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Abstract

When humans receive musical training, the neural sub-
strates associated with production and processing of mu-
sic undergo functional changes. This study investigates
whether a Convolutional Neural Network (CNN) can iden-
tify changes in the neural dynamics of an adult that received
musical training. Two different CCN architectures were
trained on Magnetoencephalography (MEG) time-series
from seven adults before they received musical lessons.
These subjects listened a steady metronome beat while their
brain activity was recorded. The classification task for the
CNN was to identify data belonging to a specific subject.
After training, each CNN was presented with MEG data
from the same subjects listening the same metronome beat,
but recorded after they took musical lesson three times per
week for five weeks. CNNs were trained with different data
transformations, which included: the entire dataset, spatial
clustering, and PCA decomposition. Data was also fit to the
hidden modules of a Clockwork Recurrent Neural Network.

1. Introduction
When humans learn or recover an ability throughout

life, the brain undergoes functional and anatomical changes.
These transformations in the brain are known as ”Neu-
roplastic” changes, and occur in order to allow the brain
to optimally carry out novel tasks [12]. Although there
is strong evidence suggesting that the brain undergoes
changes driven by learning of a specific skill, the poten-
tial interpretation of neuroplasticity in therapeutical and ed-
ucation settings remains a challenge due to the lack of a
standarized and reliable method for the assessment of neu-
roplasticity at the individual and group levels [9].

Musical training is a specific kind of skill learning that
engages the individual multimodaly, and leads to functional
and anatomical changes in both cortical and subcortical
brain areas. A 2012 study [3] pointed out how brain os-
cillatory activity in the beta band predicts metronome beats

Figure 1. (A) The first principal component of MEG data recorded
from a subject listening an isochronous metronome beat be-
fore he underwent musical training. (B) A subject undergoing
multi-modal musical training. (C) The first principal component
for MEG data from the same subject in (A) listening the same
metronome beat after experiencing five weeks of intensive musi-
cal training. Notice, for example, the greater relative amplitude
and more uniform envelope of the 1st principal component post-
training, compared to before training.

and changes after subjects receive musical training.
Several human non-invasive methods to record brain ac-

tivity exist today. They have different advantages and dis-
advantages, with some of them having better spatial reso-
lution than others, such as fMRI vs Electroencephalogra-
phy (EEG), and others with better temporal resolution, like
Magnetoencephalography (MEG) and EEG. Aided with
a source estimation and reconstruction algorithm, MEG
presents itself as the option with the highest temporal
and spatial resolution available. Thus, this study used
MEG time-series data from seven subjects listening an
isochronous metronome beat before and after they experi-
enced intensive musical training for five weeks. The effect
of musical training on one subjects can be observed in fig-
ure 1.

The goal of this investigation was to build a Convolu-
tional Neural Network (CNN) that takes time-series data
from the different voxels in the head and classifies it as be-
longing to a specific subject. The CNN would be trained on
data before the subjects underwent musical training. The
performance of the trained CNN on the data from the same
subjects after they received intensive musical lessons would
be used to assess changes in the brain of each subject after
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musical training. This is a novel application of CNNs that
could lead to novel and reliable methods for the assessment
of neuroplasticity in terms of the temporal dynamics across
different brain areas.

2. Related Work

As observed in [11], human brain recordings collected
longitudinally for the assessment of training-induced neuro-
plasticity are currently assessed by physicians and neurosci-
entists using standard statistical tools applied to manually-
selected features. Thus, current methodologies return
highly variant results, ofen open to a number of interpre-
tations. Novel neural networks could be ussed to fine-tune
the analysis of brain data with the goal of objective assess-
ment of neuroplasticity.

Previous studies have used CNN as classifiers to iden-
tify patterns of brain activity in time-series data and tell
apart activity generated by different individuals [8]. A pio-
neering study developed CNNs to identify a brain potential
commonly used in Brain-Computer-Interfaces from electric
brain activity recorded with EEG. Their best CNN was able
to recognize the brain potential at a rate of 95.5 percent [10].
This study used hevily pre-processed brain data where noisy
channels were rejected and unwanted spectral components
were filtered out before passing the data into the CNN. A
more exploratory study [14] asked whether CNNs could be
robust enough to abstract features in noisier data. These
CNNs took time-series brain data that was not manually
cleaned before entering the CNNs. Performance was less
successful (best test accuracy was 50 percent) towards the
goal of classifying brain activity as triggered by a specific
rhythmic stimulus.

Temporal dynamics across time scales reflect different
important component of time-series data from the brain.
For this purpose, Long-Short-Term-Memory (LSTM) and
Recurrent Neural Networks have been used to capture the
features of brain dynamics with a higher temporal res-
olution [2]. The Clockwork Recurrent Neural Network
(CRNN) [6] is a recently developed algorithm, able to cap-
ture the structure of time-series sequences with finer tem-
poral detail, compared to other Recurrent Neural Networks
(RNN) or LSTMs, due to the activation of its hidden units
at different time steps. More CRNN theory is described in
the methods section 3.2.2.

Even though still in their early stages of development
as tools for the analysis of time-series brain data, CNNs
and RNNs are attractive models that can be used to assess
neuroplastic changes in the brain driven by musical engage-
ment, and as observed in the dynamics of brain activity in
individuals before and after musical training.

Figure 2. An MEG machine (left). A coarse illustration of the
pipeline for data collection and processing (center). Example data
as an overlay of the time-series for all voxels in a subject (right).

3. Methods

3.1. Data Collection and Preprocessing

Seven healthy male subjects with normal hearing were
recruited to participate for data collection. They were pre-
sented with a isochronus metronome beat appearing every
800 ms. Their brain activity was recorded with an MEG ma-
chine (see figure 2), which captures magnetic fields that are
produced by the electric currents of the brain. After an in-
nitial MEG recording, these subjects received, for a period
of five weeks, musical training through which they learned
to play piano, sing, play percussion instruments, and music
theory. This training protocol was motivated by the fact that
music activities of this kind lead to engagement of several
functional networks in the brain including auditory, motor,
language, visual, memory, and attention. Thus, this train-
ing protocol will lead to the recruitment and strengthening
of neural pathways between the brain modules required for
efficient musical action production. After this period of
musical training, each subject’s brain activity to the same
metronome beat was recorded using MEG.

Since performance of CNNs with preprocessed data has
been higher in previous studies, data here was also prepro-
cessed. MEG data for each subject were transformed from
150 MEG coils collecting magnetic fields at the scalp, to
multiple voxels inside the entire head with discrete sources
of time-series acticity that collectively generate the mag-
netic fields observed at the scalp. This is known as the
beamforming algorithm [13]. After beamforming, each
subject had over 1000 (8mm cubes) spatial voxels of MEG
activity, each containing time-series activity at a sampling
rate of 2,083 samples per second. MEG data were down-
sampled to 260 samples per second, and from this down-
sampled data, the beta-band power for each voxel was cal-
culated using a band-pass filter to isolate the beta-band
(15Hz to 30Hz), followed by a Hilbert Transform.

Given the different head shapes across subjects, only the
voxels that overlaped across subjects were kept as input to
the classification algorithms. Thus, the overlapping space
across subject was a sphere of voxels with the shape ob-
served in figure 3.

Additionally, data was normalized to have zero mean
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Figure 3. Spherical shape consisting of voxel overlap across seven
subjects for both MEG recordings. Voxel location is determined
by the head-based coordinates: the X axis is the anterior (positive)
and posterior (negative) sides of the head, the Y axis is the right
(negative) and left (positive) hemispheres, and Z is the superior
(positive) and inferior (negative) directions of the head.

and unit variance across subjects. Networks were trained to
identify subjects only on the pre-musical training data set.
The post-musical training data set was used to test subject
identification performance by the same neural network, but
as data that reflects the electrophisiolgical changes induced
by musical training.

3.2. Neural Networks

This investigation studied the MEG data using two types
of Neural Networks, convolutional and clockwork recur-
rent. Here is a description of the theory and software im-
plementation for each.

3.2.1 Convolutional Neural Networks

CNNs were built using theano [1] and lasagne[15]. These
libraries combined allow for the training of neural networks
with one-dimensional time-series data.

The first round of experiments with CNNs focused on
the classification of subjects based on time-series activity
from head voxels. The architecture was selected as the one
that achieved a classification accruracy of at least 85 per-
cent on the test set after training of the network. The se-
lected architecture, represented in figure ??, consisted of
three convolutional layers, each followed by a max-pooling

Figure 4. CNN architecture for classification of subjects based on
time-series activity from head voxels. The network contained a
sequence of three convolutional layers, each followed by a max-
pooling layer. Afther convolutions and poolings, the network fea-
tures a fully-connected layer with a ReLU non-linearity and an
output layer with softmax activation.

layer, leading to a fully-connected layer, which was con-
nected to the output layer. All convolutional layers used a
stride equal of 1 and no zero padding. The first convolu-
tional layer carried out convolutions on the input data (size
1x782) using 100 filters, each of 1x100 size. All opera-
tions kept the one-dimensional quality of the input data. A
max pooling operation of size 1x2 on the output of the first
convolutional layer was carried out. After max pooling, a
second convolutional layer applied 50 filters of size 1x50
each to the output of the first max pooling. Another max
pooling operator of size 1x2 was applied to the output of
the second convolutional layer. After max pooling, a third
convolutional layer applied 25 filters of size 1x25 to the out-
put of the second max pooling layer. Another max pooling
operator of size 1x2 was applied to the output of the third
convolutional layer. This chain of three convolution-max
pooling operations was followed by a fully connected layer
with 512 units activated by a ReLU non-linearity comput-
ing the maximum between zero and the input to a unit in
the fully connected layer f(x) = max(0, x), then leading
to the output layer consisting of a softmax function

fj(z) =
ezj∑k
i=1 e

zi

returning the probability for each of the multiple classes (k
different ones), which for the purpose of this study will be
subjet number to whom the input data belonged. The loss
function for softmax classification, and thus the output of
the network, is given by the cross entropy loss, which has
the form

Li = −fyi + log(

k∑
j=1

efj )

where the function f is the softmax function.
The second round of experiments with CNNs pursued

the classification of subjects based on the first ten princi-
pal components obtained through PCA analysis of the time-
series data for all voxels. The equation for PCA that finds

3



the first principal component is found through the maxi-
mization of

1

m
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)
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where u is the unit vector representing the direction on
which the data points in x(i) can be projected. The first prin-
cipal component found by PCA depicts the axis on which
the variance of the data is retained and maximized. We can
find k principal components by maximizing the first k u’s
to project the data onto a k-dimensional subspace. All the
principal compoents for the time-series data across different
voxels can thus be found by the expression

W = XU

where U is a p-by-p matrix whose columns are the eigen-
vectors of XTX , and W is a matrix containing the PCA
analysis of the entire dataset.

The architecture for this second round of experiments is
shown in figure 5, and was also selected as the one that
achieved the best classification accruacy, which in this case
was only of 76 percent on the test set. This architecture
is similar to the one in figure 4, with the main difference
of having an extra convolutional layer and using different
number of filters and filter sizes in each convolutional layer.
All convolutional layers used a stride equal of 1 and no zero
padding. The first convolutional layer carried out convolu-
tions on the input data (size 1x782) using 500 filters, each
of 1x50 size. The second convolutional layer applied 200
filters of size 1x50 each to the output of the first max pool-
ing. The third convolutional layer applied 100 filters of size
1x50 to the output of the second max pooling layer. The
fourth convolutional layer applied 50 filters of size 1x25
to the output of the third max pooling layer. Another max
pooling operator of size 1x2 was applied to the output of the
fourth convolutional layer. This chain of four convolution-
max pooling operations was followed by a fully connected
layer with 512 units activated by a ReLU non-linearity, and
an output layer with a softmax function.

3.2.2 Clockwork Recurrent Neural Network

Finally, this study also attempted the implementation of
an RNN called the Clockwork Recurrent Neural Network
(CRNN). This type of recurrent network has the advan-
tage of mantaining a high-temporal-resolution memory in
its hidden layers after training. The main advantage of this
network is the fact that it overcomes the problem of the
vanishing gradient found in other RNNs by partitioning the
neurons in its hidden layers as different ”sub-clocks” that
are able to capture the input to the network at different time
steps. The output of this neural network at time-step t is

Figure 5. CNN architecture for classification of subjects based on
the first ten principal pomponents as obtained by PCA decompo-
sition of the time-series activity from head voxels. The network
contained a sequence of four convolutional layers, each followed
by a max-pooling layer. Afther convolutions and poolings, the net-
work features a fully-connected layer with a ReLU non-linearity
and an output layer with softmax activation.

described in [6] by the equations

y
(t)
H = fH(WH · y(t−1) +WL · x(t))

y
(t)
O = fO(WO · y(t−1)

H )

where the subindices I , H , and O, indicate elements in the
input, hidden, and output layers. x(t) is the input of the net-
work, and f describes activation functions for the different
steps of the network.

The Implementation of this network used Torch [16] and
was developed by modifying a version found at [4]. The
architecture of this network featured an input, connected
to seven hidden layers. All hidden layers had seven ”sub-
clocks”, which are submodules in each hidden layer fea-
turing different cycle lengths. Within each module, all the
clocks in the hidden layer are fully connected, and depend-
ing on the clock period, the clocks of a faster module i are
connected to the clocks in a slower module j if the clock
period Ti < Tj .

Given the time-series nature of the data for this study,
and the fact that performance of the Clockwork Recurrent
Neural network is superior to the performance of standard
RNNs and LSTMS, this network could optimally capture
temporal dynamics and functional changes in the brain after
subjects received intense musical lessons.

4. Description of Experiments
Now, a description of the four main studies carried out in

this investigation is presented.

4.1. Classification of Subjects with the Full Dataset

The network architecture described in figure 4 was
trained to classify subjects using all the data recorded be-
fore the subjects received musical lessons. The data was
divided into training, validation, and test sets by randomly
separating 100 voxels across subjects for validation, 100 for
testing, and keeping the remaining ones for training. The
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Figure 6. Example of a cluster of 25 nearest-neighbor voxels (red)
selected from the entire set of voxels from the 3D head shape
(blue).

learning rate used to carry out Stochastic Gradient Descent
was 5e-3, weight initialization was done using the method
described in [5], and Nesterov momentum was used with a
constant µ of 0.9. Performance of the network was assessed
by dividing the training and validation sets into batches and
repeating training through 10 epochs.

After training the network and achieving a test accuracy
over 90 percent, the same network was presented with 100
voxels randomly selected across subjects from the MEG
recording after all subjects received intense musical lessons
for five weeks.

4.2. Classification of Subjects with Voxel Clusters

The same network architecture used in the previous
experiment was presented with different nearest-neighbor
clusters of 25 voxels grouped and selected from all over the
head 3D space as seen in figure 6. Data to train the network
was again taken from the MEG recording before the sub-
jects received musical lessons. Out of the total 25 voxels,
15 voxels in each cluster were randomly selected to be the
training set, 5 of the remaining 10 voxels were randomly se-
lected to be the validation set, and the remaining five served
as the test set. All training parameters (learning rate, weight
initialization, number of epochs, and momentum) remained
the same.

After training the network and achieving test accuracies
over 85 percent across voxel clusters, and an average test
accruacy greater than 90 percent accounting for all clusters,
the same network was presented with 12 voxels randomly
selected from each cluster from the MEG recording after all
subjects received intense musical lessons for five weeks.

Figure 7. The first five principal components for a single subject
after carrying out PCA. Left: before receiving musical trainig.
Right: after receiving musical training.

4.3. Classification of Subjects with the First 10 Prin-
cipal Components of PCA Analysis

Studies on neuroplasticity often assess changes in the
brain by looking at transformations of multidimensional
data to assess changes in the functional and temporal dy-
namics that are the outcome of a specific training. Here, the
network described in figure 5 was presented with the first
10 principal components obtained after carrying out PCA
on the entire data set for each subject (see figure 7). The
PCA analysis obtained on the subject data before they un-
derwent musical lessons was used to train the network. The
classification task was to determine whether data belonged
to a specific subject. Two thirds of the PCA data avail-
able for the first ten principal components were randomly
selected to be used for training the network, one sixth of
the remaining data was randomly selected to serve as the
validation set, and the remaining sixth of the data served as
the test set. The learning rate used to carry out Stochastic
Gradient descent was 5e-4, weight initialization was done
using the He’s method, and Nesterov momentum was used
with a constant µ of 0.5. Performance of this network was
also assessed by dividing the training and validation sets
into batches and repeating training through 15 epochs.

After training the network and achieving the best test ac-
curacy possible, which in this case was 76 percent, the same
network was presented with the first ten principal compo-
nents obtained after carrying out PCA on the data obtained
from the same subjects after they took musical lessons for
five weeks.

4.4. Fitting the Data to a CRNN

The first principal component obtained through PCA on
a randomly selected subject before musical lessons was the
input to a CRNN implementation modified from [4]. The
number of hidden units was 7, the learning rate was 3e-5
with nesterov momentum of 0.99, and weight initialization
drawn from a uniform distribution. The activation function
was tanh throughout the network.

This is work in progress, and only the current best train-
ing case is reported in the next section.
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Figure 8. Summary of results for experiments 4.1 and 4.3.

5. Discussion of Results

Now, the main results for these four main studies are pre-
sented.

5.1. Classification of Subjects with the Full Dataset

The network achieved a validation accuracy over 92 per-
cent classifying data as belonging to a specific subject,
and was able to achieve a test set accuracy over 91 per-
cent. However, when presented with the data from the same
subjects after they received musical lessons, the network
only achieved an accuracy of 30 percent. This clearly sug-
gests that the brain of these subjects underwent functional
changes during the period that they received musical train-
ing. Results for this experiment are summarized in figure 8.

Since this experiment used data from the entire head of
the subjects, and the functional changes are likely not ho-
mogeneous throughout the head, the procedure of the next
experiment was motivated.

5.2. Classification of Subjects with Voxel Clusters

The results for this experiment are sumarized in fig-
ure 9A. Figure 9B features example plots of the training loss
for 10 randomly selected clusters. All voxel clusters led to
accuracies on the test of at least 85 percent. Accuracies on
the data set recorded after subjects received musical train-
ing were more diverse, which motivates interest for spatial
visualization of these results to assess which brain regions
could be associated with different accruacies. Subject clas-
sification based on voxel clusters allows for the separation
of regions given their associated classification accruacy on
the data set recorded from subjects after receiving musical
lessons. A visualization of these results is presented in fig-
ure 10.

Observing these clusters and their associated accuracies
on the post-musical training data set, we can estimate which
brain regions changed more their functional activity than
others. Regions with a higher accuracy on the post-musical
training data set could suggest brain areas that changed the
least, which lower accuracies could indicate brain areas that
changed the most.

Figure 9. (A) Summary of training, test, and post-training accura-
cies obtained in experiment 4.2 across voxel clusters. (B) training
loss plots for 10 randomly selected voxels.

Figure 10. Visualization of the clusters associated with the differ-
ent accruacies obtained on the post-musical training data set. Only
one cluster returned an accruacy on the post-musical training set
greater than 40 percent. The histogram in the right bottom corner
illustrates the relative number of ROIs (Regions of Interest, i.e.
Voxels) that fell under different percent accuracy ranges.

5.3. Classification of Subjects with 10 PCAs

Classification of subjects using the first ten princi-
pal components obtained after PCA decomposition was a
harder task. The network was only able to reach training
accuracies little over 75 percent. In the best training case,
the validation accuracy was 56 percent and the accruacy on
the test set was 76 percent. The results are summarized
in figure 8. Thus, results indicate that the PCAs may be
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Figure 11. Plots for the training (left) and validation (right) loss
for experiment 4.3.

more homogeneous across subjects and harder to extract
features from with the goal of subject classification. Fig-
ure 11 presents an example of the training and validation
loss for this experiment.

Additionally, when presented with the first 10 principal
components from the data set collected after subjects re-
ceived musical training, the network only returned an accu-
racy little over 21 percent. This drop in performance sug-
gests that the first 10 principal components do contain infor-
mation about the functional changes in the brain that sub-
jects underwent during the period of musical lessons. How-
ever, a finer search for the features that are more consistent
or more varying in the principal components across subjects
is necessary to improve this experimental approach.

5.4. Fitting the Data to a CRNN

This attempt to fit the first principal component from
PCA decomposition of data from a single subject to the hid-
den modules of a Clockwork RNN has yielded inconclusive
but promising results. As seen in figure 12, this network
implementation can learn the time-series sequence for the
training example that it is fed in. However, this implemen-
tation has been very slow and major changes to the algo-
rithm will have to be carried out in order for this network
to realistically take more than a single training example. A
first step toward the improvement of this algorithm could
be as simple as downsampling the data that goes into the
network.

Results from [6] seem very promising and motivate the
use of CRNNs for the assessment of the data in this investi-
gation, as classification of sequences in their CRNN version
outperforms performance of most RNNs and LSTMS.

6. Conclusions
This study has proposed CNN and RNNs as tools for

the assessment structural and functional neuroplasticity as
observed in MEG data recorded before and after subjects
experienced musical training. This study’s implementation
demonstrates that the architectures and methods proposed
can provide insight about the changes that the brain expe-
riences through skill learning. Performance of the meth-

Figure 12. (A) Early training of a Clockwork Recurrent Neural
Network on PC 1 from a single subject. (B) Mid training on PC 1
from a single subject with the same CRNN.

ods here presented must be compared to the performance
of other classification methods, such as KNN, SVMs, and
Softmax before going forward. To expand on experiments
described in 4.1 and 4.2, single subject data from two neigh-
boring clusters of voxels could be classified as belonging or
not to a single cluster in order to assess similarity between
regions of the brain that are near to each other. To expand
the results for the experiment discussed in 4.3, not the full
10 first principal components can be used for classification,
but perhaps only the ones that are found to be most different
between subjects. A full implementation of the Clockwork
Recurrent Neural Network experiment is also necessary in
order to be able to compare its performance with that of
other methods.

Finally, other types of neural networks, such as Gradi-
ent Frequency Neural Networks [7], may be better able to
capture the changes of temporal dynamic properties of the
brain, as captured by MEG. The proposed assessment of
neuroplasticity by means of neural networks will expand the
methods here described by including Gradient Frequency
Neural Networks.
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