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Abstract

Vision Transformer(ViT) [6] adopts the Transformer ar-
chitecture on the image classification tasks and outperforms
the state-of-the-art convolutional networks with substan-
tially fewer computational resources. However, it’s still
expensive to train Transformer either on a very large pre-
training dataset or with a large model size. So model effi-
ciency is still an important area to explore. Spatial com-
pression is a common technique widely used in convolu-
tional networks for image classification tasks, which in-
dicates the spatial information redundancy for classifica-
tion tasks. In addition, inspired by the success of Funnel-
Transformer [4] in NLP, this project examines a similar idea
on the ImageNet dataset that gradually shrink the image
patch length dimension of Vision Transformer as the lay-
ers go deeper, in order to save the computational resources
(Funnel-ViT). The results show that with with a small pre-
training accuracy compromise (< 1%), we can save 40%
memory, get 37.5% speedup with three funnel blocks, and
get 0.6% fine-tuning accuracy improvement. The saved
resources can even be re-invested to a wider and deeper
Funnel-ViT model to further reduce the pre-training accu-
racy loss to 0.1%.

1. Introduction
The unsupervised pre-training has been widely adopted

in computer vision tasks. It has been observed that with
a larger pre-training dataset or a larger model size, the
model performance consistently improves. However, it
would require much more computational resources during
pre-training and even fine-tuning subsequently. It limits the
model adoptions in real world. There has been lots of efforts
to improve the model efficiency. For computer vision tasks,
lots of work have been done (e.g. the pooling technique,
the inception module introudced by GoogLeNet [11]) to
improve the efficiency of convolutional networks given it’s
dominance in computer vision tasks. One common effec-
tive approach is to compress the spatial dimension for image
classification tasks.

Inspired by the success of the Transformer-based model
architecture in NLP tasks, Vision Transformer applies the
Transformer architecture on the image classification tasks.
It entirely replaces the convolutions with self-attentions, in
order to benefit from the computational efficiency and scal-
ability of Transformer. Vision Transformer outperforms
the state-of-the-art convolutional networks with much fewer
computational resources, especially on a very large pre-
training dataset. This work arises the popularity of the
Transformer architecture in computer vision.

Given the popularity of Transformer architecture and the
spatial information redundancy, this project aims to remove
the spatial redundancy in Vision Transformer to improve the
training efficiency for image classification tasks. Inspired
by the success of Funnel-Transformer in NLP pre-training,
this project examines a similar approach to gradually shrink
the patch length dimension of Vision Transformer hidden
states (Funnel-ViT). The reduced patch length dimension
could largely reduce the required memory and computation
FLOPs.

This project conducts all experiments on the ImageNet
dataset. The inputs are an image and a class label. They
are feed into the Vision Transformer architecture and its
variants to predict a classification label. The results show
that with a very small sacrifice on the pre-training accuracy
(< 1%), we could save 40% memory, get 37.5% speedup
and even better fine-tuning accuracy (0.6% improvement).
It demonstrates the redundant information in the patch se-
quence dimension of Transformer layers. In addition, this
project also explores different ways to re-invest the saved
resources to model capacity in order to further improve the
model quality. It turns out that a deeper and wider Funnel-
ViT can be easily overfitting on the training data. After tun-
ing the model depth and width, the overfitting issue is mit-
igated and Funnel-ViT can almost recover the pre-training
accuracy of full-length ViT. The results also show that it’s
helpful to have shallow layers wider and deep layers thinner.

2. Related Work
Image classification is a popular classic computer vision

task. There has been a significant progress made over the
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past few years. Most advanced model architectures are built
on top of deep convolutional networks, like [7] [8] [10].
One common pattern is that, as the layers goes deeper,
the network downsamples the feature representations in the
spatial dimensions through either convolutional layers or
pooling layers. It reduces the computation and memory
cost of maintaining a full spatial size during CNN training
and also indicates the information redundancy in the full-
sized spatial representation for convolutional networks. The
convolutional layers shares the model weights across differ-
ent image positions which largely reduces the number of
weights to train compared to fully connected layers. More-
over, the convolution operation is applied within a small im-
age region, so it’s good at capturing local structures. How-
ever, it’s hard to capture dependencies with a long distance.
Another drawback is that the convolution operations treat
different receptive fields equally.

Self-attention [12] mechanism is dominate in NLP. It’s
good at capturing distant-dependencies compared to convo-
lutional layers and takes token importance into considera-
tion. Although we compute the attention scores of token
pairs over the whole sequence, the scores over different po-
sitions can be computed in parallel. Given its strong power,
there have been efforts which combine convolutional net-
works and self-attentions for computer vision tasks, like Vi-
sual Transformer [13]. It first uses a convolutional layer
to extract low-level features. Then, it uses a tokenizer
to group pixels into semantic tokens and feeds them into
Transformer. There have also been efforts on replacing con-
volution layers with self-attentions completely. In order to
make the model scalable with the high resolutions, some
adjustments are made on top of self-attentions. For exam-
ple, Image Transformer [9] computes attention scores only
on neighbors of each query pixel. Sparse Transformer [2]
introduces factorized self-attention to save computation.
Visaul Transformer, Image Transformer and Sparse Trans-
former all outperform the state-of-the-art convolution-based
models on ImageNet. However, either the convolutional
layers or additional adjustments on self-attentions make
users not fully benefit from self-attentions, e.g. the Trans-
former scaling law.

[3] completely replaces the convolutional layers and
uses native Transformer layers on a sequence of image
patches for image classification tasks. The model architec-
ture is much simpler than Visaul Transformer, Image Trans-
former, Sparse Transformer, etc. It shows that attention lay-
ers can express any convolutional layers given enough at-
tention heads. But the patch size with 2x2 pixels makes the
model only applicable to images with small resolutions. Vi-
sion Transformer(ViT) [6] uses larger patches and demon-
strates the strong power of Transformer in large-scale pre-
training for computer vision tasks. With a large pre-training
dataset, Vision Transformer beats the inductive bias inherit

to CNNs and outperforms the state-of-the-art CNN architec-
tures with much fewer resources. Compared to convolution-
based ResNet, it provides higher inference speed and allows
a large batch size for training. Furthermore, it can be eas-
ily scaled to a wider and deeper model and yields better
model quality. But it’s still expensive to pre-train and fine-
tune a large Vision Transformer with more data. The paper
also shows that ”decreasing the patch size and thus increas-
ing the effective sequence length shows surprisingly robust
improvements”. However, a longer sequence length means
computationally more expensive. Thus, training efficiency
is important for Vision Transformer to be widely adopted.

Funnel-Transformer [4] proposed an efficient Trans-
former architecture for NLP pre-training at a lower cost
through gradually shrinking the hidden states in sequence
dimension. It effectively removes the redundancy in the
sequence dimension and largely reduces the computation
complexity. It can further improve the model quality by
re-investing the saved FLOPs and memory to model capac-
ity. It outperforms the standard Transformer on varieties of
NLP tasks, especially on sentence-level predication tasks.
A similar idea can be extended to Vision Transformer for
image classification tasks.

3. Methods

3.1. Baseline/ViT

Vision Transformer [6] applies the standard Transformer
architecture directly to images by splitting the spatial pixels
of an image (H,W ) into a sequence of fixed-size 2D image
patches with a smaller spatial dimension (P, P ). The num-
ber of patches N would be HW/p2. The self-attentions are
applied on patches instead of pixels, which makes the atten-
tion computation more scalable with different image reso-
lutions. The patches are flattened and fed into a trainable
linear projection layer to get patch embeddings. It also adds
learnable 1D position embeddings to the patch embeddings
to retain location information of the patches. At the begin-
ning of the sequence, ViT adds an extra learnable [class]
token as classification head. The Transformer output of this
token serves as a image-level representation for class pre-
diction.

The Transformer encoder consists of a stack of Trans-
former layers with the same configurations. Within each
Transformer layer, it has two blocks: self-attention block
and MLP block, and applies residual connection for each
block in order to make a deep neural network easier to train.
The self-attention block consists of a layer normalization
followed by a multi-head attention layer. The multi-head
self-attention allows to learn different kinds of dependen-
cies of different patch pairs over the patch dimension. The
MLP block consists of a layer normalization followed by a
feed-forward MLP layer.
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Figure 1. Vision Transformer (copied from [6])

Z0 = [Xclass;X
1
pE;X2

pE; · · ·;XN
p E] + Epos

Z ′
l = Self−Attention(LayerNorm(zl−1))+zl−1, l = 1···L

Zl = MLP (LayerNorm(zl)) + z′l, l = 1 · · · L

y = LayerNorm(Z0
L)

For the image classification tasks, it takes the outputs of
the last layer on the [class] token as the encoder outputs and
uses it together with labels to compute a categorical cross
entropy loss.

During fine-tuning, the image resolution is usually
higher than the resolution at the pre-training stage. ViT
keeps the same patch size, resulting in a longer patch se-
quence. It makes the position weights not loadable directly.
To deal with arbitrary patch length, ViT performs 2D inter-
polation of the pre-trained position embeddings. The new
position embeddings are based on the locations in the im-
age of a pre-training resolution.

3.2. Funnel-ViT

Funnel-Transformer [4] splits the stacked Transformer
layers into several blocks. Different blocks have same
layer configuration except for sequence length. Within each
block, the sequence length of hidden states keeps the same.
But the sequence length is cut by half across the block
boundary by a pooling layer. The pooling is applied on
patch tokens and ignores the first [class] token to preserve
full image-level feature representation.

h′ = concat(h[0], Pooling(h[1 :]))

.

Pretraining Finetuning

ViT ViT
Funnel-ViT Funnel-ViT
Funnel-ViT ViT
ViT Funnel-ViT

Table 1. Pretraining and Finetuning setup.

For the first transformer layer after pooling, it uses the
”pool-query-only” technique [4], which takes the pooled
hidden states h′ as query and unpooled states h as key and
value.

Attn(Q = h′,KV = h)

In this way, more information can be carried to the com-
pressed representation compared to naively taking pooled
states as key and value.

Attn(Q = h′,KV = h′)

For the token-level prediction tasks, Funnel Transformer
could recover a full-length representation by adding the
last full-length representation from the first block and an
up-sampled representation of the last layer.

Funnel-ViT combines ViT and Funnel-Transformer. It
adopts the same approach as ViT to process an image as
a sequence of patch embeddings and positional embed-
ddings. Then, feed the embeddings to Funnel-Transformer
architecture. Image classification is a sequence-level task,
so we only need to a compressed representation (image-
level) and don’t need to recover a full-length representation
(patch-level).

Compared to Funnel-Transformer, Funnel-ViT explores
different re-investing strategies. The configurations of
Transformer layers can vary across different blocks in
Funnel-ViT. For example, different blocks can have differ-
ent number of layers, hidden dimensions and MLP dimen-
sions. Funnel-ViT uses a projection layer to re-size the hid-
den states.

In addition, ViT and Funnel-ViT have the same weight
shapes. So Funnel-ViT can load pre-trained ViT weights,
and ViT can load pre-trained Funnel-ViT weights. This
project also examines the effectiveness of Funnel-ViT in
both pre-training and fine-tuning with setups as shown in
Table 1.

I use the ViT implementation provided by TensorFlow
official models 1. On top of it, I implemented the Funnel
Transformer architecture and 2D interpolation of the pre-
trained position weights for fine-tuning.

1available at https://github.com/tensorflow/models/tree/master/official/projects/vit
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Figure 2. Funnel ViT

4. Dataset and Features

In this project, I use the standard ImageNet [5] dataset
for both pre-training and fine-tuneing. It has 1000 classes
and contains 1,281,167 training images, 50,000 validation
images and 100,000 test images. The input resolution is
224 for pre-training and is 384 for fine-tuning. I convert the
dataset to tfrecord in order to use the ViT implementation
provided by TensorFlow official models.

5. Experiments and Analysis

5.1. Experiments

Model configs

• patch size = 16, patch length = 14 x 14 + 1 = 197 (yield
better accuracy compared to patch size = 32)

• Transformer with 12 layers, 12 attention heads, hid-
den dimension=768, MLP dimension=3076 (standard
base-size Transformer)

• Pooling with stride = 2, window = 2 (suggested by
Funnel Transformer paper)

• Adam optimizer with learning rate = 0.003, weight
decay = 0.3 for pre-training ; SGD optimizer with a
momentum of 0.9 for fine-tuning (same as the Vision
Transformer paper).

Evaluation metrics

• model quality: top1 accuracy and top5 accuracy

• model resource usage: memory usage, steps/sec

5.2. Results and Discussion

5.2.1 Compression

Pre-training Table 2 shows the results of different block
layouts for pre-training on ImageNet. ’Bn(t)’ means that
there are n Transformer layers in a block with patch length
t. The accuracy of Funnel-ViT only reduces slightly after
cutting the hidden states by half in the sequence dimension.
It demonstrates the assumption that there is spatial informa-
tion redundancy in the deeper Transformer layers of ViT.
It takes more than 12 hours to pre-train the ViT-base model
on ImageNet. However, with a small accuracy compromise,
we can save 25.8% memory and get 23% speedup with two
funnel blocks (0.22% accuracy loss), and save 40% memory
and get 37.5% speedup with three funnel blocks (0.7% ac-
curacy loss). My experiments also show that mean pooling
performs better than max pooling.

(a) Training loss. (b) Validation loss.

(c) Top1 accuracy. (d) Top5 accuracy.

Figure 4. Loss and accuracy pretraining curves of ViT and
Funnel-Vit

(black: ViT; blue: Funnel-ViT B6(197)-6(99); red: Funnel-ViT B4(197)-4(99)-4(50)
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block layout train top1 val top1 train top5 val top5 memory usage steps/sec time

B12(197) (ViT) 92.4% 71.41% 97.28% 89% 12.38G 2.0
B6(197)-6(99), max 92.05% 70.42% 97.15% 88.41% 9.18G 2.6

B6(197)-6(99), mean 92.12% 71.19% 97.17% 88.9% 9.18G 2.6
B4(197)-4(99)-4(50), max 91.66% 69.71% 97.01% 87.8% 7.38G 3.2

B6(197)-6(50), max 92.02% 70.42% 97.14% 88.26% 8.04G 3.1

Table 2. Different block layouts of pre-training on ImageNet.

Figure 3. Saliency maps

From the training curves in Figure 4, the model con-
verges at the same number of steps. So the speedup mainly
comes from more steps per second. Moreover, if we com-
press the spatial dimensions too much each time (e.g. stride
size = 4), it would make the training more unstable. Deeply
compressed features are more sensible to gradients update
at the initial training stage.

Figure 5. Class visualization

For a given class, the class visualization generated by
Funnel-ViT is similar to ViT. Funnel-ViT is able to cap-
ture similar class features as ViT. For example, for class
snail, both of the models are able to learn the spiral shells

of snails. For class fly, both of the models capture the fea-
ture of long legs.

The saliency maps of the same image with ViT and
Funnel-ViT are almost the same as shown in Figure 3. The
regions of pixels that have a large effect on the classifica-
tion score are similar. It re-demonstrated the spatial infor-
mation redundancy in Transformer layers. My experiments
show that Funnel-ViT misclassifies some images which are
classified correctly by ViT, while correcting a few classifi-
cations. This can be explained by the saliency maps. The
pooling layer of Funnel-ViT slightly enlarges regions with a
large effect on the classification score. The noise introduced
by the additional pixels would disturb the feature extraction,
thus affecting class prediction.

Fine-tuning Form Table 3, we can get a better accuracy
with a pre-trained Funnel-ViT when fine-tuning on Ima-
geNet with a higher resolution, no matter whether the fine-
tuning task uses ViT or Funnel-ViT. We can get 0.6% im-
provement on top-1 accuracy with a pre-trained Funnel-ViT,
compared to a pre-trained ViT. We can also save 26.5%
memory and get 24% speedup. Furthermore, The results
shows that fine-tuning ViT with a pre-trained Funnel-ViT
yields better accuracy than the baseline (ViT for both pre-
training and fine-tuning). However, fine-tuning Funnel-ViT
with a pre-trained ViT yields worse accuracy than the base-
line. It makes sense since Funnel-ViT learns to produce

5
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pre-training fine-tuning train top1 val top1 train top5 val top5 memory usage steps/sec time

ViT ViT 73.84% 70.95% 90.06% 89.45% 7.32G 4.4
Funnel-ViT Funnel-ViT 75.28% 71.53% 90.8% 89.97% 5.38G 5.8
Funnel-ViT ViT 75.18% 71.35% 90.74% 89.8% 7.32G 4.4

ViT Funnel-ViT 73.09% 70.44% 89.7% 89.14% 5.38G 5.8

Table 3. Fine-tuning performance on ImageNet.

block layout train top1 val top1 train top5 val top5 memory usage steps/sec time

B12(197) (ViT) 92.4% 71.41% 97.28% 89% 12.38G 2.0
B6(197)-6(99) 92.12% 71.19% 97.17% 88.9% 9.18G 2.6

B6(197)-6(99)-4(50) 93.7% 70.88% 97.76% 88.32% 10.19G 2.3
B6(197, h1024)-6(99, h1024) 93.45% 70.7% 97.69% 88.42% 10.54G 1.76

B6(197, m4096)-6(99, m4096) 93.29% 70.27% 97.62% 88.11% 10.04G 2.35
B6(197)-6(99)-4(50, m1536) 93.04% 71.17% 97.53% 88.79% 9.78G 2.4
B6(197)-6(99)-2(50, m1536) 92.65% 71.13% 97.36% 88.69% 9.44G 2.5

B6(197, m4096)-6(99)-2(50, m1536) 93.05% 71.31% 97.51% 88.69% 10.97G 2.1

Table 4. Different re-investment configurations of pre-training on ImageNet.
(h: hidden dim; m: MLP dim)

a image-level representation and ViT learns to produce a
patch-level representation. When the resolution changes
during fine-tuning, a patch-level representation is relatively
not so meaningful.

5.2.2 Re-investment

Tables 4 shows the results of different ways to re-invest
saved resources. In general, either a deeper or a wider
model could improve the accuracy on the training dataset.
But it reduces the accuracy on the validation dataset, result-
ing in overfitting. The overfitting issue can be mitigated by
tuning the model width and depth at the same time. Empiri-
cally, while adding more layers, increase the model width of
shallow layers and reduce the model width of deep layers.
However, tuning the model width and depth cannot fully
solve the overfitting issue. Funnel-ViT with a larger model
size doesn’t outperform ViT. The reason is that a larger
model usually requires more training data. From the ViT
paper, Large-ViT (24 layers) yields a worse accuracy on Im-
ageNet but a higher accuracy on ImageNet-21k. ImageNet-
21k contains 21k classes and 14M images which is much
larger than ImageNet. So it’s expected to see overfitting on
ImageNet when increasing the model capacity.

While tuning the model width, it’s better to adjust the
MLP dimension instead of the hidden dim given limited
pre-training data. A larger hidden dim would make the
model easier to overfit on the training data and largely slows
down the training speed at the same time.

6. Conclusion and Future work

In this project, I explored the Funnel-Transformer archi-
tecture introduced for NLP tasks on top of Vision Trans-
former (base size) for image classification tasks with Im-
ageNet dataset. The results show that with a small pre-
training accuracy loss, we can save 25.8% memory and
get 23% speedup with two funnel blocks (0.22% accuracy
loss), and save 40% memory and get 37.5% speedup with
three funnel blocks (0.7% accuracy loss). It largely re-
duces the Transformer-based pre-training time (more than
12 hours with ViT), making the Transformer architecture
more applicable for image classification tasks. The accu-
racy and saliency maps both demonstrates the redundant
information in deeper full-length Transformer layers. And
the pooling layer would slightly enlarge the image regions
which affects the prediction scores. Although, Funnel-ViT
yields a worse pre-training accuracy, but it helps learn a bet-
ter image-level representation during fine-tuning, producing
better fine-tuning accuracy. With limited time, I only run
fine-tuning experiments on the ImageNet dataset. It’s worth
experimenting on other datasets (e.g. CIFAR-10, CIFAR-
100) to consolidate the conclusion.

The project also explored different ways to re-invest the
saved resources to a deeper and wider model in order to
improve the accuracy. Due to the limited computation re-
source, I have only experimented on the ImageNet dataset,
which is small for large-Transformer. So a deeper and wider
model would overfit on the training data. But Funnel-ViT
can mitigate the overfitting issue and almost recover the
pre-training accuracy of ViT by tuning the model depth and
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width. In general, it’s helpful to increase the width of shal-
low layers and reduce the width of deep layers. It would be
interesting to explore the re-investment further on a larger
training dataset like ImageNet-21k, which allows us to ex-
periment with larger models.

7. Contributions

The model is implemented in TensorFlow [1]. I use the
ViT implementation provided by TensorFlow official mod-
els 1 as the baseline.
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