Lecture 7: Training Neural Networks, Part I
Administrative: Project Proposal

Due tomorrow, 4/24 on GradeScope

1 person per group needs to submit, but tag all group members
Administrative: Alternate Midterm

See Piazza for form to request alternate midterm time or other midterm accommodations

Alternate midterm requests due Thursday!
Administrative: A2

A2 is out, due Wednesday 5/1

We recommend using Google Cloud for the assignment, especially if your local machine uses Windows
Where we are now...

Computational graphs

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Where we are now...

Neural Networks

Linear score function:

2-layer Neural Network

$$f = W x$$

$$f = W_2 \max(0, W_1 x)$$
Where we are now...

Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1
Where we are now...

Convolutional Layer

- **32x32x3 image**
- **5x5x3 filter**

Convolve (slide) over all spatial locations to produce the activation map.
Where we are now...

Convolutional Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
Where we are now...

Learning network parameters through optimization

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad  # perform parameter update
```
Where we are now...

Mini-batch SGD

Loop:
1. **Sample** a batch of data
2. **Forward** prop it through the graph (network), get loss
3. **Backprop** to calculate the gradients
4. **Update** the parameters using the gradient
Where we are now...

Hardware + Software

PyTorch

TensorFlow
Next: Training Neural Networks
Overview

1. One time setup
 activation functions, preprocessing, weight initialization, regularization, gradient checking

2. Training dynamics
 babysitting the learning process, parameter updates, hyperparameter optimization

3. Evaluation
 model ensembles, test-time augmentation
Part 1

- Activation Functions
- Data Preprocessing
- Weight Initialization
- Batch Normalization
- Babysitting the Learning Process
- Hyperparameter Optimization
Activation Functions
Activation Functions

A neuron receives input signals through its dendrites and is connected to other neurons via synapses. The total input to a neuron can be represented as the weighted sum of inputs:

\[\sum_i w_i x_i + b \]

where \(w_i \) are the weights associated with each input, \(x_i \) are the input signals, and \(b \) is the bias term. The output of the neuron is then passed through an activation function, denoted by \(f \), which determines whether the neuron fires or not:

\[f \left(\sum_i w_i x_i + b \right) \]

This output can then be transmitted along the neuron's axon to other neurons.
Activation Functions

Sigmoid
\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

tanh
\[\tanh(x) \]

ReLU
\[\max(0, x) \]

Leaky ReLU
\[\max(0.1x, x) \]

Maxout
\[\max(w_1^T x + b_1, w_2^T x + b_2) \]

ELU
\[\begin{cases}
 x & x \geq 0 \\
 \alpha(e^x - 1) & x < 0
\end{cases} \]
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0, 1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron
 Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
What happens when $x = -10$?
What happens when $x = 0$?
What happens when $x = 10$?
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Always all positive or all negative :(
Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Always all positive or all negative :(
(For a single element! Minibatches help)
Activation Functions

Sigmoid

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

- Squashes numbers to range \([0,1]\)
- Historically popular since they have nice interpretation as a saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. \(\exp() \) is a bit compute expensive
Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :

$tanh(x)$

[LeCun et al., 1991]
Activation Functions

- Computes $f(x) = \max(0,x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
Activation Functions

ReLU (Rectified Linear Unit)

- Computes $f(x) = \max(0, x)$
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
Activation Functions

ReLU
(Rectified Linear Unit)

- Computes \(f(x) = \max(0,x) \)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when \(x < 0 \)?
What happens when $x = -10$?
What happens when $x = 0$?
What happens when $x = 10$?
DATA CLOUD

active ReLU

dead ReLU will never activate
=> never update
DATA CLOUD

Active ReLU

Dead ReLU

=> never activate

=> never update

=> people like to initialize ReLU neurons with slightly positive biases (e.g. 0.01)
Activation Functions

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

\[f(x) = \max(0.01x, x) \]
Activation Functions

Leaky ReLU

\[f(x) = \max(0.01x, x) \]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- Will not “die”.

Parametric Rectifier (PReLU)

\[f(x) = \max(\alpha x, x) \]

backprop into \(\alpha \) (parameter)

[Mass et al., 2013]
[He et al., 2015]
Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise
- Computation requires \(\exp() \)

\[
f(x) = \begin{cases}
 x & \text{if } x > 0 \\
 \alpha \left(\exp(x) - 1 \right) & \text{if } x \leq 0
\end{cases}
\]
Maxout “Neuron”
- Does not have the basic form of dot product -> nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

Problem: doubles the number of parameters/neuron :(
TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid
Data Preprocessing
Data Preprocessing

(original data) Zero-centered data Normalized data

$$X \leftarrow \text{np.mean}(X, \text{axis} = 0)$$ $$X \rightarrow \text{np.std}(X, \text{axis} = 0)$$

(Assume X [NxD] is data matrix, each example in a row)
Remember: Consider what happens when the input to a neuron is always positive...

\[f \left(\sum_i w_i x_i + b \right) \]

What can we say about the gradients on \(w \)?
Always all positive or all negative :(
(this is also why you want zero-mean data!)
Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

- Original data
- Zero-centered data
- Normalized data

$$X \leftarrow \text{np.mean}(X, \text{axis} = 0)$$

$$X /= \text{np.std}(X, \text{axis} = 0)$$
Data Preprocessing

In practice, you may also see **PCA** and **Whitening** of the data.

- **original data**
- **decorrelated data** (data has diagonal covariance matrix)
- **whitened data** (covariance matrix is the identity matrix)
Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize
TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)
- Subtract per-channel mean and Divide by per-channel std (e.g. ResNet) (mean along each channel = 3 numbers)

Not common to do PCA or whitening
Weight Initialization
Q: what happens when $W=\text{constant init}$ is used?
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[
W = 0.01 \times \text{np.random.randn(Din, Dout)}
\]
- First idea: **Small random numbers**
 (gaussian with zero mean and 1e-2 standard deviation)

\[W = 0.01 \times \text{np.random.randn}(\text{Din}, \text{Dout}) \]

Works ~okay for small networks, but problems with deeper networks.
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Forward pass for a 6-layer net with hidden size 4096
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
x = np.tanh(x.dot(W))
hs.append(x)
```
Weight Initialization: Activation statistics

```python
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
x = np.tanh(x.dot(W))
hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?
Weight Initialization: Activation statistics

Forward pass for a 6-layer net with hidden size 4096

```python
 dims = [4096] * 7
 hs = []
 x = np.random.randn(16, dims[0])
 for Din, Dout in zip(dims[:-1], dims[1:]):
     W = 0.01 * np.random.randn(Din, Dout)
     x = np.tanh(x.dot(W))
     hs.append(x)
```

All activations tend to zero for deeper network layers

Q: What do the gradients dL/dW look like?

A: All zero, no learning =(

![Activation statistics graphs for layers 1 to 6](image_url)
Weight Initialization: Activation statistics

```python
dims = [4096] * 7  # Increase std of initial weights from 0.01 to 0.05
hs = []

x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```
Weight Initialization: Activation statistics

```python
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * np.random.randn(Din, Dout)
x = np.tanh(x.dot(W))
hs.append(x)
```

All activations saturate

Q: What do the gradients look like?
Weight Initialization: Activation statistics

- Increase std of initial weights from 0.01 to 0.05
- $x = \text{np.random.randn}(16, \text{dims}[0])$
-

```python
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.05 * \text{np.random.randn}(\text{Din}, \text{Dout})
    x = \text{np.tanh}(x.\text{dot}(W))
    \text{hs.append}(x)
```

Q: What do the gradients look like?

A: Local gradients all zero, no learning =(

All activations saturate
Weight Initialization: “Xavier” Initialization

```python
# Xavier initialization: std = 1/sqrt(Din)
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  # “Xavier” initialization: std = 1/sqrt(Din)
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
“Xavier” initialization:

\[\text{std} = \frac{1}{\sqrt{\text{Din}}} \]

Weight Initialization: “Xavier” Initialization

```python
import numpy as np

dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is kernel_size^2 * input_channels

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: “Xavier” Initialization

```
dims = [4096] * 7  # “Xavier” initialization: std = 1/sqrt(Din)
s = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    s.append(x)
```

“Just right”: Activations are nicely scaled for all layers!

For conv layers, Din is `kernel_size^2 * input_channels`

```
y = Wx
h = f(y)
```

Derivation:
\[
\text{Var}(y_i) = \text{Din} \times \text{Var}(x_i w_i) \\
= \text{Din} \times (E[x_i^2] E[w_i^2] - E[x_i]^2 E[w_i]^2) \\
= \text{Din} \times \text{Var}(x_i) \times \text{Var}(w_i)
\]

If \(\text{Var}(w_i) = 1/\text{Din}\) then \(\text{Var}(y_i) = \text{Var}(x_i)\)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
Weight Initialization: What about ReLU?

```python
 dims = [4096] * 7
 hs = []
 x = np.random.randn(16, dims[0])
 for Din, Dout in zip(dims[:-1], dims[1:]):
     W = np.random.randn(Din, Dout) / np.sqrt(Din)
     x = np.maximum(0, x.dot(W))
 hs.append(x)
```
Weight Initialization: What about ReLU?

Change from tanh to ReLU

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.maximum(0, x.dot(W))
hs.append(x)
```

Xavier assumes zero centered activation function

Activations collapse to zero again, no learning =(
Weight Initialization: Kaiming / MSRA Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) * np.sqrt(2/Din)
    x = np.maximum(0, x.dot(W))
    hs.append(x)
```

"Just right": Activations are nicely scaled for all layers!

He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015
Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
Batch Normalization
Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

\[
\hat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]

this is a vanilla differentiable function...
Batch Normalization

Input: $x : N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
Per-channel mean, shape is D

$$\sigma^2_j = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$
Per-channel var, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma^2_j + \varepsilon}}$$
Normalized x, Shape is N x D
Batch Normalization

Input: \(x : N \times D \)

\[
\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j} \quad \text{Per-channel mean, shape is } D
\]

\[
\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var, shape is } D
\]

\[
\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized } x, \text{ Shape is } N \times D
\]

Problem: What if zero-mean, unit variance is too hard of a constraint?

[ioffe and Szegedy, 2015]
Batch Normalization

Input: \(x : N \times D \)

\[
\begin{align*}
\mu_j &= \frac{1}{N} \sum_{i=1}^{N} x_{i,j} & \text{Per-channel mean, shape is D} \\
\sigma_j^2 &= \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2 & \text{Per-channel var, shape is D} \\
\hat{x}_{i,j} &= \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} & \text{Normalized x, Shape is N x D} \\
y_{i,j} &= \gamma_j \hat{x}_{i,j} + \beta_j & \text{Output, Shape is N x D}
\end{align*}
\]

Learnable scale and shift parameters:
\(\gamma, \beta : D \)

Learning \(\gamma = \sigma \), \(\beta = \mu \) will recover the identity function!
Batch Normalization: Test-Time

Input: $x : N \times D$

Learnable scale and shift parameters:
$\gamma, \beta : D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

Estimates depend on minibatch; can’t do this at test-time!

$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$ Per-channel mean, shape is D

$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$ Per-channel var, shape is D

$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$ Normalized x, Shape is N x D

$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$ Output, Shape is N x D
Batch Normalization: Test-Time

Input: \(x : N \times D \)

\[\mu_j = \text{(Running) average of values seen during training} \]

Per-channel mean, shape is D

\[\sigma_j^2 = \text{(Running) average of values seen during training} \]

Per-channel var, shape is D

Learnable scale and shift parameters:

\[\gamma, \beta : D \]

During testing batchnorm becomes a linear operator!

Can be fused with the previous fully-connected or conv layer

\[\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \]

Normalized x, Shape is N x D

\[y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j \]

Output, Shape is N x D
Batch Normalization: Test-Time

Input: \(x : N \times D \)

\[\mu_j = \text{(Running) average of values seen during training} \]

Per-channel mean, shape is D

\[\sigma_j^2 = \text{(Running) average of values seen during training} \]

Per-channel var, shape is D

Learnable scale and shift parameters:

\(\gamma, \beta : D \)

Learning \(\gamma = \sigma \), \(\beta = \mu \) will recover the identity function!

\[\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \]

Normalized x, Shape is \(N \times D \)

\[y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j \]

Output, Shape is \(N \times D \)
Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

\[
x: N \times D
\]

Normalize

\[
\mu, \sigma: 1 \times D
\]

\[
\gamma, \beta: 1 \times D
\]

\[
y = \gamma (x-\mu) / \sigma + \beta
\]

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

\[
x: N \times C \times H \times W
\]

Normalize

\[
\mu, \sigma: 1 \times C \times 1 \times 1
\]

\[
\gamma, \beta: 1 \times C \times 1 \times 1
\]

\[
y = \gamma (x-\mu) / \sigma + \beta
\]
Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

\[
\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
\]
Batch Normalization

- Makes deep networks **much** easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!
Layer Normalization

Batch Normalization for fully-connected networks

\[x: N \times D \]
\[\mu, \sigma: 1 \times D \]
\[\gamma, \beta: 1 \times D \]
\[y = \gamma (x - \mu) / \sigma + \beta \]

Layer Normalization for fully-connected networks
Same behavior at train and test!
Can be used in recurrent networks

\[x: N \times D \]
\[\mu, \sigma: N \times 1 \]
\[\gamma, \beta: 1 \times D \]
\[y = \gamma (x - \mu) / \sigma + \beta \]

Instance Normalization

Batch Normalization for convolutional networks

\[
x: N \times C \times H \times W
\]

\[
\mu, \sigma: 1 \times C \times 1 \times 1
\]

\[
\gamma, \beta: 1 \times C \times 1 \times 1
\]

\[
y = \gamma (x - \mu) / \sigma + \beta
\]

Instance Normalization for convolutional networks

Same behavior at train / test!

\[
x: N \times C \times H \times W
\]

\[
\mu, \sigma: N \times C \times 1 \times 1
\]

\[
\gamma, \beta: 1 \times C \times 1 \times 1
\]

\[
y = \gamma (x - \mu) / \sigma + \beta
\]

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017
Comparison of Normalization Layers

Wu and He, “Group Normalization”, ECCV 2018
Group Normalization

Wu and He, “Group Normalization”, ECCV 2018
Summary

We looked in detail at:

- Activation Functions *(use ReLU)*
- Data Preprocessing *(images: subtract mean)*
- Weight Initialization *(use Xavier/He init)*
- Batch Normalization *(use)*

TLDRs
Next time:
Training Neural Networks, Part 2

- Parameter update schemes
- Learning rate schedules
- Gradient checking
- Regularization (Dropout etc.)
- Babysitting learning
- Hyperparameter search
- Evaluation (Ensembles etc.)
- Transfer learning / fine-tuning