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Motivation
Recall: Optimization objective is to minimize loss



Motivation
Recall: Optimization objective is to minimize loss

Goal: how should we tweak the parameters to decrease the loss?
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A Simple Example
Loss

Goal: Tweak the parameters to minimize loss

=> minimize a multivariable function in parameter space



A Simple Example

=> minimize a multivariable function

Plotted on WolframAlpha



Approach #1: Random Search 
Intuition: the step we take in the domain of function



Approach #2: Numerical Gradient
Intuition: rate of change of a function with respect to a 
variable surrounding a small region 



Approach #2: Numerical Gradient
Intuition: rate of change of a function with respect to a 
variable surrounding a small region 

Finite Differences:



Approach #3: Analytical Gradient
Recall: partial derivative by limit definition



Approach #3: Analytical Gradient
Recall: chain rule



Approach #3: Analytical Gradient
Recall: chain rule

E.g.   



Approach #3: Analytical Gradient
Recall: chain rule

E.g.   



Approach #3: Analytical Gradient
Recall: chain rule 

Intuition: upstream gradient values propagate backwards -- we can reuse them!



Gradient

“direction and rate of fastest increase”

Numerical Gradient vs Analytical Gradient



What about Autograd?
Q: “Why do we have to write the backward pass when frameworks in the real 
world, such as TensorFlow, compute them for you automatically?”

A: Problems might surface related to underlying gradients when debugging your 
model (e.g. vanishing or exploding gradients)

“Yes You Should Understand Backprop”

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b


Problem Statement: Backpropagation 

Given a function f with respect to inputs x, labels y, and parameters 𝜃
compute the gradient of the Loss with respect to 𝜃



Problem Statement: Backpropagation 
An algorithm for computing the gradient of a compound function as a series of 
local, intermediate gradients:

Input x
local(x,W,b) => y

dx,dW,db <= grad_local(dy,x,W,b)
dx dy

W,b

dW,db

1. Identify intermediate functions (forward prop)
2. Compute local gradients (chain rule)
3. Combine with upstream signal to get full gradient 

y output



Modularity: Previous Example

Compound function

Intermediate Variables
(forward propagation)



Modularity: 2-Layer Neural Network

Compound function

Intermediate Variables
(forward propagation)

=   Squared Euclidean Distance 
between      and 



? f(x;W,b) = Wx + b ?Intermediate Variables
(forward propagation)

(↑ lecture note) Input one feature 
vector

(← here) Input a batch of data 
(matrix)



Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)

1. intermediate functions 
2. local gradients
3. full gradients

？？？

？？？

？？？



Agenda

● Motivation
● Backprop Tips & Tricks
● Matrix calculus primer



Derivative w.r.t. Vector

Scalar-by-Vector

Vector-by-Vector



Derivative w.r.t. Vector: Chain Rule
1. intermediate functions 
2. local gradients
3. full gradients

?



Derivative w.r.t. Vector: Takeaway



Derivative w.r.t. Matrix

Vector-by-Matrix ?

Scalar-by-Matrix



Derivative w.r.t. Matrix: Dimension Balancing

When you take scalar-by-matrix gradients

The gradient has shape of denominator

● Dimension balancing is the “cheap” but efficient approach to 
gradient calculations in most practical settings



Derivative w.r.t. Matrix: Takeaway



Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)

1. intermediate functions 
2. local gradients
3. full gradients



Backprop Menu for Success

1. Write down variable graph 

2. Keep track of error signals

3. Compute derivative of loss function

4. Enforce shape rule on error signals, especially when deriving 

over a linear transformation



Vector-by-vector

?



Vector-by-vector

?



Vector-by-vector

?



Vector-by-vector

?



Matrix multiplication [Backprop]

? ?



Elementwise function [Backprop]

?


