Lecture 11: Attention and Transformers

Administrative

- Project proposal grades released.

Check feedback on GradeScope!

- Project milestone due May $7^{\text {th }}$ Saturday 11:59pm PT

Check Ed and course website for requirements

Last Time: Recurrent Neural Networks

Last Time: Variable length computation graph with shared weights

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Encoder: $h_{t}=f_{w}\left(\mathrm{x}_{\mathrm{t}}, \mathrm{h}_{\mathrm{t}-1}\right)$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T}
From final hidden state predict:
Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \begin{aligned} & \text { Initial decoder state } s_{0} \\ & \text { Context vector } c\left(\text { often } c=h_{T}\right)\end{aligned}$

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T},

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T}
estamos comiendo

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T},

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T},

Sequence to Sequence with RNNs

Input: Sequence $x_{1}, \ldots x_{T}$
Decoder: $s_{t}=g_{U}\left(y_{t-1}, s_{t-1}, c\right)$
Output: Sequence y_{1}, \ldots, y_{T},
From final hidden state predict: Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \begin{aligned} & \text { Initial decoder state } s_{0} \\ & \text { Context vector } c\left(\text { often } c=h_{T}\right)\end{aligned}$

Idea: use new context vector at each step of decoder!

Sequence to Sequence with RNNs and Attention

Input: Sequence $x_{1}, \ldots x_{T}$
Output: Sequence y_{1}, \ldots, y_{T},

Encoder: $h_{t}=f_{w}\left(x_{t}, h_{t-1}\right) \quad \begin{aligned} & \text { From final hidden state: } \\ & \text { Initial decoder state } s_{0}\end{aligned}$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
$$

Normalize alignment scores to get attention weights

$$
0<a_{t, i}<1 \quad \sum_{i} a_{t, i}=1
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
$$

Normalize alignment scores to get attention weights $0<\mathrm{a}_{\mathrm{t}, \mathrm{i}}<1 \quad \sum_{\mathrm{i}} \mathrm{a}_{\mathrm{t}, \mathrm{i}}=1$

Compute context vector as linear combination of hidden states

$$
c_{t}=\sum_{i} a_{t, i} h_{i}
$$

Sequence to Sequence with RNNs and Attention

Compute (scalar) alignment scores

$$
e_{t, i}=f_{a t t}\left(s_{t-1}, h_{i}\right) \quad\left(f_{a t t}\right. \text { is an MLP) }
$$

[START]

$$
a_{13}=a_{14}=0.05
$$

Sequence to Sequence with RNNs and Attention

[START] estamos

we are eating bread
"comiendo" = "eating"
so maybe $\mathrm{a}_{21}=\mathrm{a}_{24}=0.05$, [START] estamos

$$
a_{22}=0.1, a_{23}=0.8
$$

Sequence to Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

we
eating $\square \square$

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the
European Economic Area was
Input: "The agreement on the
European Economic Area was signed in August 1992."

Output: "L’accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights $a_{t, i}$

Sequence to Sequence with RNNs and Attention

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Sequence to Sequence with RNNs and Attention

Example: English to

French translation
Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Sequence to Sequence with RNNs and Attention

The decoder doesn't use the fact that h_{i} form an ordered sequence - it just treats them as an unordered set $\left\{h_{i}\right\}$

Can use similar architecture given any set of input hidden vectors $\left\{h_{i}\right\}$!

we
eating
[STOP]

Image Captioning using spatial features

Input: Image I

Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Image Captioning using spatial features

Input: Image I

Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $h_{0}=f_{w}(z)$
where \mathbf{z} is spatial CNN features
$f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$
where context vector c is often $\mathrm{c}=\mathrm{h}_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Extract spatial features from a pretrained CNN

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$
where context vector c is often $c=h_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Extract spatial features from a pretrained CNN

Features:
$H \times W \times D$
person wearing

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$
where context vector c is often $c=h_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c\right)$ where context vector c is often $c=h_{0}$

Encoder: $h_{0}=f_{w}(z)$ where \mathbf{z} is spatial CNN features $f_{w}(\cdot)$ is an MLP

Image Captioning using spatial features

Problem: Input is "bottlenecked" through c

- Model needs to encode everything it
wants to say within c
This is a problem if we want to generate really long descriptions? 100s of words long

Image Captioning with RNNs and Attention

Attention idea: New context vector at every time step.
Each context vector will attend to different image regions

Attention Saccades in humans

Extract spatial features from a pretrained CNN

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Compute alignments scores (scalars):
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$f_{\text {att }}($.$) is an MLP$

Extract spatial features from a pretrained CNN

Alignment scores: Attention:

Normalize to get attention weights:
$a_{t,:,:}=\operatorname{softmax}\left(e_{t,,:,}\right)$
$0<a_{\mathrm{t}, \mathrm{i}, \mathrm{j}}<1$,
attention values sum to 1

Compute context vector:

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at

New context vector at every time step different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,:,:} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Extract spatial features from a pretrained CNN

Image Captioning with RNNs and Attention

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at

New context vector at every time step different parts of the input image

$$
\begin{aligned}
e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\
a_{t,,:,} & =\operatorname{softmax}\left(e_{t,:,:}\right) \\
c_{t} & =\sum_{i, j} a_{t, i, j} z_{t, i, j}
\end{aligned}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at

New context vector at every time step different parts of the input image
$e_{t, i, j}=f_{\text {att }}\left(h_{t-1}, z_{i, j}\right)$
$a_{t,,:,}=\operatorname{softmax}\left(e_{t,,,:,}\right)$

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Image Captioning with RNNs and Attention

Each timestep of decoder uses a

Decoder: $y_{t}=g_{v}\left(y_{t-1}, h_{t-1}, c_{t}\right)$ different context vector that looks at different parts of the input image
$\begin{aligned} e_{t, i, j} & =f_{\text {att }}\left(h_{t-1}, z_{i, j}\right) \\ a_{t, i,:} & =\operatorname{softmax}\left(e_{t, .}\right)\end{aligned}$

$$
c_{t}=\sum_{i, j} a_{t, i, j} z_{t, i, j}
$$

Extract spatial features from a pretrained CNN

New context vector at every time step

Image Captioning with RNNs and Attention

Image Captioning with Attention

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A little girl sitting on a bed with
a teddy bear.

A dog is standing on a hardwood floor.

A group of people sitting on a boat in the water.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Image Captioning with RNNs and Attention

Attention we just saw in image captioning

∞	$\mathrm{z}_{0,0}$	$\mathrm{z}_{0,1}$	$\mathrm{z}_{0,2}$
$\frac{5}{5}$	$z_{1,0}$	$z_{1,1}$	$z_{1,2}$
ㄴ	$z_{2,0}$	$\mathrm{z}_{2,1}$	$\mathrm{z}_{2,2}$

Inputs:

h
Features: \mathbf{z} (shape: $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$)
Query: h (shape: D)
Fei-Fei Li, Jiajun Wu, Ruohan Gao
Lecture 11-46
May 03, 2022

Attention we just saw in image captioning

Operations:

Alignment: $e_{i, j}=f_{a t t}\left(h, z_{i, j}\right)$

Fei-Fei Li, Jiajun Wu, Ruohan Gao
Lecture 11-47

Attention we just saw in image captioning

Fei-Fei Li, Jiajun Wu, Ruohan Gao
Lecture 11-48
May 03, 2022

Attention we just saw in image captioning

General attention layer

Outputs:

context vector: c (shape: D)

Operations:

Alignment: $e_{i}=f_{\text {att }}\left(h, x_{i}\right)$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $\mathbf{c}=\sum_{i} \mathrm{a}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$

General attention layer

Change $\mathrm{f}_{\text {att }}($.$) to a simple dot product$

- only works well with key \& value transformation trick (will mention in a few slides)

General attention layer

Outputs:

context vector: c (shape: D)
Change $f_{\text {att }}($.$) to a scaled simple dot product$

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher. Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by $\sqrt{ } D$ to reduce effect of large magnitude vectors

Inputs:

Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$)
Query: h (shape: D)

General attention layer

Outputs:
context vectors: y (shape: D)
Multiple query vectors

- each query creates a new output context vector

Operations:

Alignment: $\mathrm{e}_{\mathrm{i}, \mathrm{j}}=\mathrm{q}_{\mathrm{j}} \cdot \mathrm{x}_{\mathrm{i}} / \sqrt{ } \mathrm{D}$
Attention: $\mathbf{a}=\operatorname{softmax}(\mathrm{e})$
Output: $\mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{x}_{\mathrm{i}}$

Inputs:
Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $\mathrm{M} \times \mathrm{D}$)

General attention layer

Outputs:

context vectors: y (shape: D)

Operations:

Alignment: $e_{i, j}=q_{j} \cdot x_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=$ softmax(e) Output: $y_{j}=\sum_{i} a_{i, j} x_{i}$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Notice that the input vectors are used for both the alignment as well as the attention calculations.

- We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

General attention layer

Outputs:

context vectors: y (shape:

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathrm{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $y_{j}=\sum_{i} a_{i, j} V_{i}$

Inputs:

Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $M \times D_{k}$)

General attention layer

Outputs:

context vectors: y (shape: D_{\vee})

Recall that the query vector was a function of the input vectors

Operations:

Key vectors: $\mathrm{k}=\mathbf{x} \mathrm{W}_{\mathrm{k}}$ Value vectors: $v=\mathbf{x} W$ Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$ Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$ Output: $\mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}, \mathrm{j}} \mathrm{V}_{\mathrm{i}}$

Encoder: $h_{0}=f_{w}(z)$
where \mathbf{z} is spatial CNN features $\mathrm{f}_{\mathrm{w}}(\cdot)$ is an MLP

Inputs:
Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $M \times D_{k}$)

Self attention layer

Operations:

We can calculate the query vectors from the input vectors, therefore,

Key vectors: $k=\mathbf{x} W_{k}$
Value vectors: $v=\mathbf{x} W$

Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$
nstead, query vectors are calculated using a FC layer.

Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $y_{j}=\sum_{i} a_{i, j} V_{i}$ defining a "self-attention" layer.

Inputs:

Input vectors: \mathbf{x} (shape: $\mathrm{N} \times \mathrm{D}$) Queries: \mathbf{q} (shape: $M \times D_{k}$)

Self attention layer

Fei-Fei Li, Jiajun Wu, Ruohan Gao

Self attention layer - attends over sets of inputs

Outputs:

context vectors: y (shape: D_{\vee})

Operations:

Key vectors: $k=x W_{k}$ Value vectors: $v=\mathbf{x} W$ Query vectors: $q=\mathbf{x} W$
Alignment: $e_{i, j}=q_{j} \cdot k_{i} / \sqrt{ } D$

self-attention

Attention: $\mathbf{a}=\operatorname{softmax}(\mathbf{e})$
Output: $y_{j}=\sum_{i} a_{i, j} V_{i}$

Inputs:
Input vectors: \mathbf{x} (shape: Nx D)

Self attention layer - attends over sets of inputs

self-attention

self-attention

Permutation equivariant
Self-attention layer doesn't care about the orders of the inputs!
Problem: How can we encode ordered sequences like language or spatially ordered image features?

Positional encoding

position encoding

Concatenate/add special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $N \rightarrow R^{d}$
to process the position j of the vector into a d-dimensional vector

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$
Fei-Fei Li, Jiajun Wu, Ruohan Gao

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $N \rightarrow R^{d}$ to process the position j of the vector into a d-dimensional vector

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains Tx d parameters.

Desiderata of $\operatorname{pos}($.$) :$

1. It should output a unique encoding for each time-step (word's position in a sentence)
2. Distance between any two time-steps should be consistent across sentences with different lengths.
3. Our model should generalize to longer sentences without any efforts. Its values should be bounded.
4. It must be deterministic.

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $N \rightarrow R^{d}$ to process the position j of the vector into a d-dimensional vector

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains Txd parameters.

2. Design a fixed function with the desiderata

Positional encoding

self-attention

position encoding

Concatenate special positional encoding p_{j} to each input vector X_{j}

We use a function pos: $N \rightarrow R^{d}$ to process the position j of the vector into a d-dimensional vector

So, $\mathrm{p}_{\mathrm{j}}=\operatorname{pos}(\mathrm{j})$

Options for pos(.)

1. Learn a lookup table:

- Learn parameters to use for $\operatorname{pos}(\mathrm{t})$ for $\mathrm{t} \varepsilon[0, \mathrm{~T})$
- Lookup table contains Txd parameters.

2. Design a fixed function with the desiderata

Intuition:

$$
\mathrm{p}(\mathrm{t})=\left[\begin{array}{c}
\sin \left(\omega_{1} \cdot t\right) \\
\cos \left(\omega_{1} \cdot t\right) \\
\\
\sin \left(\omega_{2} \cdot t\right) \\
\cos \left(\omega_{2} \cdot t\right) \\
\\
\vdots
\end{array} \quad \begin{array}{lllllllllll}
0: & 0 & 0 & 0 & 0 & 8: & 1 & 0 & 0 & 0 \\
1: & 0 & 0 & 0 & 1 & 9: & 1 & 0 & 0 & 1 \\
2: & 0 & 0 & 1 & 0 & 10: & 1 & 0 & 1 & 0 \\
3: & 0 & 0 & 1 & 1 & 11: & 1 & 0 & 1 & 1 \\
4: & 0 & 1 & 0 & 0 & 12: & 1 & 1 & 0 & 0 \\
\hline & 7: & 0 & 1 & 0 & 1 & 13: & 1 & 1 & 0 & 1 \\
\hline & 7: & 0 & 1 & 1 & 0 & 14: & 1 & 1 & 1 & 0 \\
\hline & & 0 & 1 & 1 & 1 & 15: & 1 & 1 & 1 & 1
\end{array}\right.
$$

where $\omega_{k}=\frac{1}{10000^{2 k / d}}$

Masked self-attention layer

Multi-head self attention layer

- Multiple self-attention heads in parallel

General attention versus self-attention

Example: CNN with Self-Attention

Input Image

Example: CNN with Self-Attention

Self-Attention Module

Comparing RNNs to Transformer

RNNs

(+) LSTMs work reasonably well for long sequences.
(-) Expects an ordered sequences of inputs
(-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

(+) Good at long sequences. Each attention calculation looks at all inputs.
(+) Can operate over unordered sets or ordered sequences with positional encodings.
(+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
(-) Requires a lot of memory: $\mathrm{N} \times \mathrm{M}$ alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

On the Opportunities and Risks of Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang*1

Center for Research on Foundation Models (CRFM) Stanford Institute for Human-Centered Artificial Intelligence (HAI) Stanford University

Image Captioning using Transformers

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Image Captioning using Transformers

Input: Image I
Output: Sequence $y=y_{1}, y_{2}, \ldots, y_{T}$

Encoder: $\mathbf{c}=T_{w}(\mathbf{z})$
where \mathbf{z} is spatial CNN features
$T_{w}(\cdot)$ is the transformer encoder

Image Captioning using Transformers

```
Input: Image I
Output: Sequence y= y },\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{T}{
```

Decoder: $y_{t}=T_{D}\left(y_{0: t-1}, \mathbf{c}\right)$ where $T_{D}($.$) is the transformer decoder$

Encoder: $\mathbf{c}=T_{w}(\mathbf{z})$ where \mathbf{z} is spatial CNN features $T_{w}(\cdot)$ is the transformer encoder

The Transformer encoder block

Made up of N encoder blocks.
In vaswani et al. $\mathrm{N}=6, \mathrm{D}_{\mathrm{q}}=512$

The Transformer encoder block

Let's dive into one encoder block

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017
Fei-Fei Li, Jiajun Wu, Ruohan Gao
Lecture 11-83
May 03, 2022

The Transformer encoder block

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Residual connection
Attention attends over all the vectors

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

LayerNorm over each vector individually
Residual connection
Attention attends over all the vectors

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Residual connection
MLP over each vector individually
LayerNorm over each vector individually
Residual connection
Attention attends over all the vectors

Add positional encoding

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer encoder block

Transformer Encoder Block:

Inputs: Set of vectors \mathbf{x} Outputs: Set of vectors \mathbf{y}

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Vaswani et al, "Attention is all you need", NeurIPS 2017

The Transformer decoder block

Made up of N decoder blocks.
In vaswani et al. $\mathrm{N}=6, \mathrm{D}_{\mathrm{q}}=512$

The Transformer decoder block

Fei-Fei Li, Jiajun Wu, Ruohan Gao

The Transformer Decoder block

Most of the network is the same the transformer encoder.

The Transformer Decoder block

x_{0}

Multi-head attention block attends over the transformer encoder outputs.

For image captions, this is how we inject image features into the decoder.

Lecture 11-93
May 03, 2022

The Transformer Decoder block

person wearing
y_{0} y_{1} y_{2}

[START] person wearing hat

Transformer Decoder Block:

Inputs: Set of vectors \mathbf{x} and Set of context vectors \mathbf{c}.
Outputs: Set of vectors y.
Masked Self-attention only interacts with past inputs.

Multi-head attention block is NOT self-attention. It attends over encoder outputs.

Highly scalable, highly parallelizable, but high memory usage.

Image Captioning using transformers

- No recurrence at all

Image Captioning using transformers

- Perhaps we don't need convolutions at all?

Image Captioning using ONLY transformers

- Transformers from pixels to language
 Colab link to an implementation of vision transformers

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Vision Transformers

Fan et al, "Multiscale Vision Transformers", ICCV 2021

Liu et al, "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows", CVPR 2021

set of image features
set of box predictions
bipartite matching loss
Carion et al, "End-to-End Object Detection with Transformers",
ECCV 2020

ConvNets strike back!

ImageNet-1K Acc.

A ConvNet for the 2020s. Liu et al. CVPR 2022

DeiT III: Revenge of the ViT

Hugo Touvron ${ }^{\star, \dagger}$ Matthieu Cord ${ }^{\dagger}$ Hervé Jégou*

ImageNet-1k

ImageNet-21k

Summary

- Adding attention to RNNs allows them to "attend" to different parts of the input at every time step
- The general attention layer is a new type of layer that can be used to design new neural network architectures
- Transformers are a type of layer that uses self-attention and layer norm.
- It is highly scalable and highly parallelizable
- Faster training, larger models, better performance across vision and language tasks
- They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Next time: Video Understanding

