
Agenda

● Motivation
● Backprop Tips & Tricks
● Matrix calculus primer

Agenda

● Motivation
● Backprop Tips & Tricks
● Matrix calculus primer

Motivation
Recall: Optimization objective is to minimize loss

Motivation
Recall: Optimization objective is to minimize loss

Goal: how should we tweak the parameters to decrease the loss?

Agenda

● Motivation
● Backprop Tips & Tricks
● Matrix calculus primer

A Simple Example
Loss

Goal: Tweak the parameters to minimize loss

=> minimize a multivariable function in parameter space

A Simple Example

=> minimize a multivariable function

Plotted on WolframAlpha

Approach #1: Random Search
Intuition: the step we take in the domain of function

Approach #2: Numerical Gradient
Intuition: rate of change of a function with respect to a
variable surrounding a small region

Approach #2: Numerical Gradient
Intuition: rate of change of a function with respect to a
variable surrounding a small region

Finite Differences:

Approach #3: Analytical Gradient
Recall: partial derivative by limit definition

Approach #3: Analytical Gradient
Recall: chain rule

Approach #3: Analytical Gradient
Recall: chain rule

E.g.

Approach #3: Analytical Gradient
Recall: chain rule

E.g.

Approach #3: Analytical Gradient
Recall: chain rule

Intuition: upstream gradient values propagate backwards -- we can reuse them!

Gradient

“direction and rate of fastest increase”

Numerical Gradient vs Analytical Gradient

What about Autograd?
Q: “Why do we have to write the backward pass when frameworks in the real
world, such as TensorFlow, compute them for you automatically?”

A: Problems might surface related to underlying gradients when debugging your
model (e.g. vanishing or exploding gradients)

“Yes You Should Understand Backprop”

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Problem Statement: Backpropagation

Given a function f with respect to inputs x, labels y, and parameters 𝜃
compute the gradient of the Loss with respect to 𝜃

Problem Statement: Backpropagation
An algorithm for computing the gradient of a compound function as a series of
local, intermediate gradients:

Input x
local(x,W,b) => y

dx,dW,db <= grad_local(dy,x,W,b)
dx dy

W,b

dW,db

1. Identify intermediate functions (forward prop)
2. Compute local gradients (chain rule)
3. Combine with upstream signal to get full gradient

y output

Modularity: Previous Example

Compound function

Intermediate Variables
(forward propagation)

Modularity: 2-Layer Neural Network

Compound function

Intermediate Variables
(forward propagation)

= Squared Euclidean Distance
between and

? f(x;W,b) = Wx + b ?Intermediate Variables
(forward propagation)

(↑ lecture note) Input one feature
vector

(← here) Input a batch of data
(matrix)

Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)

1. intermediate functions
2. local gradients
3. full gradients

？？？

？？？

？？？

Agenda

● Motivation
● Backprop Tips & Tricks
● Matrix calculus primer

Derivative w.r.t. Vector

Scalar-by-Vector

Vector-by-Vector

Derivative w.r.t. Vector: Chain Rule
1. intermediate functions
2. local gradients
3. full gradients

?

Derivative w.r.t. Vector: Takeaway

Derivative w.r.t. Matrix

Vector-by-Matrix ?

Scalar-by-Matrix

Derivative w.r.t. Matrix: Dimension Balancing

When you take scalar-by-matrix gradients

The gradient has shape of denominator

● Dimension balancing is the “cheap” but efficient approach to
gradient calculations in most practical settings

Derivative w.r.t. Matrix: Takeaway

Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)

1. intermediate functions
2. local gradients
3. full gradients

Backprop Menu for Success

1. Write down variable graph

2. Keep track of error signals

3. Compute derivative of loss function

4. Enforce shape rule on error signals, especially when deriving

over a linear transformation

Vector-by-vector

?

Vector-by-vector

?

Vector-by-vector

?

Vector-by-vector

?

Matrix multiplication [Backprop]

? ?

Elementwise function [Backprop]

?

