
PixelBrush: Art Generation from text with GANs

Jiale Zhi
Stanford University
jz2@stanford.edu

Abstract

Recently, generative adversarial networks (GANs) have

been shown to be very effective in generating photo-realistic

images. And recent work from Reed et al. also allows

people to generate images with text descriptions. In this

work, we propose a tool called PixelBrush that generates

artwork from text descriptions using generative adversarial

networks. Also, we evaluated the performance of our model

and existing models on generating artworks. We also com-

pared different generator architecture to see how the depth

of the network can affect generated image quality.

1. Introduction
Fine art, especially painting are an import skill that hu-

man has mastered during a long time of evolution. As of
today, only human can create paintings from ideas or de-
scriptions. Artists can draw a painting of a bird giving a
description ”Draw a painting with a bird flying in the sky”
without any difficulties. Currently, this skill is only lim-
ited to human. There is no known way that describes how
paintings can be drawn algorithmically given an input de-
scription. It would be interesting to see how this process
can be learned by computer algorithms and the replicated to
create more artistic paintings.

There are a couple of challenges around this problem.
First, computer algorithm needs to understand what objects
or scene need to be drawn on the painting and also the re-
lationships between different objects and scenes. Second,
given the algorithm understand the description, generate an
artistic image according to the description that provided.
Note that the mapping between description to images is not
one to one, one description can be mapped to an infinite
amount of images.

In this work, we propose a new tool called PixelBrush
that given a description of a painting, generates an artistic
image from that description. The input to our tool is a piece
of short text, like ”a bird flying in the sky”. We then use
RNN to process the input text into a vector and then use
generative adversarial networks to generate artistic images.

Figure 1: Images generated from text descriptions on test
set from our work, first column are real images, the other
columns are generated images. Those images are generated
from the text descriptions from each corresponding row.

The main contributions of our work:

• We trained a conditional generative adversarial net-
work to generate realistic painting images from text
descriptions. Our result shows that generated paintings
are consistent with input text descriptions.

• We compared our result with DCGAN to show that by
adding condition to GAN, it helps with generated im-
age quality.

• We compared how different generator affects gener-
ated images quantity by training our network on three
different GANs with same discriminator architecture
and different generator architecture.

• We provided another angle to look at the complexity of
generated with evaluating the entropy of generated im-
ages showed how generated image’s entropy changes
through time and how it compared with real image en-
tropy.

1

2. Related Work

Traditionally, people have been using computer algo-
rithms to generate artistic paintings. Those generated work
are usually random, abstract, or full of patterns due to the
limitations of the algorithm. It’s hard to customize those
artwork based on different people’s needs. Some examples
of computer-generated art are available at Syntopia1.

Recently, with the development of computer vision, peo-
ple have been using neural networks to generate artistic im-
ages from real world images. Gatys et al. [7] proposed a
convolutional neural network (CNN) based method to trans-
fer styles from a painting to a photo. This method has
been shown to generate artwork with high perceptual qual-
ity. And it can generate very high-resolution images which
most of the other neural networks failed to do. However,
this still requires a photo as input so generated artwork,
and the content of the output image is fully based on in-
put photo. Also, the style photo and the image photo may
not work together very well because the color in the content
image may affect the output of the style transfer. Causing
the generated image to lose some artistic effects.

While deep style transfer provided a way to generate art-
work using provided content image, generative adversarial
networks (GANs)[9] provided another way of generating
highly compelling images. Radford et al. [18] introduced
a class of GAN called deep convolutional generative adver-
sarial networks (DCGANs). Their work shows that GAN
is able to learn a hierarchy of representations from object
parts to scenes. Additionally, GAN can be used to gener-
ate near photo-realistic images of bedrooms. However, DC-
GAN generated images have low resolution and still suffer
from different kinds of defects.

Nguyen et al. [17] proposed a new method called Plug &
Play Generative networks (PPGN). Their works show that
by introducing an additional prior on the latent code, sample
quality and sample diversity can be improved, leading to a
model that produces high-quality images at high resolution
(227⇥227).

Although GAN has been successfully used in a lot of
areas[6], the early age GANs doesn’t provide the ability
to generate images according to some input features. To
help with this issue, Mirza et al. [16] proposed a new kind
of GAN called conditional generative adversarial network
(cGAN). They introduced an additional condition informa-
tion and showed that cGAN can generate MNIST digits
conditioned on class labels. Gauthier [8] showed that com-
pared to vanilla GAN, conditional GAN can use conditional
information as a deterministic control to deterministically
control the output of the generator.

There are also developments in the synthesis of realistic
images from text using GANs. Reed et al. [19] proposed

1http://blog.hvidtfeldts.net

a way to modify GAN’s generator network to not only ac-
cept input random noise z, but also the description embed-
ding '(t), so that generated images will be conditioned on
text features. They also created a new kind of discrimina-
tor called matching-aware discriminator (GAN-CLS) to not
only discriminate whether an image is real or fake but also
discriminate image and text pairs. So that both discrimina-
tor network and generator network learns the relationship
between image and text. Their experiments showed that
their trained network is able to generate plausible images
that match with input text descriptions. However, their net-
work is limited to only generate limited kinds of objects:
flower and birds. Also, generated image’s resolution is low.

Zhang et al.’s recent work StackGAN [26] bridged reso-
lution gap between text to image synthesis GAN and models
like PPGN. In their work, they proposed a novel two staged
approach for text to image synthesis. The first stage network
is able to generate low-resolution plausible images from text
descriptions. The second stage network then takes the gen-
erated image from the first stage network, and then refine
the image to generate a more realistic and much higher res-
olution image. In their experiments, they were able to gen-
erate 256⇥256 high-resolution images from just a text de-
scription.

In our work, we propose a way of generation artwork
from text descriptions. We will use natural language as in-
put, so people can describe what kind of artwork they want,
and then our tool PixelBrush will generate an image accord-
ing to the description that provided.

3. Background

3.1. Generative Adversarial Networks

Generative adversarial network consists of a generator
network G and a discriminator network D. Given training
data x, G takes input from a random noise z and tries to
generate data that has the similar distribution as x. Dis-
criminator network D takes input from both training data x
and generated data from G, it estimates the probability of a
sample came from training data rather than G.

To learn the generator’s distribution p
z

over data x, the
generator builds a mapping from a prior noise distribution
p
z

(z) to data space as G(z; ✓
g

), where G is a differentiable
function represented by a multilayer perceptron with param-
eters ✓

g

. Discriminator network D is also represented as a
multilayer perception D(x; ✓

d

) where ✓
d

is the parameters
of the multiplayer perception.

G and D are trained simultaneously: we adjust parame-
ters of D to maximize the probability of assigning the cor-
rect label for both training examples and samples from G
and adjust parameters of G to minimize log(1 �D(G(z)).
In other words, D and G play the following two-player min-
max game with value function V(G, D):

2

min

G

max

D

V (D,G) =E
x⇠pdata(x)[logD(x)]+

E
z⇠pz(z)[log(1�D(G(z)))].

(1)

3.2. Conditional Generative Adversarial Nets

Conditional generative adversarial nets are a variant of
GAN that introduced additional information y, so that both
generator G and discriminator D are conditioned on y. y
could be any kind of auxiliary information such as class la-
bels or other information.

The prior noise p
z

(z) and y are combined together to
form a hidden representation as input to generator G. Gau-
thier et al. [8] show that the adversarial training framework
allows for considerable flexibility in how this hidden repre-
sentation is composed. x and y are also combined as input
to discriminator network.

The modified two-player minmax game value function
V(G, D) would be:

min

G

max

D

V (D,G) =E
x⇠pdata(x)[logD(x|y)]+

E
z⇠pz(z)[log(1�D(G(z|y)))].

(2)

3.3. Text embeddings

In order to use text as condition to conditional GANs, we
first need to convert text into a text embedding vector. There
are a lot of ways of doings this. We use skip-thought vectors
proposed by Kiros et al. [14]. Skip-thoughts use a encoder-
decoder model. Given a sentence tuple (s

i�1, si, si+1), the
encoder takes input s

i

and produces a vector that is a repre-
sentation of s

i

. The decoder then takes the encoded vector
as input, and tries to reproduce the previous sentence s

i�1

and the following sentence s
i+1 of s

i

.
There is a wide selection of encoder/decoder pairs that

can be chosen from, including ConvNet-RNN [11], RNN-
RNN[2] and LSTM-LSTM [22]. The authors of skip-
thoughts chose to use RNN encoder with GRU [3] activa-
tions and an RNN decoder with a conditional GRU.

Figure 2: Overview of skip-thought embedding network

3.3.1 Encoder

The encoder uses a standard GRU network. Let s
i

be a
sentence that consists of words w1

i

, ..., wN

i

where N is the

number of words in the sentence. When encoding sentence
s
i

, at each time step, the encoder takes wt

i

as input, and pro-
duces a hidden state ht

i

. ht

i

can be viewed as a state that
captured the information that represents w1

i

, ..., wt

i

. Then at
next step, both wt+1

i

and ht

i

are feed to the network and pro-
duces a new hidden state that represents w1

i

, ..., wt

i+1. In the
end, when all the words are feed to the network, hN

i

then
represents the whole sentence. To encode a sentence, we
iterate through the following equations (dropping the sub-
script i):

rt = �(W
r

xt

+ U
r

ht�1
)

zt = �(W
z

xt

+ U
z

ht�1
)

¯ht

= tanh(Wxt

+ U(rt � ht�1
))

ht

= (1� zt)� ht�1
+ zt � ¯ht

(3)

3.3.2 Decoder

The decoder is also a GRU network where it takes the output
from the encoder h

i

as a condition. The computation is sim-
ilar to encoder network except that three new matrices C

z

,
C

r

and C are introduced to condition the update gate, reset
gate and hidden state computation by the sentence vector.
In order to produce previous sentence s

i�1 and following
sentence s

i+1, two separate GRU networks are trained, one
for s

i�1, one for s
i+1. There is also a vocabulary matrix V

that is used to produce words distribution from hidden state
ht

i�1 and ht

i+1. To get hidden state ht

t

+1 at time t, we itera-
tive through the following sequence of equations (dropping
the subscript i):

rt = �(W d

r

xt�1
+ Ud

r

ht�1
+ C

r

h
i

)

zt = �(W d

z

xt�1
+ Ud

z

ht�1
+ C

z

H
i

)

¯ht

= tanh(W d

z

xt�1
+ Ud

(rt � ht�1
) + Ch

i

)

ht

t+1 = (1� zt)� ht�1
+ zt � ¯ht

(4)

Given ht

i+1, let vt
i+1 denote the row of V corresponding

to the word wt

i+1. The probability of word wt

i+1 given the
previous t � 1 words and the encoder vector is. The same
method can be applied to sentence s

i�1.

P (wt

t+1|w<t

t+1, hi

) / exp(v
v

t
i+1

ht

i+1) (5)

3.3.3 Objective

Given input sentence (s
i�1, si, si+1), the objective is to

maximize the sum of the log-probabilities for the previous
and following setences conditioned on the encoder repre-
sentation:

3

X

t

logP (wt

i+1|w<t

i+1, hi

) +

X

t

logP (wt

i�1|w<t

i�1, hi

)

(6)
And the total objective is summed over all input training

tuples.

3.3.4 Model details

In our work, we use a pertained skip-thougth encoder to
encode text description into 4800-dimension vectors. The
vector is a combination of uni-skp and bi-skip vectors as
described in [14], both are 2400-dimension.

4. Methods
Our approach is to train conditional generative adversar-

ial nets conditioned on text features encoded by an skip-
thought vector text embedding encoded from a text descrip-
tions. Given training data x and text y, both generator and
discriminator networks are trained together so that distribu-
tion of x can be learned.

4.1. Network architecture

Figure 3: Overview of network architecture of our network
that generates painting images from text descriptions.

Overall, we follow the architecture proposed by Reed et

al. [19]. For each training iteration, we use a skip-thought
text embedding network to convert text descriptions into
text embedding vectors v. And feed this text embedding
with random noise z to generator network. Generator net-
work then generates images conditioned on the text descrip-
tion. These generated images are later feed into a discrim-
inator network together with their text embeddings. The

discriminator network then tells whether the input images
are real or fake.

4.1.1 Generator architecture

Figure 4: Overview of ”simple” generator network

We use a multi-layer deep convolutional neural network
to generate images. The network takes a random noise z
and a text embedding vector v. We use a fully connected
layer to convert the input to a 2048-dimension vector. Then
we use transposed convolutional layer to convert this vector
into an image. At each transposed convolutional layer, we
use ReLU activations and spatial batch normalization be-
fore each layer. For the last layer, we use tanh activation.
Network architecture are based on StackGAN 2.

To compare how generator network depth affects gener-
ated image quality. We created 3 kinds of different gen-
erator: ”simple”, ”normal” and ”deep”. An overview of
”simple” network architecture are showed in figure 4. To
get deeper generator network, we use a method similar to
Resnet[25]. By allowing output of previous layer splitting
into two flows and skipping part of the network, it created
better gradient flow and allows us to create deeper generator
network.

4.1.2 Discriminator architecture

Figure 5: Overview of discriminator network

2https://github.com/hanzhanggit/StackGAN

4

Generator architecture
Simple Normal Deep
5 layers 1 layers 1 layers

input (4900-dimension vector)
FC-8192

reshape to 4 ⇥ 4 ⇥ 256
upconv4-256 conv1-128

identity
conv1-128

identityupconv4-128 conv3-128 conv3-128
upconv4-64 conv3-512 conv3-512
upconv4-3 � �

upconv4-256-2 upconv4-256
conv3-256-1 conv3-256

conv1-64
identity

conv1-64
identityconv3-64 conv3-64

conv3-256 conv3-256
� �

upconv4-256 upconv4-256
conv3-128 conv3-128

upconv4-128 conv1-64
identityconv3-64 conv3-64

upconv4-64 conv3-128
conv3-3 �

upconv4-128
conv3-64

conv1-32
identityconv3-32

conv3-64
�

upconv4-64
conv3-3

tanh

Table 1: Generator network architecture. From ”simple” to
”deep”, the depth of the network increases. The (up)conv
layer are denoted as ”(up)convh filter size i-h number of
channels. i”. All conv layers are using stride 1 and all
upconv layers are using stride 2. There is also a batch nor-
malization layer right after each fully connected layer or
convolutional layer except the last layer (not shown in the
table). ReLU activation is applied after batch normalization
layer except the last layer where tanh activation is applied.

We also use a multi-layer deep convolutional neural net-
work for our discriminator. The network takes an image
and a text embedding vector v as condition, and outputs the
probability of the image being real. We then apply the loss
from equation 2 to compute the loss for discriminator. De-
tailed network architecture are showed in figure 5.

4.1.3 Training details

We use Adam optimizer[13] to train both discriminator and
generator. We follow the advise from Chintala et al.3 and
at each round train both generator and discriminator once.
We use a learning rate of 0.0002 for both discriminator and
generator. We use a batch size of 64 and decay learning rate
to half for every 150 epochs.

5. Dataset
We use Oxford paintings dataset [5, 4] to help us de-

velop our algorithm. This dataset contains 8629 images in
10 categories: aero, bird, boat, chair, cow, table, dog, horse,
sheep, train. It is split into training, validation, and test sets.
Details statistics on images is showed on table 2. Some
sample paintings are shown in Figure 6.

Because the focus of this work is to generate realistic
painting images, we merged training, val and test set to-
gether, and selected around 3000 images from Cow, Dog,
Horse, Sheep for training, and around 600 images from
those 4 categories for testing.

5.1. Image pre-processing

The images in the dataset are in variety of sizes: 624 ⇥
478, 358 ⇥ 544, 624 ⇥ 413, 624 ⇥ 453 etc. We unified the
images by resize them to 76 ⇥ 76 with no cropping. Al-
though this will change the height to width ratio of original
image, but in our experiment, we found this isn’t a problem
and doesn’t have a big effect on our results.

We also removed all the black-white images that only has
one color channel. So all the images after pre-processing
have size 76⇥ 76⇥ 3.

5.2. Adding descriptions

One drawbacks of Oxford paintings dataset for our appli-
cation is it only contains images with categories, and paint-
ing titles. But painting titles are usually short and most of
the titles doesn’t capture the whole scene on the image and
thus it’s hard to used them as image descriptions. For our
application, although all images in this dataset are labeled,
but in order to use this to generate artworks, we also need
to provide captions to those images.

In order to do this, we use a two-step solution to this
problem. First, we use image captioning network Neu-
raltalk2 proposed by Karpathy et al. [12] to generate cap-
tions for all the painting images. Although Neuraltalk2
is trained on a completely different dataset MSCOCO, we
found it also works well for generating text descriptions
for painting images in Oxford paintings dataset. Second,
we human-reviewed all the generated text descriptions and
manually fixed all the defects in the generated captions.

3https://github.com/soumith/ganhacks

5

Aero Bird Boat Chair Cow Table Dog Horse Sheep Train Total
Train 74 319 862 493 255 485 483 656 270 130 3463
Val 13 72 222 140 52 130 113 127 76 35 865
Test 113 414 1059 569 318 586 549 710 405 164 4301
Total 200 805 2143 1202 625 1201 1145 1493 751 329 8629

Table 2: Number of images in the Oxford paintings dataset containing an instance of a particular class, as well as total number
of images for each subsett

Figure 6: Sample images from Oxford Paintings dataset

In addition, we also use Caltech-UCSD Birds 200
dataset[23] as a comparison to show how it’s different to
generate images from paintings images and bird images.
Caltech-UCSD Birds 200 dataset is now a standard in text-
to-image generation area and a lot of work are reported on
this dataset[19, 26, 20].

6. Experiments
6.1. Evaluation methods

Evaluation the quality of generated images is a hard
problem. Salimans et al. [21] proposed two ways to evalu-
ate the quality of generated images.

The first metric of performance is can human annotators
tell the difference between computer generated images and
real images. The downside is that this metrics varies de-
pending on the setup of the task. And also it takes time to
finish this evaluation process.

The second method is use machine learning to tackle this
problem. They propose to use an off-the-shelf image clas-
sifier to evaluate the quality of generated images.

We plan to use the second method to evaluate the qual-
ity of generated artwork. To get a quantitive score for our
generated images, we use inception scores proposed by Sal-

imans et al. [21].

I = exp(E
x

KL(p(y|x)||p(y))) (7)

The intuition behind this that we want out model to gen-
erate meaningful objects. So given input image x, the la-
bel conditional label distribution p(y|x) should have low
entropy. And we also want out model to generate varied
images, so the marginal distribution p(y) should have high
entropy. Therefore, the DL divergence between p(y|x) and
p(y) should be large.

6.2. Comparison against baselines

DCGAN[18] This is a kind of GAN that is widely used
because of the quality of the generated images. DCGAN
uses a series of four fractionally-strided convolutions to
convert data in high level representation into 64 ⇥ 64 pixel
images. We use DCGAN-tensorflow4 as our baseline im-
plementation.

Figure 7: Image generated from baseline. DCGAN trained
on Oxford paintings dataset for 240 epochs with Adam op-
timizer, learning rate 0.0002, momentum term of Adam 0.5
and batch size 64.

4https://github.com/carpedm20/DCGAN-tensorflow

6

Method Inception score
DCGAN 1.0012 ± 0.0003
Our work 2.7113 ± 0.3367

Table 3: Inception score for DCGAN generated images and
our conditional GAN. The inception score correlates to per-
ceptional image quality. Higher inception score means bet-
ter image quality

To compare DCGAN generated images with our work,
we use the same generator architecture ”Simple” for both
DCGAN and our conditional GAN, generator architecture
can be found from Table 1

Figure 8: Image generated from our work.

We can see from figure 7 and 8, with the same number
of training epochs and same generator setting, both GAN
generated relative sharp images. The different is that DC-
GAN generated images seem to have everything mixed to-
gether, and there is no recognizable object in it. While our
work leverages the help with labels(text descriptions), so
generated images looks more real and looks really artistic
compared to DCGAN generated results. And some images
shows recognizable objects in it.

The intuition behind this is DCGAN doesn’t use labels,
so all the input images and features are more likely to be
mixed together. With the help of labels, conditional GAN
knows how to generate objects according to text description,
so generated images looks more real. Although the quality
of generated images is still low, we believe the quality can
be improved through longer training time.

6.3. Comparison between different generators

To understand how generated affects generated image
quality, we trained our network with three different gener-

Iterations Generator
Simple Normal Deep

1000 2.33, 0.42 2.24, 0.23 2.67± 0.20
2000 2.43, 0.33 2.69, 0.49 2.56, 0.33
3000 2.70, 0.31 2.76, 0.58 2.47, 0.37
4000 2.60, 0.23 2.91, 0.38 2.67, 0.51
5000 2.74, 0.42 2.96, 0.33 3.05, 0.32

Table 4: Inception score for 3 kind of generator network
generated images. Result are samples every 1000 iterations.

ators as denoted in 4.1.1 ”Simple”, ”Normal” and ”Deep”.
We use the same discriminator to pair with each of the gen-
erator and use the same setup as we described in 4.1.3. Be-
cause of limited time and compute resources, we trained
each of the model on Oxford paintings dataset for 5000 it-
erations (106 epochs). We compared the inception score of
each of the model on each 1000 iterations.

From table 4 we can see that roughly inception score in-
crease with the number of training iterations. Because we
only trained the network for 5000 iteration, we can’t draw
a direct conclusion from the data that we collected. But
roughly, inception score increase with the number of train-
ing iterations. And also, inception score increases with the
generator work goes deeper.

6.4. Entropy analysis

In information theory, entropy is a measure of unpre-
dictability of the state, or equivalently, of its average infor-
mation content. To better understand how the much infor-
mation contained in generated image, we are curious about
how entropy of generated images changes through time and
how that compared to real images. In order to get this infor-
mation, we calculated entropy for every minibatch of real
and fake images that are feed to the discriminator.

From Figure 9, 10, we can see that real images’ entropy,
their value are near 1600 and keeps stable from different
batches of real images. On the other hand, the entropy of
generated image are very low at the beginning. Denoting
that the generator hasn’t learnt the distribution of real im-
ages and generated images has a low entropy. And usually
at this stage, generated images contains large blocks of col-
ors and lack variety. But through the process of training,
generator learns to generate images that has higher entropy
quickly. At iteration 300, the generator generated images
already have similar entropy as real images.

One interesting result from this analysis is that the en-
tropy of generated images stays stable after iteration 1000.
But the entropy of fake images are consistently higher that
real images. It would be interesting to see why generator
generated images are having higher entropy constantly.

7

Figure 9: Image entropy of
real images. Horizontal axis
is number of training itera-
tions. Vertical axis is the av-
erage information entropy of
images in the same batch.

Figure 10: Image entropy of
generated images. Horizontal
axis is number of training iter-
ations. Vertical axis is the av-
erage information entropy of
images in the same batch.

7. Conclusion

In this work, we proposed a new tool PixelBrush that
uses conditional generative adversarial networks to gener-
ate realistic and artistic images from text descriptions. We
shows that by adding text description as a condition, gener-
ated images looks more realistic and more recognized ob-
jects can be seen in generated images. We also showed that
how different generator network depth affects generated im-
age quality by using inception score as an evaluation. The
major contribution of this work is showing that conditional
GAN can generate realistic and artistic images on a more
complex dataset – Oxford paintings dataset despite the nor-
mally used CUB 200 dataset [23].

8. Future Work

There is a newly collected BAM! The Behance Artistic
Media Dataset[24] which is more art focused. It contains
short image descriptions/captions for 74,000 images from
the crowd. It would be interesting to test our algorithm on
that dataset because it contains more images but more im-
portantly, it comes with text descriptions for painting im-
ages.

Our work shows that we can generate realistic images
from text descriptions, but in order to put this for applica-
tion, we need to generate larger images with higher resolu-
tions. Currently the out image resolution is limited to 64 ⇥
64. It would be interesting to see how image resolution can
be increased by image super resulution methods proposed
by Lediget al. [15] or through a staged GAN proposed by
Zhang et al. [26].

There are also methods proposed by Arjovsky et al. [1]
and Gulrajani et al. [10] that shows how vanilla GAN’s loss
function have different problems causing GAN training to
be unstable from theory. It would be interesting to see how
their methods can be applied to conditional GAN, especially
GAN-CLS method proposed by Reed et al. [19].

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein

GAN. 2017.
[2] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bah-

danau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. 2014.

[3] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empir-
ical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. pages 1–9, 2014.

[4] E. J. Crowley and A. Zisserman. The State of the Art:
Object Retrieval in Paintings using Discriminative Re-
gions. Proceedings of the British Machine Vision Con-

ference. BMVA Press, 2014.
[5] E. J. Crowley and A. Zisserman. In Search of Art.

Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), 8925:54–70, 2015.
[6] D. Duvenaud. Applications of GANs. CSC 2541

Slides, 2016.
[7] L. A. Gatys, A. S. Ecker, and M. Bethge. A Neural

Algorithm of Artistic Style. arXiv preprint, pages 3–
7, 2015.

[8] J. Gauthier. Conditional generative adversarial nets
for convolutional face generation. Class Project for

Stanford CS231N: Convolutional Neural Networks for

Visual Recognition, Winter semester 2014, 2015.
[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative Adversarial Nets.

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. Courville. Improved Training of Wasserstein
GANs. pages 1–19.

[11] N. Kalchbrenner and P. Blunsom. Recurrent Con-
tinuous Translation Models. Emnlp, (October):1700–
1709, 2013.

[12] A. Karpathy and L. Fei-Fei. Deep Visual-Semantic
Alignments for Generating Image Descriptions. IEEE

Transactions on Pattern Analysis and Machine Intelli-

gence, 39(4):664–676, 2017.
[13] D. P. Kingma and J. Ba. Adam: A Method for Stochas-

tic Optimization. pages 1–15, 2014.
[14] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel,

A. Torralba, R. Urtasun, and S. Fidler. Skip-Thought
Vectors. (786):1–11, 2015.

[15] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cun-
ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Net-
work. 2016.

8

[16] M. Mirza and S. Osindero. Conditional Generative
Adversarial Nets. pages 1–7, 2014.

[17] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and
J. Yosinski. Plug & Play Generative Networks: Condi-
tional Iterative Generation of Images in Latent Space.

[18] A. Radford, L. Metz, and S. Chintala. UNSU-
PERVISED REPRESENTATION LEARNING WITH
DEEP CONVOLUTIONAL GENERATIVE AD-
VERSARIAL NETWORKS.

[19] S. Reed, Z. Akata, X. Yan, L. Logeswaran REED-
SCOT, B. Schiele, and H. Lee SCHIELE. Generative
Adversarial Text to Image Synthesis.

[20] S. Reed, A. Van Den Oord, N. Kalchbrenner, V. Bapst,
M. Botvinick, N. De Freitas, and G. Deepmind.
GENERATING INTERPRETABLE IMAGES WITH
CONTROLLABLE STRUCTURE.

[21] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved Techniques for
Training GANs. pages 1–10, 2016.

[22] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Se-
quence Learning with Neural Networks. Nips, pages
3104–3112, 2014.

[23] P. Welinder, S. Branson, T. Mita, and C. Wah. Caltech-
UCSD birds 200. CalTech, 200:1–15, 2010.

[24] M. J. Wilber, C. Fang, H. Jin, A. Hertzmann, J. Collo-
mosse, and S. Belongie. BAM! The Behance Artistic
Media Dataset for Recognition Beyond Photography.
2017.

[25] S. Wu, S. Zhong, and Y. Liu. Deep residual learning
for image steganalysis. Multimedia Tools and Appli-

cations, pages 1–17, 2017.
[26] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang,

and D. Metaxas. StackGAN: Text to Photo-realistic
Image Synthesis with Stacked Generative Adversarial
Networks.

9

