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Abstract

Up-to-date location information of human activity is vi-
tally important to scientists and governments working to
preserve the Amazon rainforest. We implement a Convolu-
tional Neural Network (CNN) model to perform multi-label
classification of Amazon satellite images. Our model iden-
tifies the weather conditions and natural terrain features
in the images as well as man-made developments such as
roads, farming, and logging. We begin by implementing a
simple CNN model that achieves a 0.84 F-score. We then
experiment with three deep CNN architectures that have
had recent success in the ImageNet Challenge and show
that a ResNet-50 model can achieve a 0.91 F-score. Our
model’s best performance is achieved via a number of data
augmentation and ensemble techniques. Our model is par-
ticularly effective at identifying illegal mining operations.
These models will enable stakeholders to pinpoint where
deforestation and associated illegal activity is taking place
and craft targeted policy to limit its deleterious effects.

1. Introduction
Deforestation of the Amazon basin has occurred at a

rapid pace over the past four decades. Governments and sci-
entists, concerned about consequences ranging from habitat
loss to climate change, need a way to monitor where and
when the deforestation is occurring.

Planet, a satellite imaging company, recently released
a dataset of more than 100,000 images from the Amazon
basin and sponsored a Kaggle competition involving label-
ing the atmosphere and ground features in the images [1].
Each image is 256 x 256 pixels and has RGB and near-
infrared channels. Notably, these images have at least ten
times greater resolution than any earth image data used pre-
viously in tracking deforestation, with each pixel represent-
ing only three to five meters. In the past, researchers have
relied on satellite images generated by Landsat, which is
jointly managed by NASA and the US Geological Survey.
Landsat missions often have multi-year gaps, making the
data only suitable for examining overarching trends of gen-

Figure 1: Clockwise from top left: 1) clear primary agricul-
ture habitation road; 2) haze primary agriculture water; 3)
cloudy; 4) partly-cloudy primary cultivation slash-burn

eral deforestation. The high-resolution Planet images en-
able identification of specific causes of deforestation and
differentiation of legal and illegal human developments.

We build a model using Convolutional Neural Networks
(CNN) to analyze each image and classify it with one or
more of the 17 feature labels. Each image has one of four
atmosphere labels and zero or more of 13 ground labels.
By definition, cloudy images have zero ground labels, as
none should be visible. Some ground features are human-
related (habitation, slash burn, mining) while others are nat-
ural (water, blooming, blow down). More than 90 percent of
images are labeled “primary”, meaning that they have for-
est in them. Six of the other ground labels appear in fewer
than one percent of images, but are often the ones we are
particularly interested in identifying.
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Approximately 40,000 images have labels, which we di-
vide into our training and validation sets. The other 60,000
images are used as a test set for creating a submission to the
Kaggle competition.

We develop a multi-label classification CNN framework
to work on this problem. A naive approach might be to
train 17 different single-label networks that predict the pres-
ence of a particular atmosphere or ground feature. How-
ever, multi-label classification has been shown to robustly
account for the correlative relationships that exist between
multiple features. In the Planet data, this is particularly use-
ful, as human developments almost never occur indepen-
dently of one another. For example, almost all man-made
structures, no matter how remote, will have a road nearby.

We build our multi-label classifier on top of CNN
architectures that have performed well in the single-
label ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC). Namely, we experiment with VGG-16,
Inception-v3, and ResNet-50. Our model takes an input im-
age, computes a score for each of the 17 features, and then
uses a cutoff threshold to decide which labels to keep.

2. Background/Related Work
The field of Remote Sensing, which broadly involves

collection of earth data via satellites, has long been in-
terested in image classification. The recent explosion in
the availability of massive amount of earth data has led to
breakthroughs in machine learning approaches to analysis.
Santos et al [2] proposes a Bag of Words algorithm that an-
notates images using correlation representations. Chen et
al [3] improves on this result by adding spatial information
into the BoW model.

Barsi et al [4] utilized neural networks to examine satel-
lite data in 2003, and the introduction of CNNs sparked
a renaissance of training to perform remote sensing tasks.
Hung et al [5] used CNNs to identify weeds from a UAV
camera, while Hu et al [6] used CNNs to perform remote
sensing scene classification, and Chen et al [7] used CNNs
to identify vehicles in satellite images.

These papers generally built task-specific models to
achieve their best performance, but in 2014 Razavian et
al [8] demonstrated that they could use the OverFeat [9]
model trained for the ImageNet challenge to generalize onto
other image tasks, including human feature recognition and
bird classification. Penatti et al [10] used pretrained models
from ImageNet on the UC Merced aerial image dataset and
found that CNNs outperformed conventional object recog-
nition methods but performed worse on remote sensing
color recognition tasks.

More recently, Castelluccio et al [11] used pretrained the
networks CaffeNet [12] and GoogLeNet [13] to classify re-
mote sensing images for land use policy. To reduce design
time, they used the pretrained weights and built a small re-

Figure 2: Baseline Model structure

fined network on top. In 2016 Karalas et al [14] used deep
CNNs for multi-label classification of satellite images with
great success.

Multi-label classification has been an important prob-
lem in image recognition for many years. Early work from
Barnard and Forsyth [15] focused on identifying objects in
particular sub-sections of an image. More recently, Wei et
al [16] demonstrated that weights from networks pre-trained
on single-label classification have great success transferring
to multi-label classification. Wang et al [17] proposes using
recurrent neural networks to capture semantic label depen-
dency and improve multi-label classification.

3. Methods
We used Google’s TensorFlow and the open-source neu-

ral network Python package Keras for the majority of our
model development. We used R and Excel for data visual-
ization and threshold optimization.

Our design steps were as follows: First we developed
a basic CNN architecture, then we built three deep CNN
models with VGG-16 [18], Inception-v3 [19], and ResNet-
50 [20], and finally we added on data augmentation and en-
semble techniques to the deep CNN models. Each model
involves feeding in batches of images and getting scores for
the 17 features out. We use a sigmoid activation function on
the final layer of all of our networks so that each feature has
a score between 0 and 1. We label an image with features
that have scores above a certain threshold value (naive and
later optimized).

We experimented with softmax as well but found that it
pushed the rare ground labels to near-zero probability.

3.1. Baseline CNN architecture

Our first implementation was a mesh of data exploration
code [21] provided by the Planet Kaggle representative as
well as a simple Keras starter notebook [22] created by an-
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Figure 3: Deep Model Structure

other user in the competition. It uses two convolutional lay-
ers with ReLu activation and max pooling followed by two
dense layers. No preprocessing or resizing of the images is
required, so input images had RGB and Near-IR channels.

3.2. Deep CNN architecture

We proceeded to create a model incorporating deep net-
works that performed well on the ImageNet Challenge. For
each named deep network, we attached a pooling layer and
three dense layers to the end. Keras is invaluable for inte-
grating the deep CNN network with our dense layers, as it
allows you to import the network structure and download
the pre-trained weights of each network. We then explicitly
freeze the weights in the imported network and train just
the weights in our added-on layers. The pre-trained mod-
els require three input channels, so we had to strip off the
Near-IR information.

We built models with the following networks:

3.2.1 VGG-16

VGG was originally developed for the ImageNet dataset by
the Visual Geometry Group at the University of Oxford.
The highlights of this model are that it utilizes 16 layers
and 3 x 3 filters in the convolutional layers. It is designed to
take in 224 x 224 images as input.

3.2.2 Inception-v3

Inception-v3 is another ImageNet-optimized model. It is
developed by Google and has a strong emphasis on making
scaling to deep networks computationally efficient. It takes
in 299 x 299 images.

3.2.3 ResNet-50

ResNet-50 is a model developed by Microsoft Research us-
ing a structure that uses residual functions to help add con-
siderable stability to deep networks. ResNet won the Im-

ageNet Challenge in 2015, and ResNet-50 is the 50-layer
version of ResNet. It uses 224 x 224 images.

3.3. Implementation

We used the binary cross-entropy loss function and the
Adam optimizer. We wrote a custom metric to track the F
score during training, which was required since the stan-
dard scipy F score function cannot be used on tensors.
During training, we used Keras callbacks to save model
weights when the model’s performance on tracked metrics
improved. However, this functionality is limited to pre-
defined metrics, so we used accuracy to determine when
the model improved.

The entire 40,000 labeled images could not be loaded
all at once, even with 120 GB of memory on our
Google Cloud instance. To remedy this, we used Keras’
model.fit generator method, which loads batches of images
from a generator and fits the model. The ImageDataGen-
erator class allows for easy image resizing to fit the cur-
rent model. However, Keras’ image generators do not sup-
port multi-label classification, as they currently label im-
ages based on the directory they are in (one label for ev-
erything in the directory). Instead we used a Keras library
modification we found on Stack Overflow that passes a label
dictionary into the generator with a length-17 binary array
value for each image, representing its feature labeling [23].
With some tweaking, we were able to get this to work for
our problem, which paid off later on when we wanted to do
quick data augmentation.

This code architecture also made it difficult to perform k-
folds cross validation during the training process. We had to
separate our training and validation data (32000-8000 split)
and put them in separate folders. Since the data from Planet
was already randomized, we just took the top-numbered
8000 files to get our validation set.

4. Experiments

We ran our baseline model and the three deep network
models on vanilla data. We then ran our best performing
model on augmented data and ran a small ensemble model.

4.1. Evaluation

The evaluation metric for each model is average F2
score, which is defined for one sample as:

F2 = (1 + 22) · precision · recall
(22 · precision) + recall

where Precision = TP
TP+FP and Recall = TP

TP+FN .

The F2 score prefers recall to precision, as can be seen
in Figure 4. This means we punish false negatives more
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Figure 4: Contour plot of F2 score

severely than false positives. This makes sense for a prob-
lem where we are trying to detect some rare phenomena:
we would prefer to identify all occurrences even if we end
up making some false positive mistakes.

4.2. Baseline Model

We ran our basic model for 20 epochs and achieved an F2
score of 0.84. The top of the Kaggle leaderboard is around
0.93 F2, so this needs improvement.

4.3. Deep Models

VGG-16 was not able to break 0.90 F2 in the first 40
epochs I ran, while both Inception-v3 and ResNet-50 were.
ResNet-50 was the best, achieving an F2 of 0.907 after 50-
60 epochs. Full results in Table 1.

4.4. Data Augmentation and Ensembles

Our models’ 0.03 performance gap as compared to the
Kaggle leaders is mostly attributable to poor performance
on the rarer ground features. To ameliorate this, we at-
tempted various data augmentation techniques in the hopes
of providing more rare-feature training examples. Keras’
image generator allows for on-the-fly image augmentation.
We specified that images could be flipped, rotated, and
shifted, thereby creating additional labeled training images.

We trained three ResNet-50 models with augmented data
for 40 epochs each. We then made predictions on the vali-
dation data using a voting ensemble method. This improved
on our best ResNet F2 score by 0.001.

4.5. Tuning

As part of the tuning process, experimentation with clas-
sification thresholds was one of the main areas we looked
at. We started with an (naive) initial setting of 0.5 across
classes to get baseline model performance. After this, we
performed an exhaustive search to find the best uniform
threshold to apply to all classes simultaneously.

(a) Original (b) Flip/Rotate

(c) Shift (d) Rotate

Figure 5: Data Augmentation

Since the F2 of each class is independent, we were then
able to run a threshold search to find the best threshold for
each of the 17 classes at a cost of 17×N (as opposed to N17

if they had been dependent (N here is the size of the search
space, in this case we used 100 increments to search every
0.01 increment).

Figure 6 shows the improvement in F2 obtained on the
ResNet model by transitioning from a uniform threshold of
0.5 to a uniform threshold of 0.2, and then further to inde-
pendently tuned individual class thresholds. The updated
uniform threshold gives about a 0.04 boost to F2, while the
class-specific thresholds add an additional 0.001 improve-
ment to F2.

Model Train F2 Val F2

Baseline 0.875 0.836
VGG-16 0.903 0.897

Inception-v3 0.912 0.901
ResNet-50 0.921 0.907

ResNet-50 (data aug/ensemble) 0.922 0.908

Table 1: Model classification performance

5. Discussion
Our best ResNet-50 model achieved a similar 0.907 F2

score on the Kaggle submission test set, placing us in the
top third of the 450+ submissions.
Figure 6 details the F2 score, Precision, and Recall for
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Figure 6: Performance of ResNet model at different threshold levels

each feature, sorted by frequency. Comparing the results
from the baseline model to the best ResNet model shows an
across-the-board improvement.

The baseline model is quite good at predicting primary
and clear labels, which makes sense since the data has the
most training examples of these types. The baseline per-
forms moderately well on most of the uncommon atmo-
sphere and ground features, but gets 0.0 F2 for nearly all
of the rare features. This is the key deficiency of the base-
line model - by failing to identify the rare labels, it is un-
able to pinpoint rare but critical human encroachment that
we are most interested in. A multi-label classifier attempt-
ing to curb deforestation should be able to identify mining,
logging, and slash-and-burn activity to be truly effective.

The ResNet model improves in most of these critical
areas. It gets somewhat better (0.310 F2) at identifying
selective logging, which is where expensive wood is
removed rather than general clear cutting. It makes similar

improvements (0.479 F2) to conventional mining, and dra-
matic improvements to its identification of artisanal mining
(0.770 F2). The model does not show improvements at
finding slash-and-burn.

6. Conclusion

Using deep CNN models designed for the ImageNet
Challenge combined with task-specific refining layers pro-
duces good results on multi-label classification of satellite
images. Experimenting with more exotic refining layers
would be an interesting improvement. One idea might be
to train new ResNet models, each time focusing on one of
the rare ground features. Just as our model performed es-
pecially well on artisanal mining, it should be possible to
achieve similar results with other rare features with proper
data augmentation and loss weighting. We could then com-
bine the models into an ensemble where if any of them pre-
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Figure 7: Identifying Illegal Mining

dict a rare feature we would accept that.
It is unlikely that the ResNet model can make dramatic

improvement from this point without a re-thinking of its op-
timization metric. The accuracy metric used to pick the best
weights simply compares 1s and 0s and determines how
many are correct. Since it uses a simple rounding to la-
bel any given feature, all or most images will never have
rare features for the accuracy calculation. As such, our op-
timizer has a difficult time finding weights to make the ac-
curacy go over 0.96. We can use our variable thresholds
to account for this when we make our predictions, but if
the model hits a ceiling on optimization improvement we
will not be able to identify the remaining four percent of
accuracy. Some digging into Keras callback saving could
remedy this.

The ResNet’s ability to identify artisanal mines makes
it extremely useful to solving the overarching problem of
illegal human activity in the Amazon rainforest. Conven-
tional mining operations are defined as those run by a min-
ing company and, while certainly destructive, are generally
sanctioned by the local or federal government in which they
operate. Artisanal mines are small scale and, by-in-large,
illegal. Because there is no knowledge or oversight about
where they are occurring, there is little to no ability for the
local government to manage their impact on deforestation
in the area. Having a model that can find these mines is a
definite win for those concerned about the destruction of the
rainforest habitat.
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