

Real-Time* Multiple Object Tracking (MOT) for Autonomous

Navigation

Ankush Agarwal§,1 Saurabh Suryavanshi§,2

 ankushag@stanford.edu saurabhv@stanford.edu

§Authors contributed equally for this project.

1Google Inc. 2Stanford University

Abstract
We build a real-time multiple object tracker (MOT)

for autonomous navigation using deep convolutional
neural networks. To achieve this, we combine state-of-
the-art object detection framework, Faster R-CNN, with
modified GOTURN (Generic Object Tracking Using
Regression Networks) architecture. We freeze the pre-
trained weights for the detection network and train the
tracking network on the MOT dataset. We show that such
end-to-end modular approach for MOT performance is at
par with the available computer vision techniques. We
also use our model on real-world scenarios to show the
generality of our model.

Index Terms - Computer Vision, Multiple Object
Tracking, Object Detection, Deep Convolutional Neural
Networks

1. Introduction
 Driverless cars and robots are increasingly relying on
optical devices such as a video camera to navigate. To
develop a full-proof autonomous navigation system, it is
necessary to have a holistic understanding of the
surrounding. The state-of-the-art (SOAT) technologies
relies on computer vision based methods as well as
hardware-based solutions such as LIDAR1 and SONAR2.
Such methods have proven to be sub-optimal in extreme
cases. For example, hardware based solutions do not work
optimally in harsh environment such as rain or storm.
While vision based technique are susceptible to variation
in optical conditions as well as camera instability [1].

* Our model can track single object in real-time. We loop back to track
other objects.
1 LIDAR or Light Detection and Ranging, is a remote sensing method
that uses light in the form of a pulsed laser to measure distance between
the laser and remote object.
2 SONAR or a system for the detection of objects by emitting sound
pulses and detecting or measuring their return after being reflected.

In real life, therefore, we require rich information
about the surrounding. We need to understand how the
objects are moving with respect to the camera. It would
also help to recognize the interaction between objects. For
example, in case of the self-driving car the knowledge
about the interaction between the pedestrians will help to
predict the pedestrian behavior accurately. This prediction
will eventually help the self-driving car to make
intelligent choices on a crowded road.

 We can capture these requirements using a
simple model presented in Fig. 1. At the least, we should
be able to identify the objects in the video. To get a better
understanding, we can track these objects by establishing
object correspondence between frames. We can extend
this model further and estimate the object depth from the
camera. Such rich data can then be processed to provide
additional insights such as the closet object to the camera.
In this project, we try to solve the most essential part of
this problem which is multiple object tracking or MOT as
shown in Fig. 1.

 In our model, we take a video as an input and
track the objects in the video maintaining their identity
across frames (Fig. 2).

2. Related Work

2.1 Multiple object tracking as a computer
vision problem

Figure 1: The end-to-end solution to identify the closest
object to the camera. In this project, we aim to tackle the first
two steps of detecting and tracking multiple objects in the
video.

Recently due to the increased availability of the

video data, MOT has become an important problem in
computer vision [3]. Traditionally, computer vision
approaches primarily used Joint Probabilistic Data
Association (JPDA) filters [12, 13] and Multiple
Hypothesis Tracking (MHT) [11]. Most of the approaches
are not suitable for real-time applications such as
autonomous navigation as related problems are
intractable. These approaches relies on understanding
various features or cues from the images. These features
include point features, color, intensity, optical flow,
gradient, pixel-comparison, region covariance matrix,
depth etc. Using these features, the model measures
similarity and differences between observations. These
approaches are also known as observational models.
Other type of models try to build appearances of the
objects or a global model. For example, most of these
model use momentum as a feature. To establish one-to-
one correspondence between objects in different frames,
globally optimal solutions such as Hungarian algorithms
have been used.

Additional information regarding individual
objects can be obtained by incorporating motion models
to predict potential position of object in the future frames,
interaction model to understand interaction between
multiple objects in the frame, and occlusion handling to
track objects when they are occluded by other objects in a
frame. Eventually, this information is used in dynamic
model to investigate object transition across frames. The
dynamic model can be probabilistic that uses various
features from the observational model to provide a
probabilistic distribution for target object. Though we are
not interested in traditional computer vision approaches,
the information discussed here will help us in getting
insights.

2.2 Multiple object tracking using deep
learning

Deep learning has only recently made inroads
into the field of multiple object tracking [4][5][6]. All the
models using neural networks propose a modular
approach of dividing the problem into observational and
dynamic model as discussed in the previous section. For
example, Lee et al. [4] uses VGG-net and ResNet to build
the object detector. In addition, they employ Lucas-
Kanade Tracker (LKT) algorithm to provide object
transitions and motion moves. They then calculate
observation likelihood using CNN. Milan et al. [5]
employs neural networks to provide end-to-end multi-
object tracking. They use RNN to initialize the object
(detection) and LSTM to provide object correspondence.
Ondruska et al. [6] also focuses on online tracking
relying on modular approach and employs RNNs.

3. Our Approach
Taking inspiration from the previous MOT work

in computer vision, we divide the problem of MOT into
two sub modules: multi-object detection and object
correspondence tracking.

 For the first part of the problem, we leverage
pre-trained Faster-RCNN [7], one of the popular and
widely used architecture for multi-object detection. This
model combines CNN to propose the region of interest
and a region-based (R) CNN module that detects the
presence of the object in these regions. As seen from Fig.
3a, the faster R-CNN shares the parameters between two
stages allowing efficient detection. This network does not
require knowledge of object class to detect the object. As
such, the flexible architecture of faster R-CNN allows
swapping it's architecture to multiple designs. We can
thus use this architecture in the context of a MOT
problem.
 For the object correspondence tracking, Held et
al. recently proposed GOTURN (Generic Object Tracking
Using Regression Networks) to track a single object in a
video [8]. The GOTURN architecture is shown in Fig. 3b.
One of the important advantage of GOTURN is that it is
faster than previous approaches and can track the object at
100 fps. GOTURN, trained on offline videos, uses images
at time ‘t’ and ‘t-1’ of an online test video, crop them, and
feed them individually in different CNNs. The output of
these CNNs is then fed to another neural network that
tries to establish an object correspondence by trying to
look for similar features nearby the original object. A
subtle but important assumption is that the object is
moving slowly so that the object in frame ‘t’ remains near
the bounding box of the object in frame ‘t-1’. In addition,
an important drawback of GOTURN is its single-object
tracking. Also, it requires the object detection boundary to
be fed as input and does not perform object detection as
part of its architecture.

Figure 2: A sample frame from the HCC [2] tracker running
on the MOT Dataset. Here we can see that the tracker is able
to detect and track most of the pedestrians on the street.

We combine these two architecture to perform

real-time MOT as discussed in section 5 of this paper.

4. Dataset and Features
MOT requires labeled video data with bounding

boxes and IDs for all objects in the video. For this project,
we use the MOT challenge data set [9]. This dataset
provides multiple videos with bounding boxes for
(almost) all the objects in all frames of the video. This
allows us to test and debug our detection and tracking
models separately. The dataset contains videos from
various scenarios: both static and moving cameras, low
and high image resolutions, varying weather conditions
and times of the day, viewpoints, pedestrian scale,
density, and more. Such wide variety of scenarios helps to
train a robust model. In addition, this dataset allows us to
benchmark our approach against another proposed model
tested on the same dataset [10].

 To train our tracking model, we need pairs of
subsequent frames with labels. Each video in MOT has
over 200 frames and the overall training dataset includes
200k pairs of frames that could be used for training. We
note that the MOT dataset is focused exclusively on
tracking people. Since our base models for detection as
well as tracking can work with objects of other classes,
our approach could be easily extended to track objects of
any class. For example, in Fig. 4 the output of Faster R-
CNN detects a car. We can use our model to easily detect
and track this car. However, while evaluating or
comparing the model performance, we only track people

as MOT dataset does not have labels for other object
classes.

Performance metric

Evaluating performance on MOT is non-trivial.
Leal-Taxi et al. [10] have come up with a method to
benchmarking MOT model based on precision and
accuracy. Precision measures how well the objects are
localized i.e. the misalignment between predicted and the
ground truth bounding box. While accuracy evaluates
how many distinct errors such as missed targets (FN),
ghost tracks (FP), or identity switches (IDSW) are made.
In ideal world, we expect the precision and accuracy both
to be 100 %. This also implies that that the FN, FP, and
IDSW are ideally zero. Other important performance
metrics for MOT is the maximum number of frame rate
the model can handle. Frame rate or the inference time
strongly depends on the underlying hardware and less on
the architecture. We revisit the performance metric in the
results section of this paper.

5. Method
As shown in Fig. 5 and briefly discussed in Sec.

3 of this report, our approach involves strategically
stacking two different networks. The pre-trained faster R-
CNN network provided very good accuracy when tested
on the MOT dataset. We, therefore, decided to freeze the
weights in the first part of our network and train only train
the tracking network [Code provided in supplementary
material].

5.1 Training the tracking network
We use the MOT dataset to train the tracker. The

tracker was based on previously available tensor flow
code [17]. We train the tracker to provide bounding box
of the object in the current frame based on the bounding
box of the object in the previous frame. So, our training
set includes pairs of consecutive images with bounding
box ground truth in both frames. By parsing training
videos from MOT dataset, we could generate ~200k such
labeled pairs. We first crop the object in the previous

Figure 3: Network architecture for (a) Faster R-CNN [7] and
(b) GOTURN [8].

Figure 4: Detecting car using Faster R-CNN. MOT
dataset does provide labels for object classes other than
people.

frame along the bounding box (height = h, width = w) and
rescale the cropped image using bilinear interpolation to a
predefined dimension HxW. H and W are hyper
parameters but we choose to fix them to 227 as done
earlier work [17]. The current frame is also cropped with
the same center as the previous bounding box but with
twice (another hyper parameter which is fixed and not
tuned) the height and width of the previous bounding box
(so for the cropped area of the current height = 2h, width
= 2w). We assume that the object in the current frame is
near the previous bounding box. The cropped image from
the current frame is also scaled using bilinear
interpolation to predefined dimension HxW.

We train our model using batch size of 100 and
Adam Gradient Descent Optimizer with a constant
learning rate of 1e-5. Our hardware was NVIDIA Tesla
K80 GPU with 12GB Memory. The loss for training was
average L1 distance between the predicted bounding box
and the ground truth bounding box. We trained our model
for 1 epoch and it took about 2 hours for the loss to
saturate. The training loss decreases at first but then
saturates quickly as observed from Fig 5.

5.2 Other Experiments

To improve the tracking further, we performed
experiments with look-ahead to see if it helps to
overcome the problem of occlusion. In this method, we
look-ahead a few frames and compare the confidence of
detections of the look-ahead frames. We pick the most
confident frame and use linear interpolation to backfill the
previous frames which could have occluded objects. To
get a sense of confidence, we take the detections of
current frame and the detections of a few look-ahead
frames and compare the similarity by passing them
through a pre-trained VGG16. We use the penultimate
layer output vector for feature comparison between the
frames. Given our limited time with this project, we did
not see any significant improvement over our baseline
online-model. However, such model improvements if
properly trained should be able to give benefit in accuracy
as well as precision. We could potential extend this model
to calculate physical object properties such as velocity
and acceleration. This additional information in turn will
help us in tracking the object.

6. Results
Figure 7 shows a sample output of the detection

network. We are only detecting people in this image. A
single object tracking using the entire model is shown in
Fig. 8. We compare the model output (red) with the
ground truth (white). We can use our model sequentially
to track multiple objects as shown in Fig. 9.

Figure 7: Multiple object detection using Faster -RCNN. Above
image is the first frame of a video from the MOT dataset [9].

Figure 5: A schematic diagram representing our MOT
network. We use the detection network once at the start of the
tracking. At t=0, the detection network generates a list of
object IDs and corresponding bounding boxes. These
bounding boxes are then fed to the tracking network, which
tracks each object sequentially frame by frame.

Figure 6: Decrease in training loss with training batches for
the tracking network trained over MOT dataset.

Figure 9: The combined model tracking two distinct objects in
the crowd from the MOT dataset [9] (The tracked objects are
shown in red boxes)

Figure 8: Tracking single object. The model tracks the person
on the bike as shown by the box. White box shows the ground
truth while the red box shows the model prediction. We have
showed few frames of the video as representation of the
capability.

Evaluating the results of a MOT Tracker can be
very challenging and no single score can be used to
compare various trackers. We evaluate the performance of
our tracker primarily using various scenes of the MOT
benchmark video database. Table 1 shows the results of
our tracker compared to some of the other trackers on
MOT16.

Our tracker has good overall precision (MOTP)

MOTP stands for Multiple Object Tracking Precision,
which includes the misalignment between the annotated
and the predicted bounding boxes. This shows that
GOTURN is a very good generic tracker and generalizes
well to the MOT dataset. The accuracy (MOTA) for our
model is mediocre at about 16.2. Current State of the Art
trackers have MOTA of about 45.

7. Conclusions and Future Work
We presented a simple real-time multi-object

tracking framework. We leveraged two different models,
the Faster R-CNN's high detection performance and a
state-of-the-art tracking method (GOTURN), to develop
an end-to-end system. Our modified model achieved a
very good precision (MOTP) score. Although it does not
achieve a very high score on MOTA, it demonstrates how
we can re-use specialized Convolutional Neural Networks
and stack them together to tackle a new problems. We
also proposed additional potential improvements such as
estimating object velocity and acceleration to improve the
tracking precision and accuracy.

References
[1] Eigen, D., Puhrsch, C., and Fergus, R., “Depth map
prediction from a single image using a multi-scale deep
network”, NIPS, 2014.
[2] https://motchallenge.net/vis/MOT16-06/HCC
[3] Wenhan Luo, Junliang Xing, Xiaoqin Zhang, Xiaowei
Zhao, and Tae-Kyun Kim. “Multiple Object Tracking: A
Literature Review”, arXiv:1409.7618, 2015
[4] Lee., B, Erdenee, E., Jin, S., and Rhee, P.K. “Multi-
Class Multi-Object Tracking Using Changing Point
Detection”, arXiv:1608.08434, 2016

 [5] Milan, A., Rezatofighi, S.H., Dick, A., Reid, I., and
Schindler, K. “Online Multi-Target Tracking Using
Recurrent Neural Networks”, arXiv:1604.03635v2, 2016
[6] Ondruska, P., Dequaire, J., Wang, D.Z., and Posner, I.
“End-to-End Tracking and Semantic Segmentation Using
Recurrent Neural Networks”, arXiv:1604.05091, 2016
[7] Ren, S., He, K., Girshick, R., and Sun, J. “Faster R-
CNN: Towards Real-Time Object Detection with Region
Proposal Networks”, arXiv:1506.01497, 2016
[8] Held, D., Thrun, S., Savarese, S., “Learning to Track
at 100 FPS with Deep Regression Network”,
arXiv:1604.01802, 2016
[9] Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and
Schindler, K., “MOT16: A Benchmark for Multi-Object
Tracking”, arXiv:1603.00831, 2016
[10] Leal-Taixe´, L., Milan, A., Schindler, K., Cremers,
D., Reid, I., Roth, S. “Tracking the Trackers: An Analysis
of the State of the Art in Multiple Object Tracking”,
arXiv:1704.02781, 2017
[11] D. Reid et al., "An Algorithm for Tracking Multiple
Targets", Automatic Control, vol. 24, pp. 843–854, 1979.
[12] H. W. Kuhn et al., “The Hungarian method for the
assignment problem”, Naval Research Logistics
Quarterly, vol. 2, pp. 83–97, 1955.
[13] S. H. Rezatofighi, A. Milan, Z. Zhang, A. Dick, Q.
Shi, and I. Reid, “Joint Probabilistic Data Association
Revisited,” in International Conference on Computer
Vision, 2015.
[14] J. H. Yoon, M. H. Yang, J. Lim, and K. J. Yoon,
“Bayesian Multi-Object Tracking Using Motion Context
from Multiple Objects,” in Winter Conference on
Applications of Computer Vision, 2015
[15] S. H. Bae and K. J. Yoon, “Robust Online Multi-
Object Tracking based on Tracklet Confidence and
Online Discriminative Appearance Learning,” Computer
Vision and Pattern Recognition, 2014.
[16] Y. Min and J. Yunde, “Temporal Dynamic
Appearance Modeling for Online Multi-Person Tracking,”
[17] https://github.com/tangyuhao/GOTURN-Tensorflow/

Table 1: Results of running our tracker. [MOTA: Multi object tracking accuracy, MOTP: Multi object tracking precision, FAF:
number of false alarms per frame, MT: number of mostly tracked trajectories, ML: number of mostly lost trajectories, FP: number of
false detection, FN: number of missed detection, ID Sw: number of times the ID switches, Frag: total number of times the trajectory is
fragmented.

