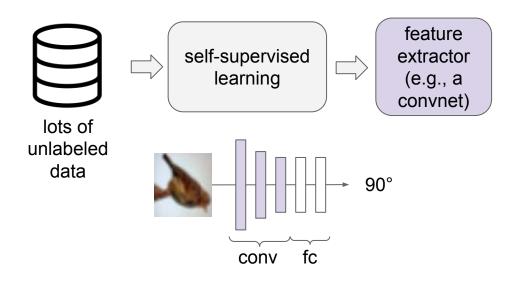
Learning to generate pixel-level details is often unnecessary; learn high-level semantic features with pretext tasks instead

Lecture 14 - 7

Source: Anand, 2020

May 17, 2022

### How to evaluate a self-supervised learning method?

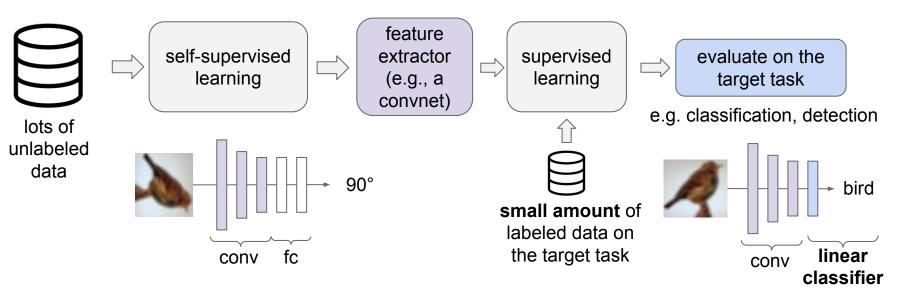

We usually don't care about the performance of the self-supervised learning task, e.g., we don't care if the model learns to predict image rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 8

### How to evaluate a self-supervised learning method?



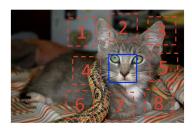

1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 9

### How to evaluate a self-supervised learning method?




- 1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations
- 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

May 17, 2022

### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Broader picture

#### computer vision



Doersch et al., 2015

#### robot / reinforcement learning



Dense Object Net (Florence and Manuelli et al., 2018)

#### language modeling

#### Language Models are Few-Shot Learners

| Tom B. Brow               | vn* Benjamin      | Mann* Nick I       | Ryder* Me          | anie Subbiah*  |  |
|---------------------------|-------------------|--------------------|--------------------|----------------|--|
| Jared Kaplan <sup>†</sup> | Prafulla Dhariwal | Arvind Neelakantan | Pranav Shyam       | Girish Sastry  |  |
| Amanda Askell             | Sandhini Agarwal  | Ariel Herbert-Voss | Gretchen Krueger   | Tom Henigha    |  |
| Rewon Child               | Aditya Ramesh     | Daniel M. Ziegler  | Jeffrey Wu         | Clemens Winter |  |
| Christopher He            | sse Mark Chen     | Eric Sigler        | Mateusz Litwin     | Scott Gray     |  |
| Benjamin Chess            |                   | Jack Clark         | Christopher Berner |                |  |
| Sam McCan                 | dlish Alec Ra     | adford Ilya Su     | ıtskever I         | Dario Amodei   |  |
|                           |                   |                    |                    |                |  |

OpenAI

#### Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder, Subbiah et al., 2020)

#### speech synthesis



### Wavenet (van den Oord et al., 2016)

- - -

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

## Today's Agenda

### Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

### **Contrastive representation learning**

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 14 - 12

May 17, 2022

- Sequence contrastive learning: CPC

## Today's Agenda

### Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning** 
  - Intuition and formulation
  - Instance contrastive learning: SimCLR and MOCO

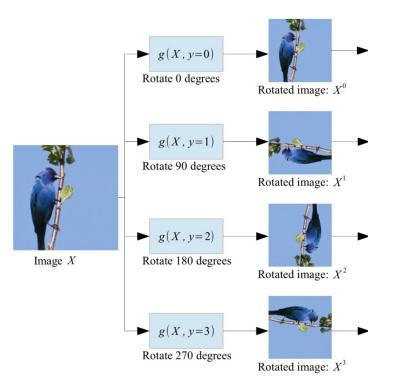
Lecture 14 - 13

May 17, 2022

- Sequence contrastive learning: CPC

### Pretext task: predict rotations




Lecture 14 - 14

**Hypothesis**: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

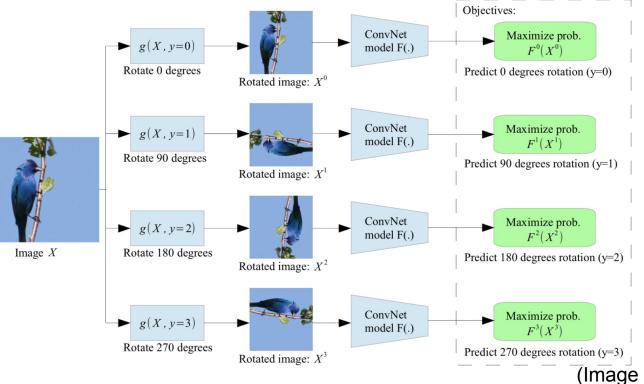
(Image source: Gidaris et al. 2018)

May 17, 2022

### Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.


The model learns to predict which rotation is applied (4-way classification)

May 17, 2022

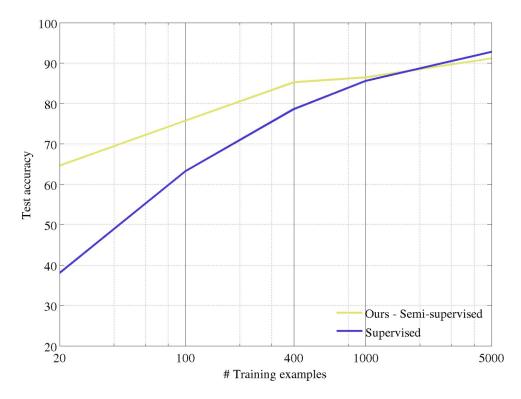
(Image source: Gidaris et al. 2018)

Lecture 14 - 15

### Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.


The model learns to predict which rotation is applied (4-way classification)

May 17, 2022

(Image source: Gidaris et al. 2018)

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Evaluation on semi-supervised learning



Self-supervised learning on **CIFAR10** (entire training set).

Freeze conv1 + conv2 Learn **conv3 + linear** layers with subset of labeled CIFAR10 data (classification).

(Image source: Gidaris et al. 2018)

May 17, 2022

Lecture 14 - 17

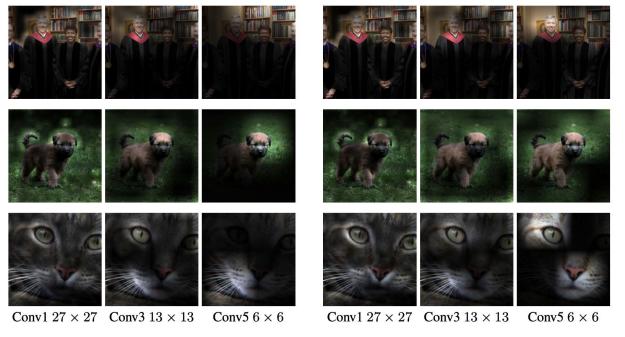
### Transfer learned features to supervised learning

|                                                                                                                                                                                                                                                                                                    |                                                           | ication<br>AP)                                               | Detection<br>(%mAP)                                          | Segmentation<br>(%mIoU)             | _                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|-----------------------------------------------|
| Trained layers                                                                                                                                                                                                                                                                                     | fc6-8                                                     | all                                                          | all                                                          | all                                 | Pretrained with                               |
| ImageNet labels                                                                                                                                                                                                                                                                                    | 78.9                                                      | 79.9                                                         | 56.8                                                         | 48.0                                | ImageNet super                                |
| Random<br>Random rescaled Krähenbühl et al. (2015)                                                                                                                                                                                                                                                 | 39.2                                                      | 53.3<br>56.6                                                 | 43.4<br>45.6                                                 | 19.8<br>32.6                        | <ul> <li>No pretraining</li> </ul>            |
| Egomotion (Agrawal et al., 2015)<br>Context Encoders (Pathak et al., 2016b)<br>Tracking (Wang & Gupta, 2015)<br>Context (Doersch et al., 2015)<br>Colorization (Zhang et al., 2016a)<br>BIGAN (Donahue et al., 2016)<br>Jigsaw Puzzles (Noroozi & Favaro, 2016)<br>NAT (Bojanowski & Joulin, 2017) | 31.0<br>34.6<br>55.6<br>55.1<br>61.5<br>52.3<br>-<br>56.7 | 54.2<br>56.5<br>63.1<br>65.3<br>65.6<br>60.1<br>67.6<br>65.3 | 43.9<br>44.5<br>47.4<br>51.1<br>46.9<br>46.9<br>53.2<br>49.4 | 29.7<br>35.6<br>34.9<br>37.6        | Self-supervis<br>ImageNet (e<br>set) with Ale |
| Split-Brain (Zhang et al., 2016b)<br>ColorProxy (Larsson et al., 2017)<br>Counting (Noroozi et al., 2017)<br>(Ours) RotNet                                                                                                                                                                         | 63.0<br>-<br>70.87                                        | 67.1<br>65.9<br>67.7<br><b>72.97</b>                         | 46.7<br>51.4<br><b>54.4</b>                                  | 36.0<br>38.4<br>36.6<br><b>39.1</b> | Finetune on from <b>Pascal</b>                |

retrained with full nageNet supervision

Self-supervised learning on mageNet (entire training) set) with AlexNet.

Finetune on labeled data rom Pascal VOC 2007.


Self-supervised learning with rotation prediction

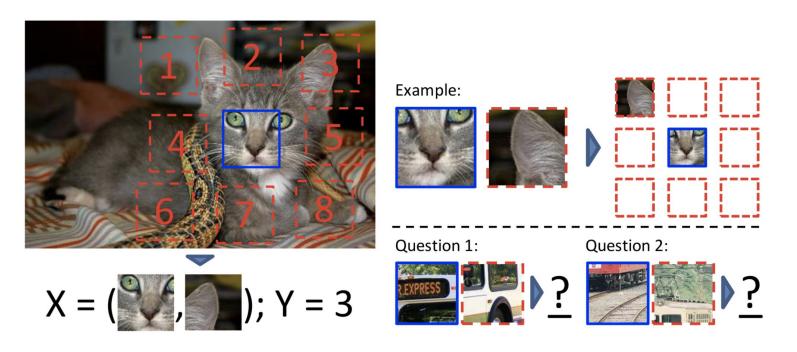
source: Gidaris et al. 2018

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Visualize learned visual attentions



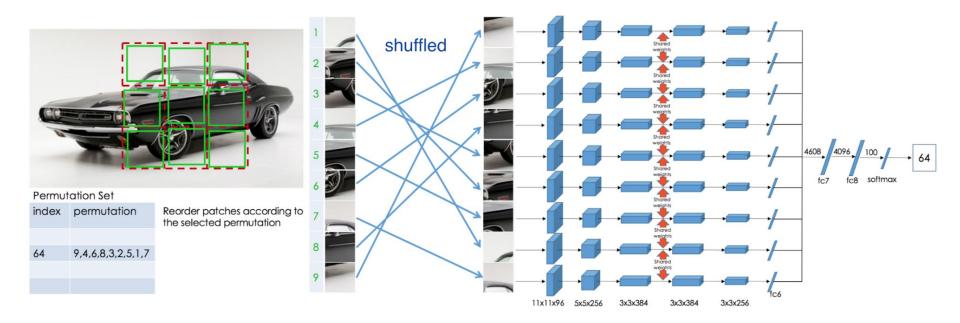

(a) Attention maps of supervised model

Fei-Fei Li, Jiajun Wu, Ruohan Gao

(b) Attention maps of our self-supervised model (Image source: <u>Gidaris et al. 2018</u>)

### Lecture 14 - 19

### Pretext task: predict relative patch locations




(Image source: Doersch et al., 2015)

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Pretext task: solving "jigsaw puzzles"



(Image source: Noroozi & Favaro, 2016)

May 17, 2022

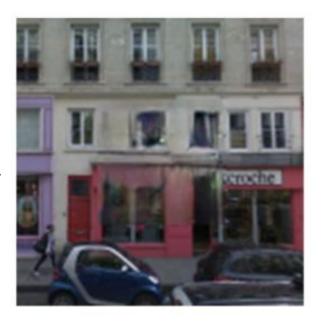
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak *et al.* [30].

| Method                        | Pretraining time     | Supervision              | Classification | Detection         | Segmentation |
|-------------------------------|----------------------|--------------------------|----------------|-------------------|--------------|
| Krizhevsky <i>et al.</i> [25] | $3 \mathrm{~days}$   | 1000 class labels        | 78.2%          | 56.8%             | 48.0%        |
| Wang and Gupta[39]            | 1 week               | motion                   | 58.4%          | 44.0%             | -            |
| Doersch et al. [10]           | 4 weeks              | $\operatorname{context}$ | 55.3%          | 46.6%             | -            |
| Pathak et al. [30]            | 14 hours             | $\operatorname{context}$ | 56.5%          | 44.5%             | 29.7%        |
| Ours                          | $2.5 \mathrm{~days}$ | $\operatorname{context}$ | 67.6%          | $\mathbf{53.2\%}$ | 37.6%        |

"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location


(source: Noroozi & Favaro, 2016)

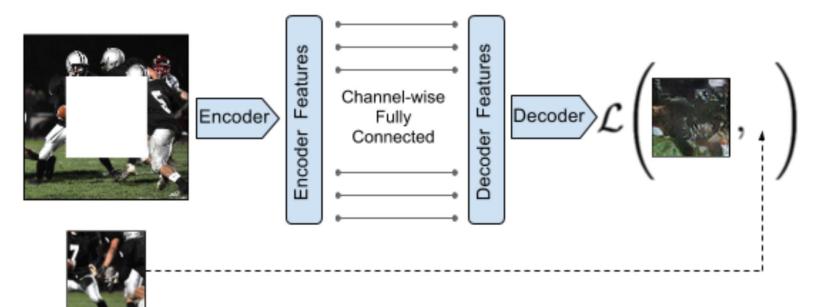
May 17, 2022

Lecture 14 - 22

### Pretext task: predict missing pixels (inpainting)






Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

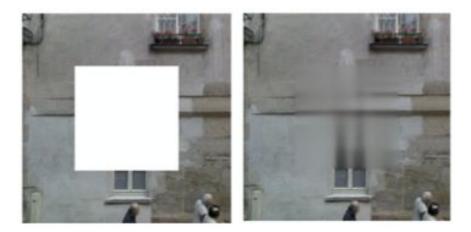
Source: Pathak et al., 2016

May 17, 2022

### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Learning to inpaint by reconstruction




Learning to reconstruct the missing pixels

Source: Pathak et al., 2016

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Inpainting evaluation



Input (context) reconstruction

Source: Pathak et al., 2016

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

$$egin{aligned} L(x) &= L_{recon}(x) + L_{adv}(x) \ L_{recon}(x) &= ||M*(x-F_{ heta}((1-M)*x))||_2^2 \ L_{adv} &= \max_D \mathbb{E}[\log(D(x))] + \log(1-D(F(((1-M)*x)))] \end{aligned}$$

Lecture 14 - 26

Adversarial loss between "real" images and inpainted images

Source: Pathak et al., 2016

May 17, 2022

### Inpainting evaluation



Input (context)

#### reconstruction

#### adversarial

recon + adv

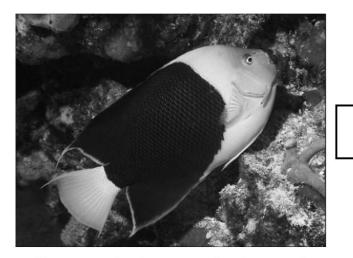
Source: Pathak et al., 2016

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

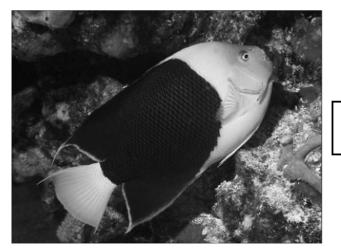
### Transfer learned features to supervised learning

| Pretraining Method         | Supervision       | Pretraining time | Classification | Detection | Segmentation |
|----------------------------|-------------------|------------------|----------------|-----------|--------------|
| ImageNet [26]              | 1000 class labels | 3 days           | 78.2%          | 56.8%     | 48.0%        |
| Random Gaussian            | initialization    | < 1 minute       | 53.3%          | 43.4%     | 19.8%        |
| Autoencoder                | -                 | 14 hours         | 53.8%          | 41.9%     | 25.2%        |
| Agrawal <i>et al</i> . [1] | egomotion         | 10 hours         | 52.9%          | 41.8%     | -            |
| Wang <i>et al</i> . [39]   | motion            | 1 week           | 58.7%          | 47.4%     | -            |
| Doersch et al. [7]         | relative context  | 4 weeks          | 55.3%          | 46.6%     | -            |
| Ours                       | context           | 14 hours         | 56.5%          | 44.5%     | 30.0%        |


Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

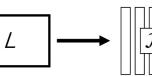
Source: Pathak et al., 2016

May 17, 2022


### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Pretext task: image coloring




Grayscale image: L channelColor information: ab channels $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$  $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$  $\mathcal{L} \longrightarrow \mathbb{F}$  $\mathbf{J} \longrightarrow \mathbb{R}^{d}$ Source: Richard Žhang / Phillip IsolaFei-Fei Li, Jiajun Wu, Ruohan GaoLecture 14 - 29

### Pretext task: image coloring



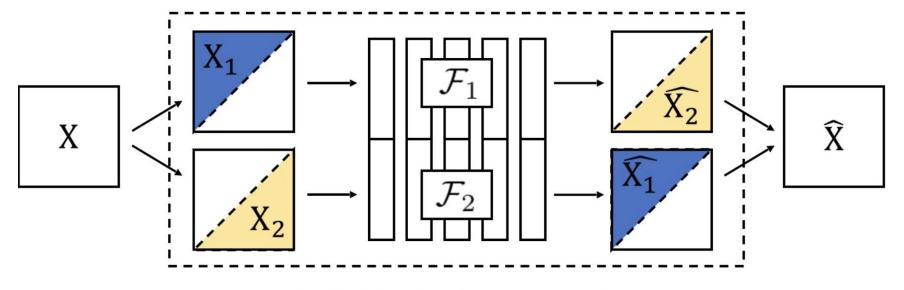


Grayscale image: L channel  $\mathbf{X} \in \mathbb{R}^{H imes W imes 1}$ 



Concatenate (*L*,*ab*) channels  $(\mathbf{X}, \widehat{\mathbf{Y}})$ 

ab


Lecture 14 - 30

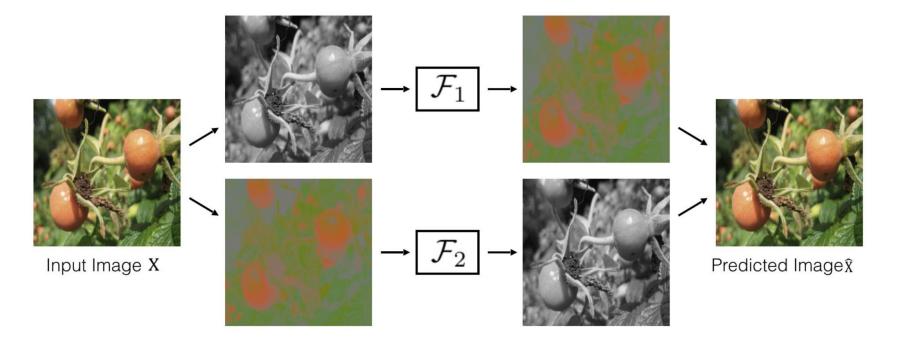
Source: Richard Zhang / Phillip Isola

May 17, 2022

## Learning features from colorization: Split-brain Autoencoder

Idea: cross-channel predictions



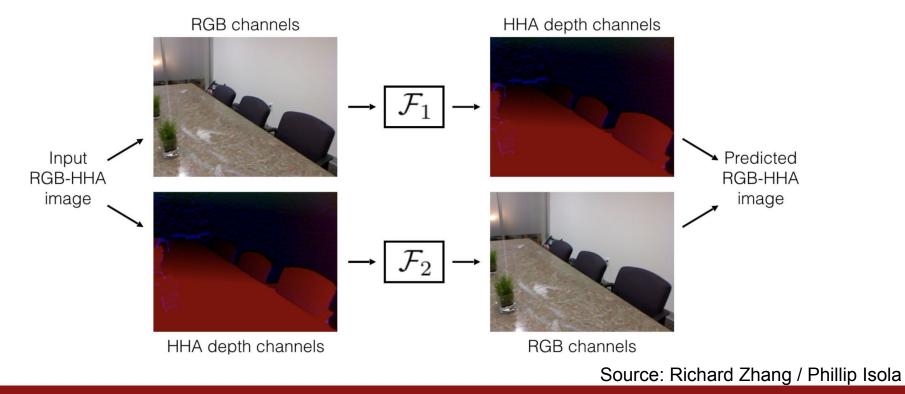

Split-Brain Autoencoder

Source: Richard Zhang / Phillip Isola

May 17, 2022

Fei-Fei Li, Jiajun Wu, Ruohan Gao

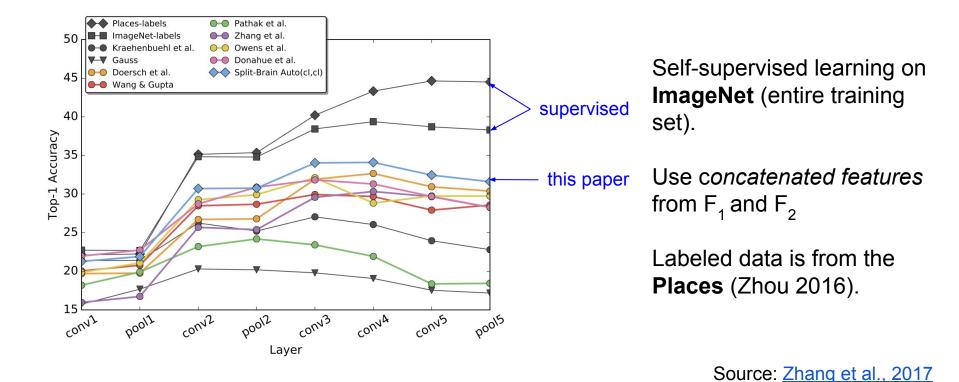
### Learning features from colorization: Split-brain Autoencoder




#### Source: Richard Zhang / Phillip Isola

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao


## Learning features from colorization: Split-brain Autoencoder



#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Lecture 14 - 33

### Transfer learned features to supervised learning



Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 34

### Pretext task: image coloring



#### Source: Richard Zhang / Phillip Isola

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Pretext task: image coloring

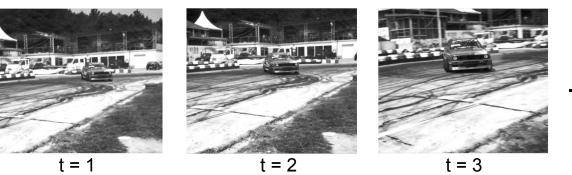


Source: Richard Zhang / Phillip Isola

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### Pretext task: video coloring


Idea: model the *temporal coherence* of colors in videos

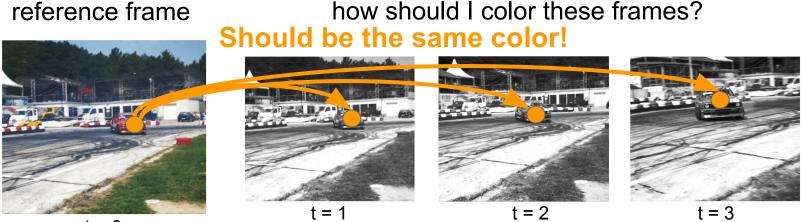
reference frame

how should I color these frames?



t = 0




Source: Vondrick et al., 2018

May 17, 2022

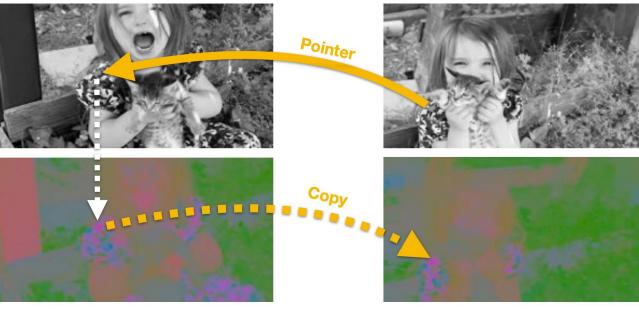
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Pretext task: video coloring

Idea: model the *temporal coherence* of colors in videos



t = 0


**Hypothesis**: learning to color video frames should allow model to learn to track regions or objects without labels!

Source: Vondrick et al., 2018

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### **Reference Frame**

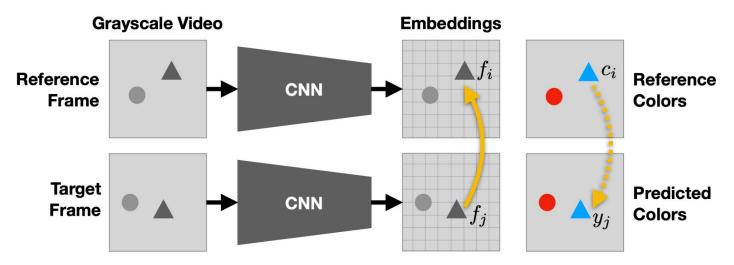


Input Frame

#### Learning objective:

Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).


**Reference Colors** 

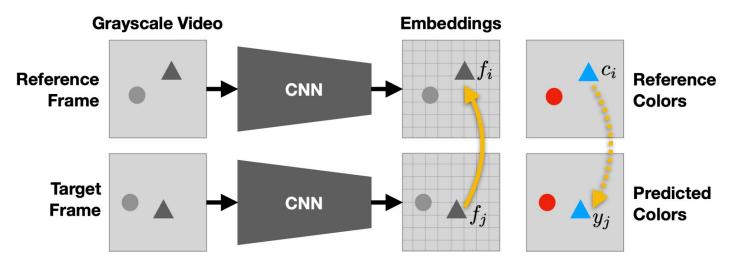
Target Colors

Source: Vondrick et al., 2018

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao




Lecture 14 - 40

attention map on the reference frame

$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

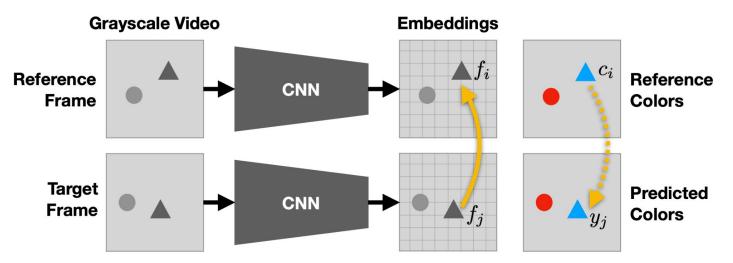
Source: Vondrick et al., 2018

May 17, 2022



attention map on the reference frame

predicted color = weighted sum of the reference color


$$A_{ij} = \frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_j\right)}$$

$$y_j = \sum_i A_{ij} c_i$$

Lecture 14 - 41

Source: Vondrick et al., 2018

May 17, 2022



attention map on the reference frame

 $A_{ij}$ 

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

loss between predicted color and ground truth color

$$\min_{\theta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}\right)$$
Source: Vondrick et al. 20

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

 $\frac{\exp\left(f_i^T f_j\right)}{\sum_k \exp\left(f_k^T f_i\right)}$ 

#### Lecture 14 - 42

# Colorizing videos (qualitative)

reference frame

#### target frames (gray)

#### predicted color







Source: Google AI blog post

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Colorizing videos (qualitative)

reference frame

#### target frames (gray)

predicted color



Source: Google AI blog post

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Tracking emerges from colorization Propagate segmentation masks using learned attention



Source: Google AI blog post

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Tracking emerges from colorization Propagate pose keypoints using learned attention



Source: Google Al blog post

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Lecture 14 - 47

May 17, 2022


# Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We don't care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

Lecture 14 - 48

May 17, 2022

### Pretext tasks from image transformations







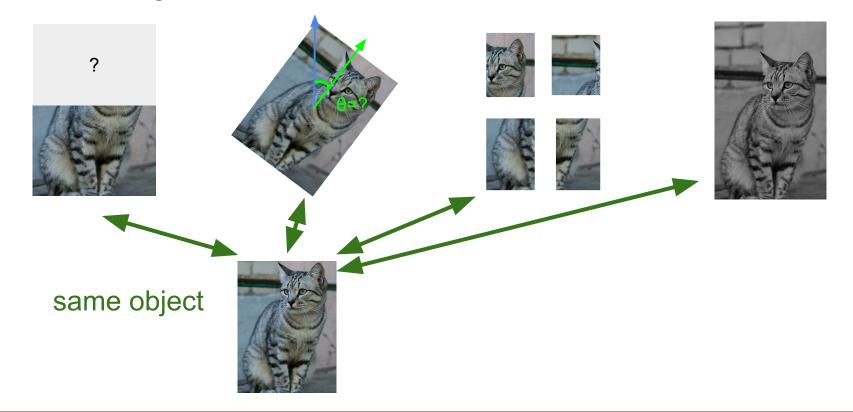





image completion

rotation prediction

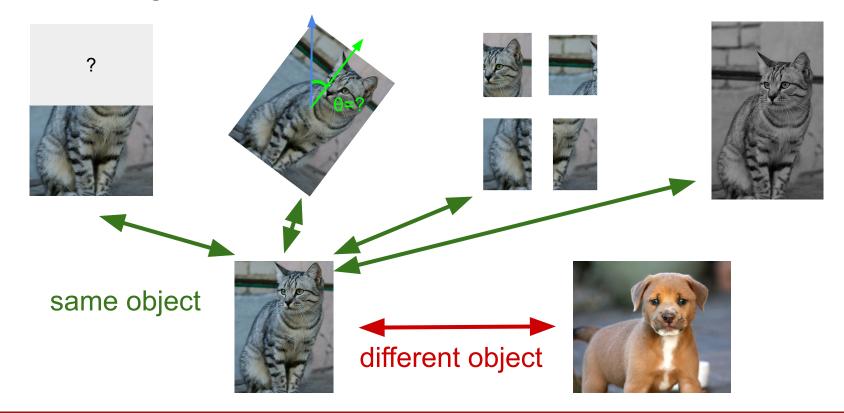
"jigsaw puzzle"


colorization

May 17, 2022

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

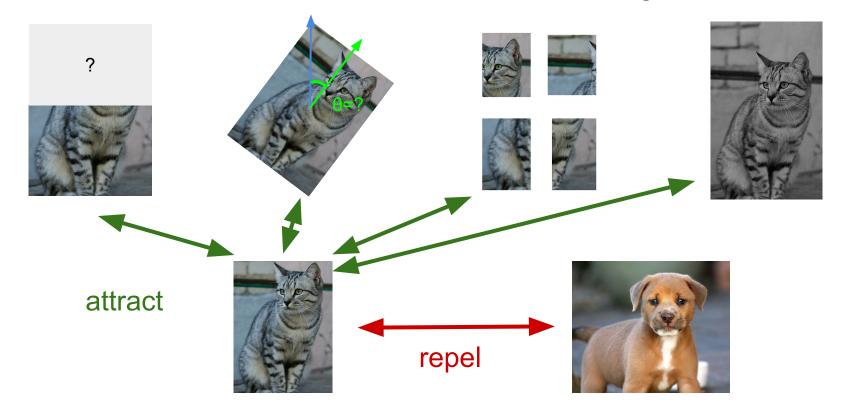
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao


### A more general pretext task?



Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 50


### A more general pretext task?



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 51

### **Contrastive Representation Learning**



Fei-Fei Li, Jiajun Wu, Ruohan Gao

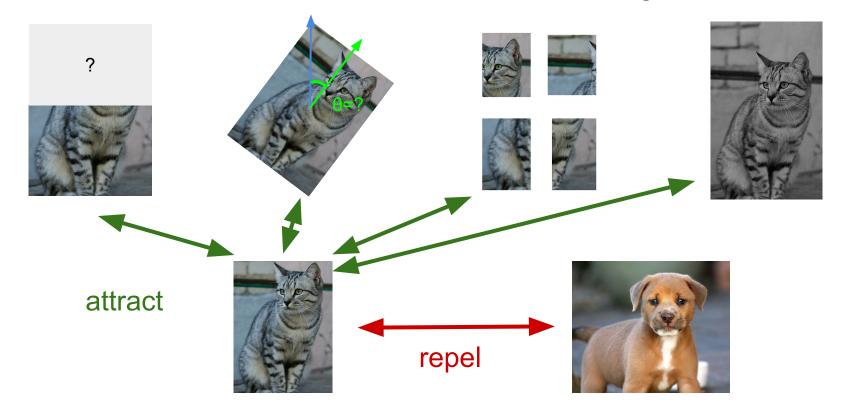
Lecture 14 - 52

# Today's Agenda

**Pretext tasks from image transformations** 

- Rotation, inpainting, rearrangement, coloring

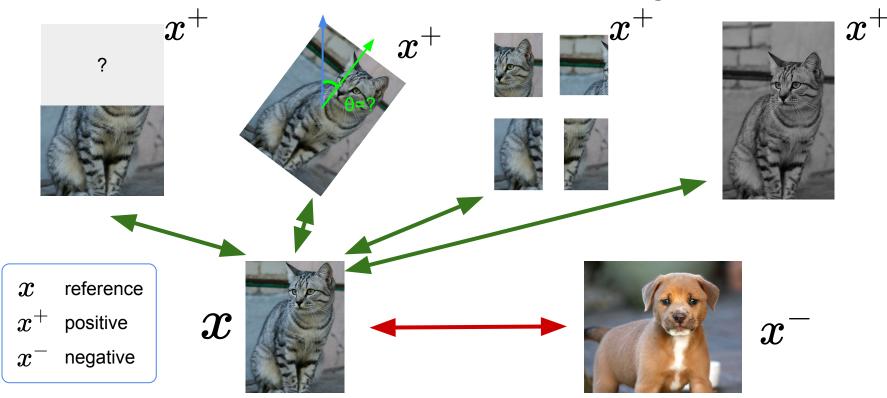
### **Contrastive representation learning**


- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO

Lecture 14 - 53

May 17, 2022

- Sequence contrastive learning: CPC


### **Contrastive Representation Learning**



Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 54

### **Contrastive Representation Learning**



#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 55 M

What we want:

$$\operatorname{score}(f(x), f(x^+)) >> \operatorname{score}(f(x), f(x^-))$$

*x*: reference sample; x<sup>+</sup> positive sample; x<sup>-</sup> negative sample

Given a chosen score function, we aim to learn an **encoder** function *f* that yields high score for positive pairs  $(x, x^+)$  and low scores for negative pairs (x, x).

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 56

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[ \log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 57

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[ \log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
$$\underset{x \quad x^+}{\overset{x \quad x^+}} \qquad \overbrace{x}^{N-1} \exp(s(f(x), f(x_j^-))) = x_1^{N-1}$$

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 58

#### May 17, 2022

. . .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[ \log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
score for the positive pair
This score for the N-1 negative pairs

Lecture 14 - 59

May 17, 2022

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

This seems familiar ...

Cross entropy loss for a N-way softmax classifier! I.e., learn to find the positive sample from the N samples

Lecture 14 - 60

May 17, 2022

A formulation of contrastive learning  
Loss function given 1 positive sample and N - 1 negative samples:  
$$L = -\mathbb{E}_X \left[ \log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and  $f(x^+)$ 

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

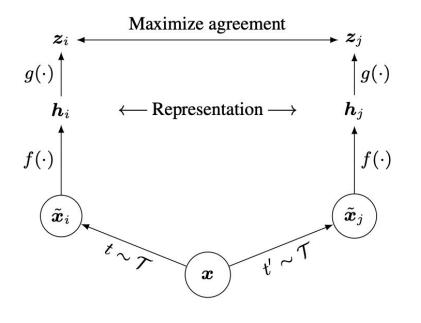
Lecture 14 - 61

The larger the negative sample size (*N*), the tighter the bound

Detailed derivation: Poole et al., 2019

May 17, 2022

### SimCLR: A Simple Framework for Contrastive Learning

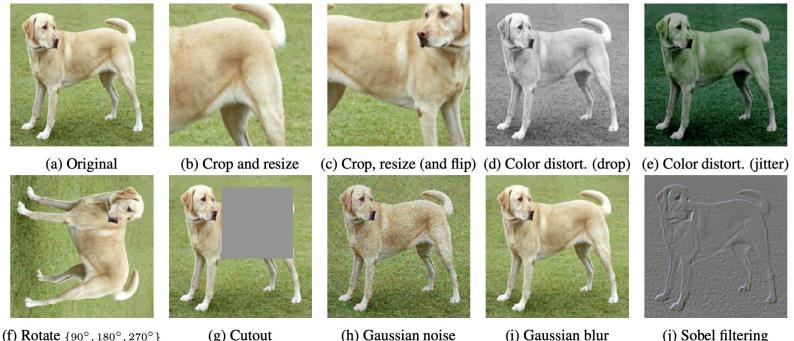

Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Use a projection network  $g(\cdot)$  to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

• random cropping, random color distortion, and random blur.




Source: Chen et al., 2020

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# SimCLR: generating positive samples from data augmentation



(j) Sobel filtering Source: <u>Chen et al., 2020</u>

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 63

#### Algorithm 1 SimCLR's main learning algorithm. SimCLR **input:** batch size N, constant $\tau$ , structure of $f, g, \mathcal{T}$ . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$ , $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for define $\ell(i, j)$ as $\ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{\lfloor k \neq i \rfloor} \exp(s_{i, k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and q to minimize $\mathcal{L}$ end for **return** encoder network $f(\cdot)$ , and throw away $g(\cdot)$

\*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 64

#### Source: <u>Chen et al., 2020</u> May 17, 2022

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant  $\tau$ , structure of  $f, g, \mathcal{T}$ . You should follow the for sampled minibatch  $\{x_k\}_{k=1}^N$  do assignment instructions. for all  $k \in \{1, ..., N\}$  do draw two augmentation functions  $t \sim T$ ,  $t' \sim T$ # the first augmentation  $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair  $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data  $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection augmentation functions # the second augmentation  $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$  $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation  $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all  $i \in \{1, ..., 2N\}$  and  $j \in \{1, ..., 2N\}$  do InfoNCE loss:  $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$  # pairwise similarity end for Use all non-positive define  $\ell(i, j)$  as  $\left| \ell(i, j) = -\log \frac{\exp(s_{i, j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i, k}/\tau)} \right|$ samples in the  $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as  $x^{-}$ update networks f and q to minimize  $\mathcal{L}$ end for **return** encoder network  $f(\cdot)$ , and throw away  $g(\cdot)$ Source: Chen et al., 2020

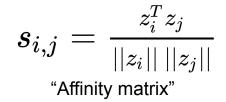
#### <u>Fei-Fei Li, Jiajun Wu, Ruo</u>han Gao

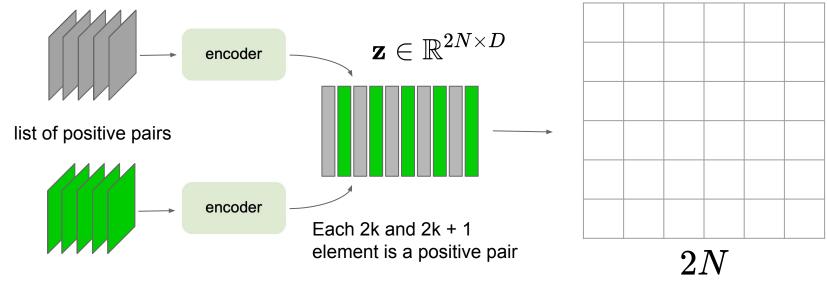
#### Lecture 14 - 65

May 17, 2022

\*We use a slightly different

Algorithm 1 SimCLR's main learning algorithm. formulation in the assignment. SimCLR **input:** batch size N, constant  $\tau$ , structure of  $f, g, \mathcal{T}$ . You should follow the for sampled minibatch  $\{x_k\}_{k=1}^N$  do assignment instructions. for all  $k \in \{1, ..., N\}$  do draw two augmentation functions  $t \sim T$ ,  $t' \sim T$ # the first augmentation  $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ Generate a positive pair  $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation by sampling data  $\boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})$ # projection # the second augmentation augmentation functions  $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$  $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation  $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all  $i \in \{1, ..., 2N\}$  and  $j \in \{1, ..., 2N\}$  do InfoNCE loss:  $s_{i,j} = \mathbf{z}_i^\top \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$  # pairwise similarity end for Use all non-positive Iterate through and define  $\ell(i, j)$  as  $\ell(i, j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$ samples in the use each of the 2N  $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1,2k) + \ell(2k,2k-1) \right]$ batch as  $x^{-}$ sample as reference, update networks f and q to minimize  $\mathcal{L}$ compute average loss end for **return** encoder network  $f(\cdot)$ , and throw away  $g(\cdot)$ Source: Chen et al., 2020


#### Fei-Fei Li, Jiajun Wu, Ruohan Gao


#### Lecture 14 - 66

May 17, 2022

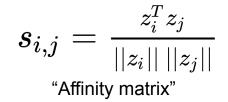
\*We use a slightly different

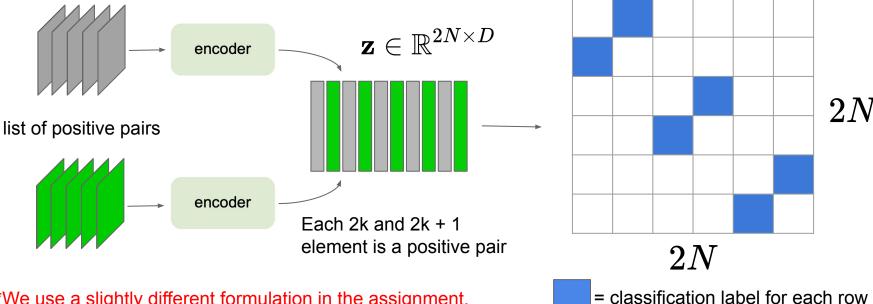
# SimCLR: mini-batch training





\*We use a slightly different formulation in the assignment. You should follow the assignment instructions.


#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

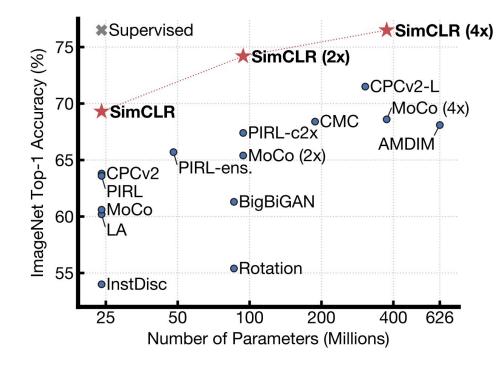

Lecture 14 - 67

May 17, 2022

2N

# SimCLR: mini-batch training






\*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 68

# Training linear classifier on SimCLR features



Train feature encoder on **ImageNet** (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Lecture 14 - 69

Source: Chen et al., 2020

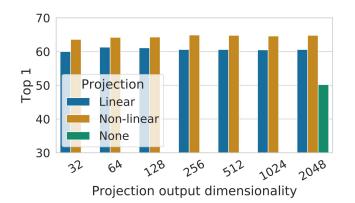
May 17, 2022

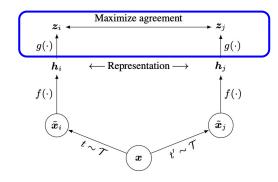
# Semi-supervised learning on SimCLR features

| Method                                      | Architecture            | Label fraction |      |
|---------------------------------------------|-------------------------|----------------|------|
|                                             |                         | 1%             | 10%  |
|                                             |                         | Top 5          |      |
| Supervised baseline                         | ResNet-50               | 48.4           | 80.4 |
| Methods using other label-propagation:      |                         |                |      |
| Pseudo-label                                | ResNet-50               | 51.6           | 82.4 |
| VAT+Entropy Min.                            | ResNet-50               | 47.0           | 83.4 |
| UDA (w. RandAug)                            | ResNet-50               | -              | 88.5 |
| FixMatch (w. RandAug)                       | ResNet-50               | -              | 89.1 |
| S4L (Rot+VAT+En. M.)                        | ResNet-50 (4 $\times$ ) | -              | 91.2 |
| Methods using representation learning only: |                         |                |      |
| InstDisc                                    | ResNet-50               | 39.2           | 77.4 |
| BigBiGAN                                    | RevNet-50 $(4 \times)$  | 55.2           | 78.8 |
| PIRL                                        | ResNet-50               | 57.2           | 83.8 |
| CPC v2                                      | ResNet-161(*)           | 77.9           | 91.2 |
| SimCLR (ours)                               | ResNet-50               | 75.5           | 87.8 |
| SimCLR (ours)                               | ResNet-50 (2 $\times$ ) | 83.0           | 91.2 |
| SimCLR (ours)                               | ResNet-50 $(4 \times)$  | 85.8           | 92.6 |

Train feature encoder on **ImageNet** (entire training set) using SimCLR.

**Finetune** the encoder with 1% / 10% of labeled data on ImageNet.


Lecture 14 - 70


Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al., 2020

May 17, 2022

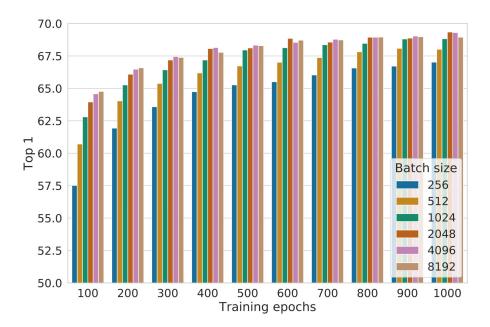
### SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

#### A possible explanation:


- contrastive learning objective may discard useful information for downstream tasks
- representation space *z* is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

#### Source: Chen et al., 2020

May 17, 2022

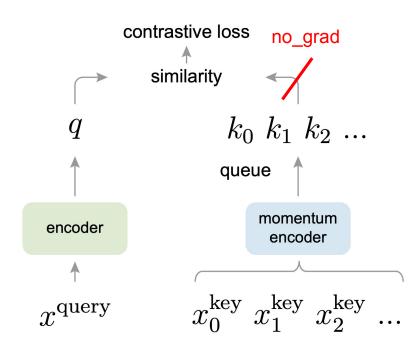
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

### SimCLR design choices: large batch size



Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)


Lecture 14 - 72

*Figure 9.* Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.<sup>10</sup>

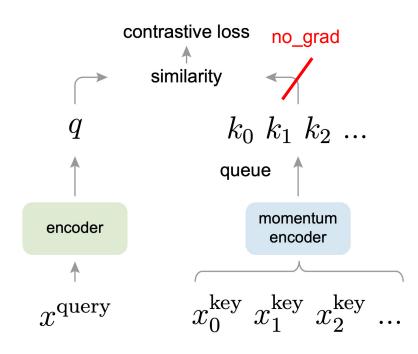
Source: Chen et al., 2020

May 17, 2022

# Momentum Contrastive Learning (MoCo)



#### Key differences to SimCLR:


- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

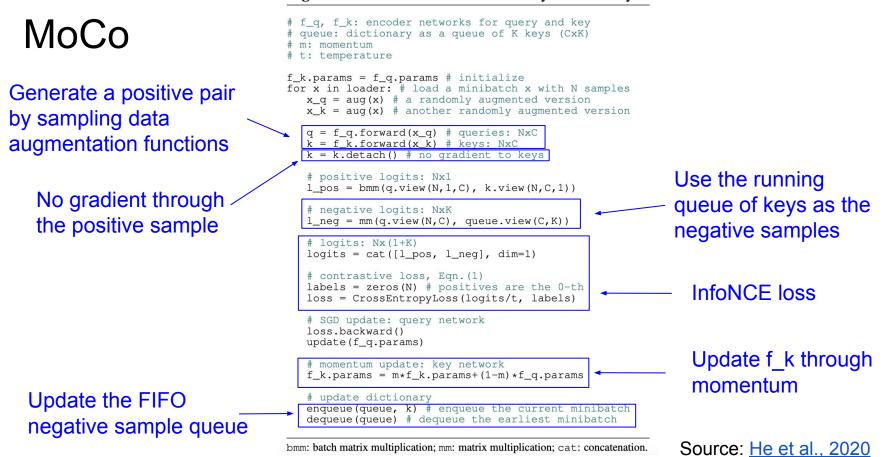
May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# Momentum Contrastive Learning (MoCo)



#### Key differences to SimCLR:


- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:

$$\theta_{\mathbf{k}} \leftarrow m \theta_{\mathbf{k}} + (1-m) \theta_{\mathbf{q}}$$

Source: He et al., 2020

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao



Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 75



#### **Improved Baselines with Momentum Contrastive Learning**

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

Lecture 14 - 76

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

Source: Chen et al., 2020

May 17, 2022

# MoCo vs. SimCLR vs. MoCo V2

|            | unsup. pre-train    |              |              | ImageNet | VOC detection |                  |      |                  |
|------------|---------------------|--------------|--------------|----------|---------------|------------------|------|------------------|
| case       | MLP                 | aug+         | cos          | epochs   | acc.          | AP <sub>50</sub> | AP   | AP <sub>75</sub> |
| supervised |                     |              |              |          | 76.5          | 81.3             | 53.5 | 58.8             |
| MoCo v1    |                     |              |              | 200      | 60.6          | 81.5             | 55.9 | 62.6             |
| (a)        | $\checkmark$        |              |              | 200      | 66.2          | 82.0             | 56.4 | 62.6             |
| (b)        |                     | $\checkmark$ |              | 200      | 63.4          | 82.2             | 56.8 | 63.2             |
| (c)        | $\checkmark$        | $\checkmark$ |              | 200      | 67.3          | 82.5             | 57.2 | 63.9             |
| (d)        | $\checkmark$        | $\checkmark$ | $\checkmark$ | 200      | 67.5          | 82.4             | 57.0 | 63.6             |
| (e)        | <ul><li>✓</li></ul> | $\checkmark$ | $\checkmark$ | 800      | 71.1          | 82.5             | 57.4 | 64.0             |

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

#### Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

#### Source: Chen et al., 2020

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# MoCo vs. SimCLR vs. MoCo V2

|                                                 | unsup. pre-train |              |              |        |       | ImageNet |
|-------------------------------------------------|------------------|--------------|--------------|--------|-------|----------|
| case                                            | MLP              | aug+         | cos          | epochs | batch | acc.     |
| MoCo v1 [6]                                     |                  |              |              | 200    | 256   | 60.6     |
| SimCLR [2]                                      | $\checkmark$     | $\checkmark$ | $\checkmark$ | 200    | 256   | 61.9     |
| SimCLR [2]                                      | $\checkmark$     | $\checkmark$ | $\checkmark$ | 200    | 8192  | 66.6     |
| MoCo v2                                         | $\checkmark$     | $\checkmark$ | $\checkmark$ | 200    | 256   | 67.5     |
| results of longer unsupervised training follow: |                  |              |              |        |       |          |
| SimCLR [2]                                      | $\checkmark$     | $\checkmark$ | $\checkmark$ | 1000   | 4096  | 69.3     |
| MoCo v2                                         | $\checkmark$     | $\checkmark$ | $\checkmark$ | 800    | 256   | 71.1     |

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224** $\times$ **224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

#### Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

#### Source: Chen et al., 2020

May 17, 2022

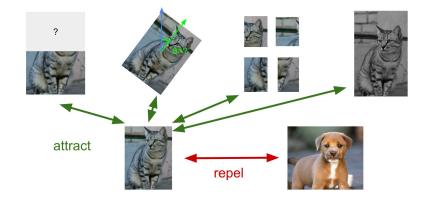
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# MoCo vs. SimCLR vs. MoCo V2

| mechanism  | batch | memory / GPU       | time / 200-ep. |
|------------|-------|--------------------|----------------|
| MoCo       | 256   | <b>5.0G</b>        | <b>53 hrs</b>  |
| end-to-end | 256   | 7.4G               | 65 hrs         |
| end-to-end | 4096  | 93.0G <sup>†</sup> | n/a            |

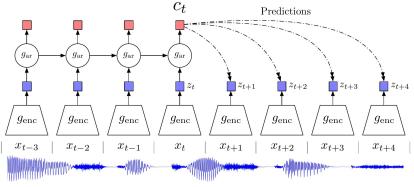
Table 3. Memory and time cost in 8 V100 16G GPUs, implemented in PyTorch.  $^{\dagger}$ : based on our estimation.

#### Key takeaways:


Lecture 14 - 79

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)

Source: Chen et al., 2020


May 17, 2022

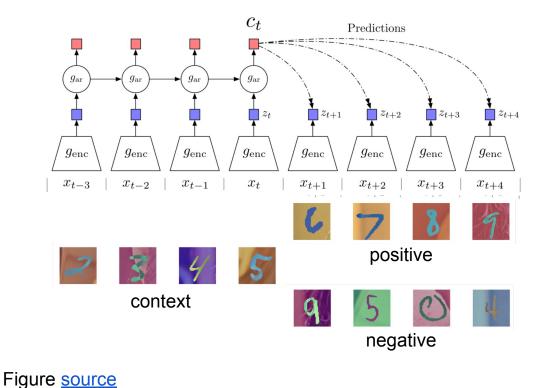
## Instance vs. Sequence Contrastive Learning



#### Instance-level contrastive learning:

contrastive learning based on positive & negative instances. Examples: SimCLR, MoCo




#### Source: van den Oord et al., 2018

#### Sequence-level contrastive learning:

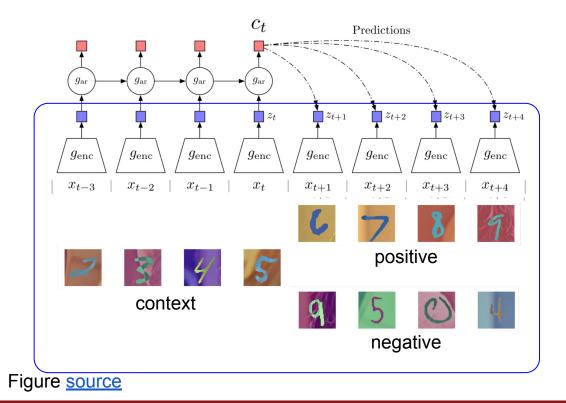
contrastive learning based on sequential / temporal orders. Example: Contrastive Predictive Coding (CPC)

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 80



**Contrastive**: contrast between "right" and "wrong" sequences using contrastive learning.

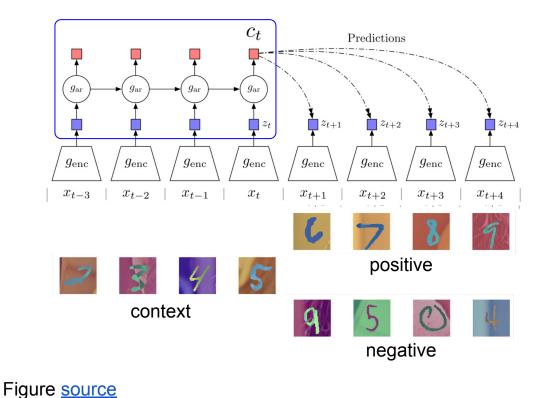

**Predictive**: the model has to predict future patterns given the current context.

**Coding**: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Lecture 14 - 81

Source: van den Oord et al., 2018,

May 17, 2022



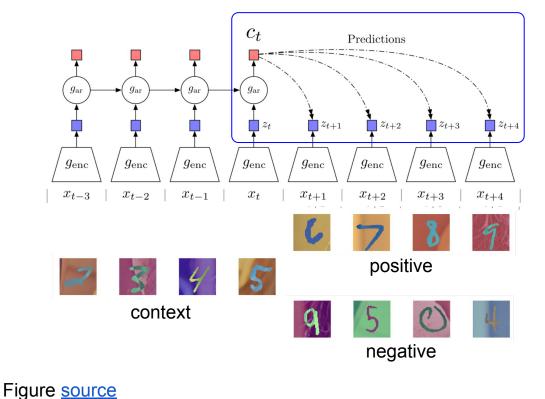

1. Encode all samples in a sequence into vectors  $z_t = g_{enc}(x_t)$ 

Source: van den Oord et al., 2018,

May 17, 2022

Lecture 14 - 82




1. Encode all samples in a sequence into vectors  $z_t = g_{enc}(x_t)$ 

2. Summarize context (e.g., half of a sequence) into a context code  $c_t$  using an auto-regressive model  $(g_{ar})$ . The original paper uses GRU-RNN here.

Lecture 14 - 83

Source: van den Oord et al., 2018,

May 17, 2022

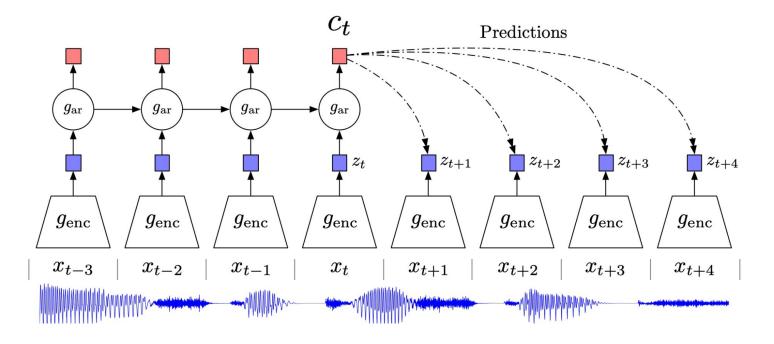


1. Encode all samples in a sequence into vectors  $z_t = g_{enc}(x_t)$ 

2. Summarize context (e.g., half of a sequence) into a context code  $c_t$  using an auto-regressive model  $(g_{ar})$ 

3. Compute InfoNCE loss between the context  $c_t$  and future code  $z_{t+k}$  using the following time-dependent score function:

$$s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$$


, where  $W_k$  is a trainable matrix.

Source: van den Oord et al., 2018,

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

## CPC example: modeling audio sequences



Source: van den Oord et al., 2018,

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# CPC example: modeling audio sequences

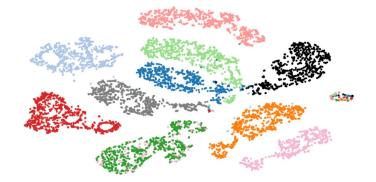
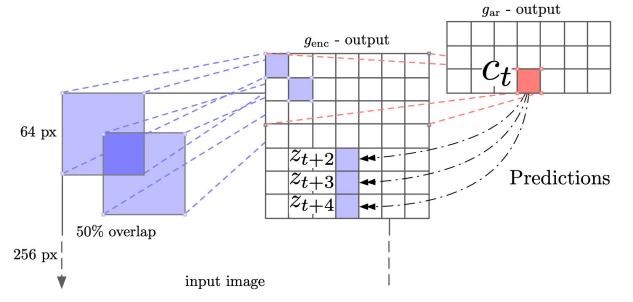



Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

| Method                 | ACC  |
|------------------------|------|
| Phone classification   |      |
| Random initialization  | 27.6 |
| MFCC features          | 39.7 |
| CPC                    | 64.6 |
| Supervised             | 74.6 |
| Speaker classification |      |
| Random initialization  | 1.87 |
| MFCC features          | 17.6 |
| CPC                    | 97.4 |
| Supervised             | 98.5 |

Linear classification on trained representations (LibriSpeech dataset)


#### Source: van den Oord et al., 2018,

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

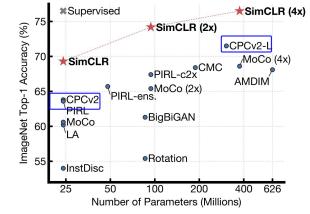
# CPC example: modeling visual context

**Idea**: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.



Source: van den Oord et al., 2018,

May 17, 2022


#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

# CPC example: modeling visual context

| Method                   | Top-1 ACC |
|--------------------------|-----------|
| Using AlexNet conv5      |           |
| Video [28]               | 29.8      |
| Relative Position [11]   | 30.4      |
| BiGan [35]               | 34.8      |
| Colorization [10]        | 35.2      |
| Jigsaw [29] *            | 38.1      |
| Using ResNet-V2          |           |
| Motion Segmentation [36] | 27.6      |
| Exemplar [36]            | 31.5      |
| Relative Position [36]   | 36.2      |
| Colorization [36]        | 39.6      |
| CPC                      | 48.7      |

Table 3: ImageNet top-1 unsupervised classification results. \*Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext task-based self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.



Source: van den Oord et al., 2018,

May 17, 2022

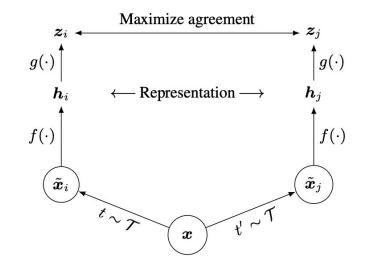
#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+))>>\operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples  $L = -\mathbb{E}_X \left[ \log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$ 

Commonly known as the InfoNCE loss (van den Oord et al., 2018) A *lower bound* on the mutual information between f(x) and  $f(x^+)$ 

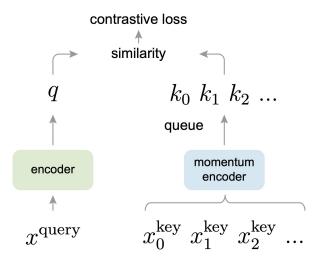

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 89

**SimCLR**: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint

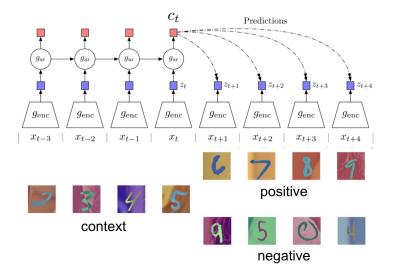



May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

**MoCo** (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning




May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instance-level methods.



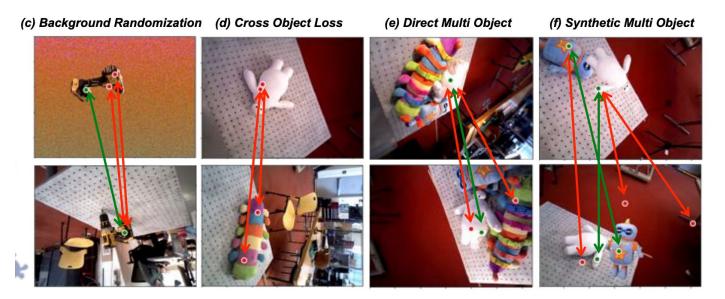
May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

Contrastive learning between image and natural language sentences

plane car pepper the Text aussie pup a photo of Text Encoder dog a {object}. Encoder bird I<sub>1</sub>  $I_1 \cdot T_1 \quad I_1 \cdot T_2$ I1.TN 3. Use for zero-shot prediction  $I_2$  $I_2 \cdot T_1 \quad I_2 \cdot T_2$ T<sub>1</sub> Τ, Image  $I_3$ Encoder Image  $I_1 \cdot T_1 \quad I_1 \cdot T_2 \quad I_1 \cdot T_3$  $I_1 \cdot T_N$ Encoder :  $I_N$ INTN  $I_N \cdot T_1 \quad I_N \cdot T_2 \quad I_N \cdot T_3$ a photo of a dog.

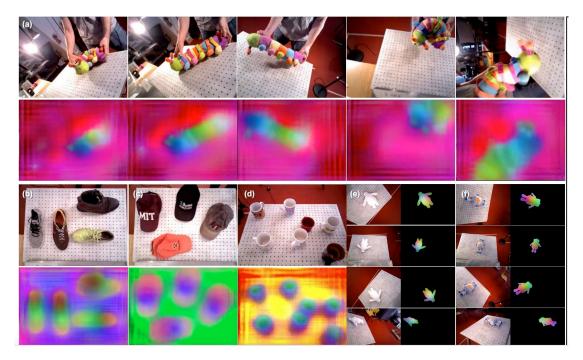
2. Create dataset classifier from label text


Lecture 14 - 93

May 17, 2022

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021

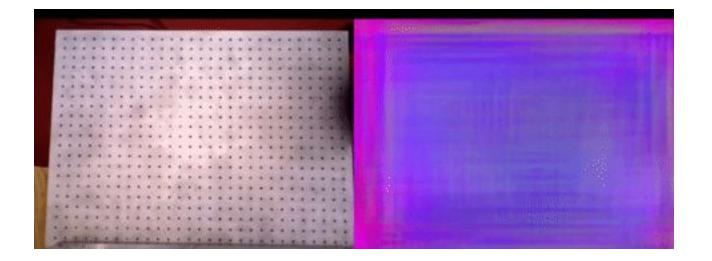
#### 1. Contrastive pre-training


#### Contrastive learning on pixel-wise feature descriptors



Dense Object Net, Florence et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao


Lecture 14 - 94



Dense Object Net, Florence et al., 2018

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao

#### Lecture 14 - 95



Dense Object Net, Florence et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 96

### Next time: Low-Level Vision

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 97

# Today's Agenda

### **Pretext tasks from image transformations**

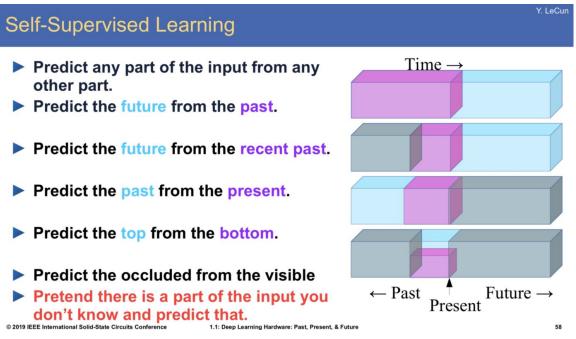
- Rotation, inpainting, rearrangement, coloring
- **Contrastive representation learning** 
  - Intuition and formulation
  - Instance contrastive learning: SimCLR and MOCO
  - Sequence contrastive learning: CPC

### Frontier:

- Contrastive Language Image Pre-training (CLIP)

Lecture 14 - 98

May 17, 2022


# Frontier: Contrastive Language–Image Pre-training (CLIP)

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Lecture 14 - 99

# Self-Supervised Learning

General idea: pretend there is a part of the data you don't know and train the neural network to predict that.



Lecture 14 - 100

May 17, 2022

Source: Lecun 2019 Keynote at ISSCC

# "The Cake of Learning"

#### How Much Information is the Machine Given during Learning?

"Pure" Reinforcement Learning (cherry)

The machine predicts a scalar reward given once ir a while.

A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data

> 10 $\rightarrow$  10,000 bits per sample

Learn good features through self-supervision

downstream tasks

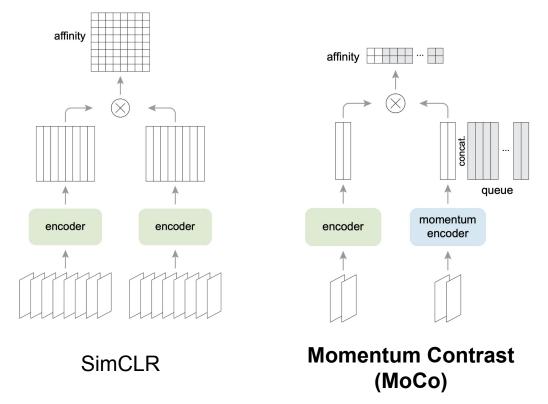
feature

extractor

- Self-Supervised Learning (cake génoise)
- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample
   2019 IEEE International Solid-State Circuits Conference

1.1: Deep Learning Hardware: Past, Present, & Future

Lecture 14 - 101


59

May 17, 2022

Y. LeCun

Source: Lecun 2019 Keynote at ISSCC

### Can we do better?



Source: Chen et al., 2020b

May 17, 2022

#### Fei-Fei Li, Jiajun Wu, Ruohan Gao