
Fast Unsupervised Object Localization

Dwaraknath, Anjan
anjandn@stanford.edu

Menghani, Deepak
deemeng@stanford.edu

Mongia, Mihir
mmongia@stanford.edu

Abstract

As opposed to image classification, object localization is
a computer vision problem whose solutions have not mea-
sured up to human level performance, even with the use of
deep learning. Common approaches to address this prob-
lem in the deep learning framework, are moving sliding
windows across the image, training neural architectures to
predict bounding boxes, and using classic image process-
ing techniques such as SIFT and Region Proposals. None of
these methods utilize the innards of the classification neural
network to localize images. In fact, one could argue that
these methods are created with the assumption that neu-
ral networks are just abstruse black boxes that give us an
output for every input. We posit that a neural network for
classification has enough usable spatial information to lo-
calize objects. We introduce a powerful and novel technique
that harnesses only a pretrained CNN to localize an object
in an image. To be clear, we do not train on any bound-
ing box data. We obtained very promising results. In our
validation we found the center of the localization method’s
bounding box was within the ground truth bounding box in
more than 90% of the cases. The core idea of our tech-
nique can be extended to other computer vision problems
such as multi-class object localization and image segmen-
tation. In addition, since our technique works so well with
only a classification neural network, there is good reason to
believe that we can improve the methods that currently train
on bounding box data.

1. Introduction

There are several application domains such as biology or
astronomy where one can get a large data set, but specifi-
cally annotating bounding boxes is impossible because this
would require domain level expertise and individuals who
have domain level expertise do not have time to spend
weeks annotating bounding boxes. Beyond that, many al-
gorithms that do rely on annotated bounding box data also
rely on region proposals [3],[6] that give possible locations
of objects. These methods plug these regions into the CNN
and see what class scores are achieved. If a specific class

score is high, then the algorithm knows that the proposed
region corresponds to a specific class. Usually these region
proposals are generated by algorithms that were developed
before deep learning became very popular and thus have no
grounding in neural networks.

In the former case(where there is no bounding box data),
the only tool one may have at hand is a classification neu-
ral network. In the latter, one has a lot of information at
hand but using a method like region proposals seems inac-
curate and wasteful, especially when a classification neural
network has been trained to differentiate between different
objects which requires having spatial ”knowledge”. In ad-
dition, CNNs are just a series of convolutions applied one
after another, and outputs of convolution operations cor-
respond to specific spatial locations in the previous layer.
Rather than using region proposals from algorithms such
as Selective Search [10], it would be interesting and poten-
tially more useful to see regions proposed by a classification
neural network. Thus it seems natural to delve into the in-
nards of a pretrained CNN in order to somehow produce
locations of objects. In fact it seems egregious, that though
it seems so natural to use a classification network for local-
ization, there is very little to zero work on this problem.

Since there are very good practical and scientific mo-
tivations, we set out to show that classification networks
can indeed provide very useful information to localize im-
ages.Overall, our answer to the problem of localizing im-
ages with only a pretrained CNN, relies on a combination
of two techniques. There has been much work on visual-
izing what features of images make neurons fire. Meth-
ods such as ”deconv” [8] and ”guided backpropagation”[11]
have proven to be really effective at visualizing neurons.
We use ”guided backpropagation” to map important neu-
rons back into the image. We decide which neurons are
important by the DAM heuristic which we will introduce in
this paper. By combining the ability to find important neu-
rons and the ability to map neurons back into the image, we
have technique that can locate objects of interest.

To be precise, we develop techniques that take in an input
image and produce a bounding box for the object located in
the input image.

1

2. Background
As far as we know, there is no work on producing loca-

tions of images just based on a classification CNN. There
are methods [3],[7],[6],[9] which train on bounding box
data and use a classification network to some extent. In
OverFeat and integrated localization, classification, and de-
tection framework[7], a classification CNN is trained. Then
a bounding box regression network is trained on the acti-
vations of a certain layer inside the CNN. In the R-CNN
framework [3], an algorithm such as ”Selective Search” [10]
proposes about 2000 regions of interest which are passed
into a CNN. At some layer in the CNN, the activations are
passed into a regression network for predicting bounding
box data. Although, these methods are using the CNN to
extract features, they also have the additional information
of bounding box data, which in some sense makes the prob-
lem easier. In addition, these systems,with the exception of
[6], are not totally deep learning systems especially because
they require having region proposals that come out of the
old guard of computer vision. Although this should not be
a knock on these methods per se, one would expect a deep
learning system, as is the case in classification, to operate
totally on its own without extra aid from signal processing.

In addition to these methods, in a paper by Oquab[4], a
localization method is developed that does not use bound-
ing box data. The difference between our solution and the
solution presented here, is that the authors train a different
architecture. Rather than having K outputs corresponding to
K possible classes. The authors have an m by n by K output,
where m and n index a possible range of locations in the im-
age. Thus if there is a high output in location (1,2,10) and a
high output in (7,8,12) it means in the image object 10 is in
a certain location and object 12 is another location farther
away from object 10. The authors do this by enlarging im-
ages up to 500 by 500 and sliding the neural network along
the image(since the input size to the neural network is actu-
ally smaller). Thus the output of the CNN operating on the
image is a 3 dimensional array(2 dimensions for locations
that the neural network operated on and a 3rd dimension for
class scores). In a follow up paper by Oquab[5], the affine
layer is transformed into an equivalent convolution layer,
which prevents sliding windows. In [5] and [4], the authors
develop a training objective that accounts for multiple loca-
tions and the fact that images have several objects in them.
In [5], although there is no bounding box data, the authors
are able to perform very good localization. They are able
to get localization error up to about 70 percent although the
authors are using a data set that has far fewer classes com-
pared to something like ImageNet. This work demonstrates
one does not need box data to train to have good localization
performance which is of valuable importance for practical
applications.

A commonality among [5],[3],[7],[6],[4] is that these

methods create several copies of the image by rescaling the
image. They do this in order to train their classifiers and
regressors to be better be able to handle objects at different
scales.

In terms of understanding the innards of a CNN there
are 2 techniques that are very useful. Methods suchs as
”deconv”[8] and ”guided backpropogation” [11] have been
used to visualize what image features make neurons highly
activated. These techniques can create figures in the input
image as in Figure 2.Although these images look very nice,
there is yet no theoretical basis for why these images look
so visually appealing compared to using something like nor-
mal backpropagation[2]. We intuitively believe that the im-
ages created by ”guided backpropogation” represent what
makes a neuron fire, but there is no good theoretical reason
why this actually works. Given that ”guided backpropaga-
tion” maps onto distinct features in the image then the abil-
ity to map neurons back into image space would be very
useful in locating objects.

Overall, in the current literature there are hints that a
classification CNN could be used by itself to locate objects
even without bounding box data [5],[4],[8],[11]. There is
however, no piece of literature that has been able to localize
objects solely based on a Pretrained CNN. We hope to com-
bine new insights with previous literature, namely ”guided
back propagation”, in order to accomplish this goal.

3. Approach
Below we describe the overall algorithm for localizing

the object in the image. We then explain each point of the
algorithm in detail in the ensuing paragraphs.

Algorithm 1 Localization Algorithm
1: procedure FASTLOCALIZATION(k, kmax)
2: Pass the image through the VGGNET-16 to obtain

the classification
3: Identify the kmax most important neurons via the

DAM heuristic
4: Use ”Guided Backpropagation” to map the neuron

back into the image
5: Score each region corresponding to individual neu-

rons by passing those regions into the CNN
6: Take the union of the mapped regions correspond-

ing to the k highest scoring neurons, smooth the image
using classic image processing techniques, and find a
bounding box that encompasses the union.

7: end procedure

3.1. Passing Image through VGGNET

In order for our algorithm to work we need to have the
activations of the neurons at the 11th layer as well as the

2

class score of the image. Thus we pass our image through
VGGNET and cache the relevant values.

3.2. Finding the kmax most important neurons

We focus on the neurons in the 11th layer.We do this be-
cause all high level layers contain high level features. (The
fact that we choose 11 over 12, is because our algorithm
was working when using layer 11) We do not use an affine
layer however, because affine layers lose spatial informa-
tion. For each input image, the highly activated neurons in
the 11th layer are the ones of interest because these neurons
are intuitively more likely affecting the final output score.
Unfortunately, at layer 11 there are usually approximately
1000 neurons that activate. In addition, if one were to do
”guided backpropagation” from the neuron back into image,
one would find that some of these neurons are mapping into
regions not at all related to the classified object. Thus we
need a heuristic that can cull a subset of these 1000 or so
neurons. In order to find more appropriate neurons, we also
measure the affect of the neurons on the class score. We
do this by calculating the gradient of the class score with
respect to the neurons in the 11th layer.

Thus we first gather 2 quantities.

Activations (1)

Which is the activations of the neurons at the 11th layer,
and also

Effect =
dClassScore

d11thLayerNeurons
(2)

which is the gradient of the class score with respect to
neurons at the 11th layer. Notice that both Activations
and 11thLayerNeurons have the same dimensions. Also
notice that Effect can be calculated computationally with
a backward pass that extends from the final affine layer to
the 11th layer. Now in order to compute a ranking score
for each neuron we point wise multiply Activations and
Effect.

Thus intuitively if a neuron has a high activation but af-
fects the class score only a little or negatively with small
perturbations in its own value, then we do not give it a high
score. If however, the neuron has a high activation and af-
fects the class score highly for small perturbations in its own
value, then we give it a high score.

RankScore = Activations ∗ Effect (3)

At this point we choose the kmax(which is approxi-
mately 10 in our experiments) neurons with the highest val-
ues and we proceed to next part of the algorithm.

Figure 1. Backward and Forward Signals around Relu

3.3. Guided Backpropagation

In the literature, simply calculating the derivative of the
neuron with respect to the image has been experimentally
shown not to reveal visually appealing features. On the
other hand ”guided backpropagation” [8] has been shown
experimentally to produce visually appealing features in an
image that seem to correspond to what usually activates a
neuron highly. In Figure 1 we show the difference between
using a simple gradient versus ”guided back propagation”.
Because ”guided back propagation” seems to offer experi-
mental advantages it is our method of choice to map neurons
back into the original image.

There is only a small difference between normal back
propagation and ”guided backpropagation”. Here we ex-
plain the difference. Suppose as shown in Figure 1 , that
we are using normal backpropagation, and in the backward
pass we are at juncture where the backward signal is going
through a Relu. Normally the signal Dl going out on the
left side of the Relu node will be

Dl = Rl+1 ∗ (f l > 0). (4)

In ”guided backpropagation”

Dl = Rl+1 ∗ (Rl+1 > 0) ∗ (f l > 0). (5)

3.4. Image Processing with Blobs

After we ”guided backprop” a neuron into the image, we
then find the region in the image which has been activated.
We do this by simply keeping the pixels that have values in
the 80th percentile. We us image processing techniques like
dilation and erosion to guarantee that the remaining blob

3

Figure 2. Difference Between using ”guided backpropagation” and
Normal Backpropagation. Both of these processes start at the same
neuron

is continuous simply connected.The erosion operations en-
sures there are no small islands, and the dilation operations
ensure there are no small holes. We do this with kmax neu-
rons.

3.5. Choosing k of kmax neurons

We now have to choose the best k of kmax neurons.
In order to do this we individually pass the regions cor-
responding to kmax neurons through the CNN. Of those
kmax neurons we choose the top k scoring neurons. We
union together the 80th percentile regions of the top k scor-
ing neurons.

In order to find the bounding box, we simply find the
minimum and maximum coordinates in the x and y dimen-
sion of the image. We let these 4 values set the dimensions
of our bounding box. In other words, the 4 corners of our
bounding box are (xmin,ymin), (xmin,ymax) , (xmax,ymin)
, and (xmax,ymax).

3.6. Additional Capabilities

The ingredients above provide a recipe to localize the
object that has been classified by the CNN. We can easily
modify the above algorithm to find multiple objects in an
image. We wont validate this on a big data set but we can
find for example a pig among many dogs. Briefly we de-
scribe a simple modification in Algorithm 2 that accomplish
such a thing.

We can simply just find class scores that are high by
some metric and feed those classes into the heuristic.

In addition ”guided backpropagation” often forms a very
good contour of objects. Thus ”guided backpropogation”
paired with the DAM heuristic could very well segment im-
ages as well.

Algorithm 2 Multiple Localization Algorithm
1: procedure FASTMULTIPLELOCALIZATION(k, kmax)
2: Pass the image through VGGNET to obtain classes

that have similarly high scores
3: Identify the kmax most important neurons for each

class via the DAM heuristic
4: Use ”Guided Backpropagation” to map the neuron

back into the image
5: Score each region corresponding to individual neu-

rons by passing those regions into the CNN.
6: Take the union of the mapped regions correspond-

ing to the k highest neurons for each class and find a
bounding box that encompasses the union

7: end procedure

Figure 3. The Figure shows the algorithm steps. Top Image is the
original input. Middle Layer shows the deconvolution output of
neurons selected using the DAM heuristic. The Final image is the
output box reconstructed from the union of processed deconvolu-
tions from the middle layer

4. Experiments
We arrived at the choice of layer 11 for ”guided back-

propagation” after a few experiments. In particular, we tried
layers 9,10,11, 12, and affine layers. It was our observation
that layer 11 and 12 produced similar output. We decided on
layer 11 because of the computational savings. We did not
use affine layers because they produced really bad results.

We also tried increasing the parameter kmax from 10

4

to 30, but it did not have a significant impact on the lo-
calization accuracy. This means our DAM heuristic does
indeed extract the best neurons for reconstruction of the ob-
ject bounding box. In the next section we describe results
where kmax = 10, k = 5 and layer = 11.

We experimented with different values of the parameter
k, with mixed success. Larger objects did well with high
values of k and smaller object did well with lower values of
k. This is a part of the algorithm we would like to improve
in the future. At this point we were trying to demonstrate
that objects can be localized from a classification CNN.
Keeping this in mind, we decided to keep k constant.

5. Validation
Although we used no training data for the localization

algorithm, we can still use the localization data sets for val-
idation. Below we outline our methodology of validation
and the results and observations about the performance of
our algorithm

5.1. Validation Methodology

We obtained the dataset from ImageNet. In particular
the dataset consists of URLs of images and an XML file for
each image describing the image. The XML file contains
bounding box and object class information for the objects
present in the image. Since our method currently is de-
signed for localizing only one object, we consider images
with only one copy of the object.

The procedure we adopted is as follows. We randomly
sample from the 1000 classes, draw a random image of that
class from the dataset, ensure that there is only one object
of that class. We give the image to the algorithm and ask it
to for a bounding box. We then compare our bounding box
with the ground truth bounding box using some metric.

5.2. Scoring Methods

To evaluate how well the algorithm is performing we
need to come up with a number describing how similar two
bounding boxes are. Since the accuracy of the bounding
box is a very subjective quantity, no method is going to be
perfect. We discuss two methods here and argue that while
both are imperfect together they give a good idea of how the
algorithm is performing.

5.2.1 Intersection over Union

This metric is straightforward and is used extensively in the
literature. It is calculates the area of the intersection of
the two bounding boxes and dividing it by the area of the
union of the two bounding boxes. The ratio ranges from
0 to 1, with 0 signifying no overlap and 1 denoting a per-
fect match. This metric is a very simple metric to mea-
sure overlap, however it has some weaknesses. In particu-

Figure 4. Original Image, Algorithm output, Ground truth

lar if the algorithm has a slightly conservative box, i.e. it
includes a little more of the image at the boundaries mak-
ing a larger bounding box, it gets severely penalized in the
intersection over union metric. Although subjectively the
bounding box is fine. For example, if we take a look at Fig-
ure 4, we that the ground truth is a very tight box, but the
algorithm’s output although subjectively fine has poor in-
tersection over union value (IoU) of 0.6. Thus most correct
localizations have IoUs of 0.5-0.6, however having an IoU
of 0.5-0.6 doesn’t guarantee a correct localization.

5.2.2 Center Correctness

In order avoid the limitations of the IoU metric, we have
used another metric which might better capture the correct-
ness of the bounding box. Similar methods have been used
in [5]. In this metric, we check if the center of our bound-
ing box is within a region around the ground truth bounding
box’s center. We set a margin of say 20%, we then con-
struct a smaller box within the ground truth bounding box
excluding 20% margins on all sides. We then check if the
center of the algorithm’s bounding box is within this size
restricted bounding box. If it is, then we say that the algo-
rithm correctly localized the object when a 20% margin is
used. Higher the margin more restrictive the measure. 0%
margin would just check if the center is within the bound-
ing box. A margin close to 50% would enforce the bound-
ing box centers to be extremely close. This metric is more
robust to boundary effects that the IoU method is prone to
and we hope that it gives a better idea of the accuracy of the
algorithm’s localization.

5.3. Discussion of Validation Results

Our validation data set consists of around 4000 images.
This is after removing noisy images which were all white or
black. The 4000 images includes all classes, we also have 3
smaller data sets of single class images for around 300 im-
ages each. The 3 classes are bottles, bi-cycles and cats. We
evaluate the above metrics on each image and we present
here the accumulated results. Figure 5 shows the histogram
of all the IoU scores. The mean IoU score was found to be
0.4679. As discussed above good bounding boxes get val-
ues of 0.5-0.6. So this shows that the algorithm gets a large
number of bounding boxes correct. If we look at the his-
togram we see that that many images fall in the range of 0.6
to 1 as well. In a later section we also discuss the reasons

5

Figure 5. Histogram of IoU scores for 4000 images

Figure 6. Histogram of IoU scores for 3 classes

Figure 7. Center Correctness score vs. margin fraction for 4000
images

the cases where the algorithms performs poorly. In figure
6, we see that we obtain similar results in the class specific
case as well. We have tabulated the results for the 3 specific
classes in the table below.

Class Mean IoU No. of images
cat 0.451 370

cycle 0.427 386
bottle 0.486 411

We also evaluated the center correctness metric, which
we feel gives a better indication of the algorithm’s accu-
racy. We plot in Figures 7,8 the fraction of data classified
vs the margin fraction. The margin fraction ranges from 0
to 0.5. As we see in the graph, for a margin of 0, we clas-
sify 90% of our images correctly. This means that in 90%
of the cases our bounding box center was within the ground
truth bounding box. For a margin of 0.2, we get 80% accu-
racy. This shows that our algorithm is doing very well even
though it was never trained for localization.

Figure 8. Center Correctness score vs. margin fraction for 3
classes

Figure 9. Original Image, Algorithm output, Ground truth

Figure 10. Result for pre-specified class object Detection. Left
Image is Input, Right Image plots the localized area

6. Discussions
In this section, we provide a qualitative discussion of

the algorithm and briefly discuss the different conditions in
which the algorithm doesn’t do well.

6.1. Localization Effectiveness

The high localization accuracy in the validation results
presented in Section 5 shows that the method is very effec-
tive at extracting spatial information from the CNN. Fig-
ure 9 shows the results of our algorithm for some random

6

images from the ImageNet localization challenge dataset.
The algorithm performs well in localizing a specified

class object from the image of multiple objects, as evi-
denced by the example in Figure 10. The algorithm was
given an input to search for a pig in the image, which
it could successfully do, without needing to run sliding
bounding boxes across the image.

6.2. Problem Areas

Using the validation data set to visualize our results
versus the ground truth, we have identified three major
problems-

1. Misclassifcation: Like most other localization meth-
ods, our method heavily relies on the CNN being able
to correctly classify the object. The neuron selection
heuristic, is highly dependent on the gradients of neu-
ron activations with respect to the correct class score.
If the class is not correctly identified, the selection of
neurons fails, which causes the wrong localization out-
put.

2. Small Object Localization: Our method has low suc-
cess with localizing small objects. We hypothesize
multiple reasons for this. Firstly, small objects in the
image have a high misclassification rate and hence, are
hard for us to localize. Secondly, we are using a con-
stant number of neurons(k=5) from the DAM heuris-
tic which could be very high for tiny objects. Thirdly,
the neural activations corresponding to small objects
might not be enough for them to be picked up by the
DAM heuristic. These examples can be visualized in
Figure 11.

3. Head Body problem: The algorithm described is good
at localizing the most important aspects of the object
but tends to leave out the extremities of the object. The
reason for this is two fold. Firstly, we are currently us-
ing a fixed number of neurons for reconstruction. Sec-
ondly, the top neurons selected tend to have a higher
”guided backpropagation” area overlap and they tend
to capture the most important parts eg. a Dog‘s face
for the dog. We believe that future work to improve
the selection and union of neuron ”guided backpropa-
gation” areas should help improve performance. This
problem is illustrated in Figure 12

Besides the above issues, noise in data such as empty/bad
images and wrong bounding box data due to human er-
ror/ambiguity, also affect our results negatively.

7. Conclusion And Future Work
As stated above, our unsupervised method works quite

well. The key point here is that deep neural networks are

Figure 11. Original Image, Algorithm output, Ground truth - Small
Object Localization Problems

Figure 12. Original Image, Algorithm output, Ground truth -
”Head-Body” Problem

trained to differentiate between classes, and as long one be-
lieves that ”guided backpropogation” conveys information
that activates a neuron and that the DAM heuristic is an ef-
fective ranking of neurons, then our method is picking up
distinguishing features. We however might not pick up legs
and more generic features that are common to all sorts of
classes. In order to do very well, the neural network needs
some knowledge of what humans consider good boxes for
objects. A very promising direction in the future would be
to combine our method with bounding box training data and
region proposal methods. Our method presumably lowers
the set of useful region proposals and the bounding box gen-
erated by our own method could be a feature for training a
neural network on bounding box data. A more unsupervised
approach to this problem, is to make the choice of neurons
more intelligently. If we can obtain the neurons for other
parts of the object, such as legs then we can obtain a better
bounding box.

Another interesting line of work would be to flesh out
how to separate multiple objects in an image. We have
stated a potential algorithm on how to do this, but have not
fully fleshed out the details. Along with this, segmentation
would be an interesting line of research using our method.

Overall, neural networks have lots of information in
them that is indeed uninterpretable. But if we can develop
techniques to probe the neural network, we can make sense

7

of what the neural network has learned from data, which is
very important for furthering this field.

Our code is publicly available in GitHub [1]

References
[1] Code repository for the project. https://github.com/

deepakrox/FastObjectLocalization.
[2] A. G. Baydin, B. A. Pearlmutter, and A. A. Radul. Auto-

matic differentiation in machine learning: a survey. CoRR,
abs/1502.05767, 2015.

[3] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013.

[4] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolu-
tional neural networks. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR ’14, pages 1717–1724, Washington, DC, USA, 2014.
IEEE Computer Society.

[5] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object local-
ization for free? – Weakly-supervised learning with convo-
lutional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, Boston, United States, June
2015.

[6] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal net-
works. CoRR, abs/1506.01497, 2015.

[7] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. CoRR,
abs/1312.6229, 2013.

[8] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Ried-
miller. Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806, 2014.

[9] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bre-
gler. Efficient object localization using convolutional net-
works. CoRR, abs/1411.4280, 2014.

[10] J. R. R. Uijlings, K. E. A. Sande, T. Gevers, and A. W. M.
Smeulders. Selective search for object recognition. Interna-
tional Journal of Computer Vision, 104(2):154–171, 2013.

[11] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013.

8

https://github.com/deepakrox/FastObjectLocalization
https://github.com/deepakrox/FastObjectLocalization

