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Abstract 
We build a real-time multiple object tracker (MOT) 

for autonomous navigation using deep convolutional 
neural networks. To achieve this, we combine state-of-
the-art object detection framework, Faster R-CNN, with 
modified GOTURN (Generic Object Tracking Using 
Regression Networks) architecture. We freeze the pre-
trained weights for the detection network and train the 
tracking network on the MOT dataset. We show that such 
end-to-end modular approach for MOT performance is at 
par with the available computer vision techniques. We 
also use our model on real-world scenarios to show the 
generality of our model.  
 
Index Terms - Computer Vision, Multiple Object 
Tracking, Object Detection, Deep Convolutional Neural 
Networks 

1. Introduction 
     Driverless cars and robots are increasingly relying on 
optical devices such as a video camera to navigate. To 
develop a full-proof autonomous navigation system, it is 
necessary to have a holistic understanding of the 
surrounding. The state-of-the-art (SOAT) technologies 
relies on computer vision based methods as well as  
hardware-based solutions such as LIDAR1 and SONAR2. 
Such methods have proven to be sub-optimal in extreme 
cases. For example, hardware based solutions do not work 
optimally in harsh environment such as rain or storm. 
While vision based technique are susceptible to variation 
in optical conditions as well as camera instability [1].  
 

                                                           
* Our model can track single object in real-time. We loop back to track 
other objects. 
1 LIDAR or Light Detection and Ranging, is a remote sensing method 
that uses light in the form of a pulsed laser to measure distance between 
the laser and remote object. 
2 SONAR or a system for the detection of objects by emitting sound 
pulses and detecting or measuring their return after being reflected. 
 

In real life, therefore, we require rich information 
about the surrounding. We need to understand how the 
objects are moving with respect to the camera. It would 
also help to recognize the interaction between objects. For 
example, in case of the self-driving car the knowledge 
about the interaction between the pedestrians will help to 
predict the pedestrian behavior accurately. This prediction 
will eventually help the self-driving car to make 
intelligent choices on a crowded road.   

 
 We can capture these requirements using a 
simple model presented in Fig. 1. At the least, we should 
be able to identify the objects in the video. To get a better 
understanding, we can track these objects by establishing 
object correspondence between frames. We can extend 
this model further and estimate the object depth from the 
camera. Such rich data can then be processed to provide 
additional insights such as the closet object to the camera. 
In this project, we try to solve the most essential part of 
this problem which is multiple object tracking or MOT as 
shown in Fig. 1. 
 
 In our model, we take a video as an input and 
track the objects in the video maintaining their identity 
across frames (Fig. 2). 

2. Related Work 

2.1 Multiple object tracking as a computer 
vision problem 

 

 
Figure 1: The end-to-end solution to identify the closest 
object to the camera. In this project, we aim to tackle the first 
two steps of detecting and tracking multiple objects in the 
video. 



 
Recently due to the increased availability of the 

video data, MOT has become an important problem in 
computer vision [3]. Traditionally, computer vision 
approaches primarily used Joint Probabilistic Data 
Association (JPDA) filters [12, 13] and Multiple 
Hypothesis Tracking (MHT) [11]. Most of the approaches 
are not suitable for real-time applications such as 
autonomous navigation as related problems are 
intractable. These approaches relies on understanding 
various features or cues from the images. These features 
include point features, color, intensity, optical flow, 
gradient, pixel-comparison, region covariance matrix, 
depth etc. Using these features, the model measures 
similarity and differences between observations. These 
approaches are also known as observational models. 
Other type of models try to build appearances of the 
objects or a global model. For example, most of these 
model use momentum as a feature. To establish one-to-
one correspondence between objects in different frames, 
globally optimal solutions such as Hungarian algorithms 
have been used.  
 

Additional information regarding individual 
objects can be obtained by incorporating motion models 
to predict potential position of object in the future frames, 
interaction model to understand interaction between 
multiple objects in the frame, and occlusion handling to 
track objects when they are occluded by other objects in a 
frame.   Eventually, this information is used in dynamic 
model to investigate object transition across frames. The 
dynamic model can be probabilistic that uses various 
features from the observational model to provide a 
probabilistic distribution for target object. Though we are 
not interested in traditional computer vision approaches, 
the information discussed here will help us in getting 
insights. 
 
2.2 Multiple object tracking using deep 
learning 
 

Deep learning has only recently made inroads 
into the field of multiple object tracking [4][5][6]. All the 
models using neural networks propose a modular 
approach of dividing the problem into observational and 
dynamic model as discussed in the previous section. For 
example, Lee et al. [4] uses VGG-net and ResNet to build 
the object detector. In addition, they employ Lucas-
Kanade Tracker (LKT) algorithm to provide object 
transitions and motion moves. They then calculate 
observation likelihood using CNN. Milan et al. [5] 
employs neural networks to provide end-to-end multi-
object tracking. They use RNN to initialize the object 
(detection) and LSTM to provide object correspondence. 
Ondruska et al.  [6] also focuses on online tracking 
relying on modular approach and employs RNNs.  

3. Our Approach 
Taking inspiration from the previous MOT work 

in computer vision, we divide the problem of MOT into 
two sub modules: multi-object detection and object 
correspondence tracking.  
 
 For the first part of the problem, we leverage 
pre-trained Faster-RCNN [7], one of the popular and 
widely used architecture for multi-object detection. This 
model combines CNN to propose the region of interest 
and a region-based (R) CNN module that detects the 
presence of the object in these regions. As seen from Fig. 
3a, the faster R-CNN shares the parameters between two 
stages allowing efficient detection. This network does not 
require knowledge of object class to detect the object. As 
such, the flexible architecture of faster R-CNN allows 
swapping it's architecture to multiple designs. We can 
thus use this architecture in the context of a MOT 
problem. 
 For the object correspondence tracking, Held et 
al. recently proposed GOTURN (Generic Object Tracking 
Using Regression Networks) to track a single object in a 
video [8]. The GOTURN architecture is shown in Fig. 3b. 
One of the important advantage of GOTURN is that it is 
faster than previous approaches and can track the object at 
100 fps. GOTURN, trained on offline videos, uses images 
at time ‘t’ and ‘t-1’ of an online test video, crop them, and 
feed them individually in different CNNs. The output of 
these CNNs is then fed to another neural network that 
tries to establish an object correspondence by trying to 
look for similar features nearby the original object. A 
subtle but important assumption is that the object is 
moving slowly so that the object in frame ‘t’ remains near 
the bounding box of the object in frame ‘t-1’. In addition, 
an important drawback of GOTURN is its single-object 
tracking. Also, it requires the object detection boundary to 
be fed as input and does not perform object detection as 
part of its architecture.  

 
Figure 2: A sample frame from the HCC [2] tracker running 
on the MOT Dataset. Here we can see that the tracker is able 
to detect and track most of the pedestrians on the street. 



  
We combine these two architecture to perform 

real-time MOT as discussed in section 5 of this paper.  

4. Dataset and Features 
MOT requires labeled video data with bounding 

boxes and IDs for all objects in the video. For this project, 
we use the MOT challenge data set [9]. This dataset 
provides multiple videos with bounding boxes for 
(almost) all the objects in all frames of the video. This 
allows us to test and debug our detection and tracking 
models separately. The dataset contains videos from 
various scenarios: both static and moving cameras, low 
and high image resolutions, varying weather conditions 
and times of the day, viewpoints, pedestrian scale, 
density, and more. Such wide variety of scenarios helps to 
train a robust model. In addition, this dataset allows us to 
benchmark our approach against another proposed model 
tested on the same dataset [10].  
 

 To train our tracking model, we need pairs of 
subsequent frames with labels. Each video in MOT has 
over 200 frames and the overall training dataset includes 
200k pairs of frames that could be used for training. We 
note that the MOT dataset is focused exclusively on 
tracking people. Since our base models for detection as 
well as tracking can work with objects of other classes, 
our approach could be easily extended to track objects of 
any class. For example, in Fig. 4 the output of Faster R-
CNN detects a car. We can use our model to easily detect 
and track this car. However, while evaluating or 
comparing the model performance, we only track people 

as MOT dataset does not have labels for other object 
classes.  
 
Performance metric  
 

Evaluating performance on MOT is non-trivial. 
Leal-Taxi et al. [10] have come up with a method to 
benchmarking MOT model based on precision and 
accuracy. Precision measures how well the objects are 
localized i.e. the misalignment between predicted and the 
ground truth bounding box. While accuracy evaluates 
how many distinct errors such as missed targets (FN), 
ghost tracks (FP), or identity switches (IDSW) are made. 
In ideal world, we expect the precision and accuracy both 
to be 100 %. This also implies that that the FN, FP, and 
IDSW are ideally zero. Other important performance 
metrics for MOT is the maximum number of frame rate 
the model can handle. Frame rate or the inference time 
strongly depends on the underlying hardware and less on 
the architecture. We revisit the performance metric in the 
results section of this paper. 

5. Method 
As shown in Fig. 5 and briefly discussed in Sec. 

3 of this report, our approach involves strategically 
stacking two different networks. The pre-trained faster R-
CNN network provided very good accuracy when tested 
on the MOT dataset. We, therefore, decided to freeze the 
weights in the first part of our network and train only train 
the tracking network [Code provided in supplementary 
material].  

5.1 Training the tracking network 
We use the MOT dataset to train the tracker. The 

tracker was based on previously available tensor flow 
code [17].  We train the tracker to provide bounding box 
of the object in the current frame based on the bounding 
box of the object in the previous frame. So, our training 
set includes pairs of consecutive images with bounding 
box ground truth in both frames. By parsing training 
videos from MOT dataset, we could generate ~200k such 
labeled pairs. We first crop the object in the previous 

 
 

Figure 3: Network architecture for (a) Faster R-CNN [7] and 
(b) GOTURN [8].  

 
Figure 4: Detecting car using Faster R-CNN. MOT 
dataset does provide labels for object classes other than 
people.  

 



frame along the bounding box (height = h, width = w) and 
rescale the cropped image using bilinear interpolation to a 
predefined dimension HxW. H and W are hyper 
parameters but we choose to fix them to 227 as done 
earlier work [17].  The current frame is also cropped with 
the same center as the previous bounding box but with 
twice (another hyper parameter which is fixed and not 
tuned) the height and width of the previous bounding box 
(so for the cropped area of the current height = 2h, width 
= 2w). We assume that the object in the current frame is 
near the previous bounding box. The cropped image from 
the current frame is also scaled using bilinear 
interpolation to predefined dimension HxW. 
  

We train our model using batch size of 100 and 
Adam Gradient Descent Optimizer with a constant 
learning rate of 1e-5. Our hardware was NVIDIA Tesla 
K80 GPU with 12GB Memory. The loss for training was 
average L1 distance between the predicted bounding box 
and the ground truth bounding box. We trained our model 
for 1 epoch and it took about 2 hours for the loss to 
saturate. The training loss decreases at first but then 
saturates quickly as observed from Fig 5.  
 

5.2 Other Experiments 

To improve the tracking further, we performed 
experiments with look-ahead to see if it helps to 
overcome the problem of occlusion. In this method, we 
look-ahead a few frames and compare the confidence of 
detections of the look-ahead frames. We pick the most 
confident frame and use linear interpolation to backfill the 
previous frames which could have occluded objects. To 
get a sense of confidence, we take the detections of 
current frame and the detections of a few look-ahead 
frames and compare the similarity by passing them 
through a pre-trained VGG16. We use the penultimate 
layer output vector for feature comparison between the 
frames. Given our limited time with this project, we did 
not see any significant improvement over our baseline 
online-model. However, such model improvements if 
properly trained should be able to give benefit in accuracy 
as well as precision. We could potential extend this model 
to calculate physical object properties such as velocity 
and acceleration. This additional information in turn will 
help us in tracking the object.  

6. Results 
Figure 7 shows a sample output of the detection 

network.  We are only detecting people in this image. A 
single object tracking using the entire model is shown in 
Fig. 8. We compare the model output (red) with the 
ground truth (white). We can use our model sequentially 
to track multiple objects as shown in Fig. 9.  

 
Figure 7: Multiple object detection using Faster -RCNN. Above 
image is the first frame of a video from the MOT dataset [9]. 

 
 
Figure 5: A schematic diagram representing our MOT 
network. We use the detection network once at the start of the 
tracking. At t=0, the detection network generates a list of 
object IDs and corresponding bounding boxes. These 
bounding boxes are then fed to the tracking network, which 
tracks each object sequentially frame by frame. 

 
 
Figure 6: Decrease in training loss with training batches for 
the tracking network trained over MOT dataset.  

 

 
 
Figure 9: The combined model tracking two distinct objects in 
the crowd from the MOT dataset [9] (The tracked objects are 
shown in red boxes) 

 
Figure 8: Tracking single object. The model tracks the person 
on the bike as shown by the box. White box shows the ground 
truth while the red box shows the model prediction. We have 
showed few frames of the video as representation of the 
capability.  



Evaluating the results of a MOT Tracker can be 
very challenging and no single score can be used to 
compare various trackers. We evaluate the performance of 
our tracker primarily using various scenes of the MOT 
benchmark video database. Table 1 shows the results of 
our tracker compared to some of the other trackers on 
MOT16. 

 
Our tracker has good overall precision (MOTP) 

MOTP stands for Multiple Object Tracking Precision, 
which includes the misalignment between the annotated 
and the predicted bounding boxes. This shows that 
GOTURN is a very good generic tracker and generalizes 
well to the MOT dataset. The accuracy (MOTA) for our 
model is mediocre at about 16.2. Current State of the Art 
trackers have MOTA of about 45.  

7. Conclusions and Future Work 
We presented a simple real-time multi-object 

tracking framework. We leveraged two different models, 
the Faster R-CNN's high detection performance and a 
state-of-the-art tracking method (GOTURN), to develop 
an end-to-end system. Our modified model achieved a 
very good precision (MOTP) score. Although it does not 
achieve a very high score on MOTA, it demonstrates how 
we can re-use specialized Convolutional Neural Networks 
and stack them together to tackle a new problems. We 
also proposed additional potential improvements such as 
estimating object velocity and acceleration to improve the 
tracking precision and accuracy.  
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Table 1: Results of running our tracker. [MOTA:  Multi object tracking accuracy, MOTP: Multi object tracking precision, FAF: 
number of false alarms per frame, MT: number of mostly tracked trajectories, ML: number of mostly lost trajectories, FP: number of 
false detection, FN: number of missed detection, ID Sw: number of times the ID switches, Frag: total number of times the trajectory is 
fragmented. 


