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Abstract

We investigate the use of Deep Q-Learning to control a
simulated car via reinforcement learning. We start by im-
plementing the approach of [3|] ourselves, and then exper-
imenting with various possible alterations to improve per-
formance on our selected task. In particular, we experiment
with various reward functions to induce specific driving be-
havior, double Q-learning, gradient update rules, and other
hyperparameters.

We find we are successfully able to train an agent to con-
trol the simulated car in JavaScript Racer [3)] in some re-
spects. Our agent successfully learned the turning oper-
ation, progressively gaining the ability to navigate larger
sections of the simulated raceway without crashing. In
obstacle avoidance, however, our agent faced challenges
which we suspect are due to insufficient training time.

1. Introduction

Currently, self-driving cars employ a great deal of expen-
sive and complex hardware to achieve autonomous motion.
We wanted to explore the possibility of utilizing a cheap
everyday camera to enable a car to drive itself. Our main
question was whether we could learn simple driving poli-
cies from video alone. Current autonomous driving imple-
mentations have shied away from the computer vision tech-
niques because of a lack of robustness. The inaccuracies
with vision-based autonomous driving systems lie mostly
in the difficulty of compressing the input image into a com-
pact but representative feature vector. There are currently
two approaches to this problem: “mediated perception ap-
proaches” parse an entire scene (input image) to make a
driving decision and “behavior reflex approaches” utilize a
regressor to directly map an input image to a driving ac-
tion. [2]. Neither of these approaches has been resound-
ingly successful. Because of this, we ultimately turned to
autonomous driving through end-to-end Deep Q-Learning.

However, the ability to test these techniques and the var-
ious related experiments with an actual car on real-video
data was out of the question, given the reinforcement-

learning nature of the paradigm. Instead, we turned to
JavaScript Racer (a very simple browser-based JavaScript
racing game), which allowed us to easily experiment with
various modifications to Deep Q-Learning, hyperparame-
ters and reward functions.

2. Related Work

Q-Learning (further explained in the Methods section)
was introduced by Chris Watkins in his Ph.D. thesis. [10]
Inspired by animal psychology, Watkins sought to develop
a method which allows for the efficient learning of an opti-
mal strategy to accomplish arbitrary tasks which can be for-
mulated as Markov Decision Processes. While supervised
learning can often learn action policies as well, ’sequential
prediction” problems are often better served by reinforce-
ment learning approaches, where the model has some level
of interaction during the learning process. [7]]

In 2005, Riedmiller introduced the idea of using neu-
ral network approximators for the Q function in Q-learning.
[6] Mnih et al. introduced the idea of image-based Deep
Q-Learning in 2015, when the group at DeepMind success-
fully used a convolutional neural network (DQN) to learn
a Q function which successfully plays various Atari 2600
games at or significantly above professional human player
ability. The only inputs to their DQN algorithm were im-
ages of the game state and reward function values. [5] Most
impressively, this paper utilizes a single learning paradigm
to successfully learn a wide variety of games - the gen-
eralizability of the approach (while obviously not a single
set of learned parameters) is powerful, and is what inspired
us to attempt to apply their model to learning a policy for
JavaScript Racer.

Since that work, DeepMind and others have published
numerous extensions to the DQN paradigm. We will sum-
marize some of those extensions here, some of which we
later choose to implement variations of to seek to improve
our agent’s performance.

DQN learning approaches have been successfully lever-
aged for continuous control in addition to discrete control
tasks. While we ultimately modeled our simulated car driv-
ing problem as a discrete learning task, the task of simulated



car control has been well-studied as a continuous control
problem as well. [4]]

Some popular DQN modifications we explore include
prioritized experience replay and double DQN, the details
of which are explained in Methods [9].

State-of-the-art autonomous vehicle control algorithms
are largely orthogonal to DQN approaches, and since the
very simplified game we ended up playing bears few actual
similarities to real-world autonomous driving, the substan-
tial body of literature that exists in that field was not espe-
cially relevant to our work here. DQN-based approaches to
simple video games were much more in the vein of the work
done in this paper, and thus form the core body of work on
which our experiments are based.

3. Methods

We began our project by re-implementing the Deep Q-
Learning algorithm ourselves [5] as presented by the team
at Google DeepMind, using TensorFlow [[1]. Our imple-
mentation can be found on GitHub: https://github.
com/RaphiePS/cs231n-project. This algorithm
extends the general Q-Learning reinforcement learning al-
gorithm to adapt to an infinitely larger state space. In vanilla
Q-Learning, the algorithm learns an action-value function
that ultimately gives the expected utility of taking a given
action in a given state. The implementation of vanilla Q-
Learning keeps track of these (state - action - new state)
transitions and the respective reward in a table and updates
these values in the table as it continues to train. With each
training point, the Q function estimates the expected reward
for taking a particular action from a particular state to ar-
rive at a new state and picks the action that maximizes this
reward. With the knowledge of the actual observed reward
r and the next state s’, we are able to calculate the relative
error for that particular state-action-new state transition (us-
ing v as a discount for future rewards):

error = (r + ymazr,Q(s',a’)) — Q(S, a) (1)

where the minuend is the actual reward and the subtrahend
is the reward predicted by our action-value function. With
this calculated error, we are able to update the transition ta-
ble by adding it to the existing Q value for the particular
state-action-new state. These incremental updates gradu-
ally transform the Q-function from a table of random noise
to an effective game-playing agent. However, when the in-
put to the algorithm is an image, the state space becomes
prohibitively large and this transition matrix implementa-
tion is no longer practical. Instead, a convolutional neural
network (CNN) is used as the Q-function approximator and
the error is backpropagated to update the network with each
minibatch of training examples, such that the parameters of
the CNN learn a good non-linear approximation of the Q-
function even for states it has not explicitly seen before.

We implemented the same CNN architecture (Figure [T])
as proposed by Mnih et al [5], with 3 convolutional layers
and 2 fully connected layers.

Figure 1. Convolutional Neural Network Architecture
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The naive implementation of Deep Q-Learning is the
simple swapping of a table-based Q function for a CNN.
However, this setup is unstable and can lead to a sort of
“overfitting,” where updating the neural network from the
most recent experiences hurts the agent’s performance in
the immediate future. Thus, Mnih et al [5] propose two
modifications, both of which are designed to prevent the al-
gorithm from focusing on the most recent frames and help
it smooth over irregularities. These can be thought of as a
sort of “temporal regularization,” and they help the agent
converge much faster.

The first of these methods is called experience replay,
and it draws inspiration from learning mechanisms in ac-
tual neuroscience. The key idea is to update the net-
work using all of its past experiences, not just recent
frames. To perform experience replay, we store experiences
et = (S,a4,74,8141) at each time-step ¢ into the expe-
rience replay buffer B, = {ei,...,e;}. During training,
we apply Q-learning updates on minibatches of experience
(s,a,r,s") ~ U(B). Note that these minibatches are drawn
uniformly from the buffer. Mnih et al [5]] acknowledges
that this is a shortcoming - every frame is equally likely
to be sampled to update the network, yet it is obvious that
some frames (e.g. entering a turn) are far more “influen-
tial” than others (say, driving down a straightaway). There
has since been work aimed at more carefully sampling the
replay buffer, which is called prioritized experience replay.

The second “regularization” technique applied by Mnih
etal [3] is the use of not one, but two Convolutional Neural
Networks to learn the Q function. In addition to the usual
Q-network, they propose a second target” Q-network, des-
ignated Q. This net is used solely to generate the target
values for the Q update - the regular Q-network is still used
to choose actions at each step. Thus, the error equation be-
comes

error = (r + ymazy Q(s',a’)) — Q(s, a) )


https://github.com/RaphiePS/cs231n-project
https://github.com/RaphiePS/cs231n-project

While error is still backpropagated to @, Q is never updated
via backpropagation. Rather, every C' frames (10,000 in
our experiments), the parameters from () are simply copied
over to Q This temporal delay similarly prevents temporal
“overfitting”.

Upon feedback we received at the Poster Session, we im-
plemented the Double Q-Learning variant proposed by van
Hasselt et al. [9] Double DQN is meant to alleviate the
problem of DQNSs overestimating the value of a given ac-
tion in some circumstances. Double DQN attempts to cor-
rect for this by separating the selection and evaluation of
the max function employed in the calculation of y;. More
precisely, Double DQN replaces the original target y; eval-
uation function (in the non-trivial case where step j is non-
terminal, otherwise y; = r; in both DQN and Double DQN
algorithms), which is

y; = 1) +ymazy Q(¢;11,0’;07) 3)
with the following:

y; =15 +7Q(¢j11, argmax Q(¢;41,a;60),07) (4

Also upon feedback we received, we replaced our un-
clipped loss function with a simplified variant of Huber loss,
instead of the original unclipped /5 loss function, with the
goal of improving the DQN’s stability.

loss = min(|AY|, |AY]?) 5)

As mentioned previously, the original DQN implemen-
tation in [5] sampled uniformly from transition memory.
The authors noted this as a potential area for improvement,
which Schaul et al. attempted to correct. [8]] This alter-
ation extends the experience replay model by not simply
uniformly sampling transitions from memory, but instead,
weighting individual transitions in memory with their "TD-
error”, an attempt to quantify the “unexpectedness” of a
given transition, with the ultimate goal of allowing the DQN
to replay “important” transitions more frequently and there-
fore learn more efficiently. The formula for TD-error (also
using the Double Q-learning equation) is given as follows -
essentially, it computes the difference between y; as com-
puted by the Double DQN update and the Q value as com-
puted by the other (non-target) network.

8; = 1j+7Q(¢j41, arg max Q(d;j+1, a; 0); 07 )—Q(¢;, a; )

(6)

We implemented the binary-heap rank-based prioritiza-
tion approach described in appendix B2 of [8], where each
transition is inserted into a binary heap. This heap is then
used as an approximation for a sorted array, and the array

Figure 2. Training architecture Browser - Webserver - TensorFlow
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is divided up into 32 “pieces” (the size of the minibatch)
different-sized pieces. On every update, then, one element
of the minibatch is selected from each of the “pieces,” such
that elements with larger TD-error are more highly valued
and thus in a smaller ”piece,” meaning they’ll get sampled
more frequently unless they are displaced to a lower-priority
“piece” by new higher-TD-error transitions. [8]] determined
that the imprecise ordering conferred by abusing the binary
heap is not a roadblock to successful priority sampling, and
that the performance overhead of maintaining a perfectly
sorted array at all times is not worth it.

4. Dataset and Features

We did not use a pre-existing dataset. Rather, our images
came from real-time play of the game we chose, JavaScript
Racer. [3]] We chose this particular game for several reasons:
it is open-source, its code is well-documented and easily-
modifiable, its actions are discrete (binary key-presses for
steering instead of a float for steering wheel position like
other simulators), and it had all the simulated challenges
we were looking for - road boundaries, lanes, and traffic on
the road. Since JavaScript Racer is a browser game, our
Python-based agent could not collect frames directly. In-
stead, we modified the source of JavaScript Racer to send
JSON-encoded frames and telemetry data to our Python
web server, which would run the data through our Tensor-
Flow network and return actions back to the browser (Figure

2.

Following the example of the DeepMind paper, our
browser code implemented Action Repeat. With this model,
each action chosen by the agent is repeated for four frames,
which we called “’sub-frames.” Since the four sub-frames
are so similar, only the last sub-frame is sent along with the
reward accumulated over all the sub-frames. The simula-
tion steps forward 50 milliseconds each sub-frame, so with
an action repeat of four, the agent observes a frame every
200 milliseconds of simulation time.

The game outputs frames that are 480 pixels wide by
360 pixels high (Figure[3). As part of our preprocessing, the
browser-side code downsized each frame to 84 by 84 pixels,
as recommended by the DeepMind paper. In early trials
we extracted the luminance (Figure [4)) and used just one
channel per image, but in later ones we used three-channel
RGB images. Since we didn’t have the training examples in
advance, we didn’t perform any mean image subtraction or



similar normalization.

Figure 3. Full-color, full-sized frame.
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In addition to raw frames, the browser also sends over
telemetry data, namely the car’s speed, its position on the
road, and whether a collision had occurred. The agent never
directly uses this data as input - it learned to make decisions
based solely on the pixels in each frame. But JavaScript
Racer doesn’t have a game score, so this telemetry data was
used as input for our reward function, as described in the
Experiments section below.

Telemetry Data Field | Example Value
Speed 35

Max Speed Attainable | 120

X Position -0.2

Collision Occurred False
Progress around track | 23%

After a forward pass through the Q-network, our algorithm
returned an action to send to the browser. This action con-
sisted of four booleans, whether each key - left, right, faster,
slower - would be pressed or not. Once we removed ille-
gal actions (for instance, pressing left and right at the same
time), we were left with 9 discrete actions, as visualized
in Figure 5] After experimentation, we removed many of
these actions, leaving us with only three: faster, faster-plus-
left, and faster-plus-right. As expected, this led to a much
higher average speed, as the car was unable to decelerate.

Figure 5. Full action space
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As to the size of our dataset, our experiments utilized
between 200,000 and 600,000 frames. Since the game plays
the first 50,000 frames completely randomly and uses these
frames as fodder for the experience replay buffer, we were
able to reuse these frames across trials. Otherwise, each
trial generated novel frames for its own use.

5. Experiments

Our initial set of experiments used grayscale images
with an agent history length of 4 (i.e., four consecutive
frames fed as input to the DQN). Upon discovering a not-
particularly-clear saliency map and less-than-satisfactory
performance characterized by intermittent stopping of the
agent along the racetrack, we suspected our network lacked
the ability to consistently differentiate important features on
the road. To help ameliorate this, we switched to start us-
ing three-channel RGB images. To compensate for the in-
creased computational cost of this larger input (most sig-
nificantly, network traffic time), we reduced agent history
length to 1, so only one frame at a time was being evaluated
by the DQN. This was also at Andrej’s suggestion, who sug-
gested debugging our implementation would be easier with
the net viewing single frames at a time.

We utilized multiple evaluation metrics to qualitatively
and quantitatively assess the relative success of a given ex-
periment. One consistent challenge was striking a balance
between confirming experiment reproducibility and trying
new experiments, given limited time and computational re-
sources. Some of our experiments may have resulted in out-
lying results that may have been overturned given enough
repeats. For the most part, however, we erred on the side of
more, diverse experiments instead of confirming initial re-
sults. In this sense, some of our “quantitative” results have
a more anecdotal flavor. On a related note, we chose to
run a greater number of shorter-term experiments instead of
training a single model for a very extended duration. Most
of our experiments terminated after 200,000 frames, with
some continuing to run until 600,000 frames. For context,
Mnih et al. trained on 50 million frames for each Atari
game.

For quantitative evaluation of our agent’s performance,



we analyzed the average Q-value for a minibatch, the Huber
loss associated with each gradient update, and the rolling
average reward over some number of frames (say, 1000).
These continuous metrics, while helpful for debugging and
selecting hyperparameters, are often less enlightening than
a simple video of the agent controlling the car, the most
salient qualitative summary of our best model’s driving per-
formance. While the increase in average reward may ap-
pear relatively smooth, that belies the discrete jump learning
which often happens (as, for example, the car learns how to
round a turn it previously consistently crashed on).

We validate the generalizability of our learned model by
taking some fixed number of random actions before turning
the policy over to the model. This means that the world the
DQN agent sees is stochastic and the frames are unlikely
to be identical to those it saw during training. In almost
all cases, the agent is able to recover from whatever state it
finds itself in and complete the number of turns it was able
to when started deterministically.

We had greater success using a track with no cars on it
(only turns and fixed obstacles), than a car with cars on it.
While the agent learned to navigate turns successfully in
both, it exhibited only very sporadic ability to avoid cars,
and those successes may have been the result of chance
rather than true obstacle avoidance. Given the model’s abil-
ity to learn turning successfully, we ascribe this inability to
insufficient training time.

We also had much quicker success by limiting the al-
lowable actions. By eliminating slowing-down (i.e., only
allowing forward, forward+right, forward+left), the agent
was much more quickly able to learn a sensible policy, as
the initial random exploration of the action space contained
no frames where the car simply wasn’t moving. When the
car was allowed to choose to slow down / not move at all,
it was still able to make turns, but after an equivalent num-
ber of training frames (300k), had mastered only one turn
while its action-limited counterpart was consistently round-
ing four or five.

Initial bugs in our DQN implementation led us to exper-
iment with alternative gradient update rules as a possible
solution. We tried Adagrad, RMSProp, and Adam, to find
that our original choice (the same as in the Mnih et al. Deep-
Mind paper) of RMSProp with momentum = 0.95 worked
best.

We tested multiple reward functions intended to induce
different driving behavior. The variables we considered in-
clude: staying in a single driving lane INLANE), progress
around the track (PROG), speed (S) as a fraction of max
speed, and going off-road (O) or colliding with other vehi-
cles / stationary objects on the course (C). Formally, the two
very different reward functions we tested were as follows:

g— current speed 7

maximum attainable speed

-5 CorO
Ry =4 -10 S=0 )]
min(10,0.2 + 55) otherwise
-1 C
-08 O
Ry=¢-1 S§=0 ©
S INLANE

0.8S not INLANE

At first glance, both reward functions would seem similar -
they both penalize collisions and standing still, and reward
acceleration proportional to the car’s speed. However, we
found that the choice of reward function dramatically af-
fected our learning performance. When we plotted the av-
erage reward per episode vs the update iteration, we found
that the reward function Rs performed significantly better,
as seen in Figure@ with R; above Rs. In fact, using R; our
agent didn’t seem to learn anything at all.

Figure 6. Average episode reward, with R, on top and R2 below.
These experiments were conducted with all nine actions allowable
(including no-ops and slowing down).
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In addition to various reward functions, we tested differ-
ent learning rates. Our first model which learned unambigu-
ously and convincingly was an RMSProp implementation



with a reward function optimized for staying in the lane on
a track with no other cars on it. Video of one sample run of
this agent can be found here: https://www.youtube.
com/watch?v=z1y8kuaNvsk. We then used this as the
baseline against which to compare alternative models. The
performance of various learning rates is visualized in Figure
[7l Upon selecting the reward function and gradient update
rule, we held these as fixed for the remainder of our experi-
ments.

Figure 7. Reward function over varying learning rates.
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It was immediately clear that a learning rate of 0.001 was
too steep, but differentiating between the remaining learn-
ing rates was less obvious, so we turned to a visualization
of the loss function, which made it clearer that .0001 was
the preferred option. This choice was validated by viewing
the car driving - the LR=.0001 agent made it around more
turns with greater consistency than any of the other agents.
Varying the learning rate was the next most significant de-
terminant of qualitative success after reward functions and
update rules (Figure g).

Figure 8. Loss function over varying learning rates.
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We examined the percentage of actions selected as a san-
ity check of the policy the agent learned (Figure [9). Reas-
suringly, the selection of left to right turns was almost iden-
tical, and the car consistently accelerated.

Figure 9. Actions selected by best model so far
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As another qualitative evaluation, we generated a t-SNE
embedding of points in our final connected layer. Clear
clustering is evident in both action coloring and Q-value
coloring. Again inspired by [5], we visualized a sampling
of some of the states in these distinct clusters. In Figure
[TOA, yellow corresponds to move left, blue corresponds to
move right, and purple corresponds to move straight in the
current direction. The frames we visualized justify these la-
bels: in the highlighted point which is blue, for example, the
car is clearly veering to the left side of the road and is best
followed by a move to the right to correct course. Similar
rational labeling is observed in Figure [TOB.

Figure 10. t-SNE embedding of 10,000 randomly selected points
in final connected layer (a) - colored by action selected by agent in
that state, (b) - colored by predicted Q-value of state.
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Finally, we experimented with rank-based prioritized ex-
perience replay and Double DQN. It is unclear whether
these methods helped - given the increased performance
overhead of prioritized experience replay, we were only
able to train this version of the network to 200,000 iterations
on a single trial, over which the qualitative and quantitative
performance of the agent was indistinguishable from the
naive agent without prioritized experience replay or Dou-
ble DQN:

Figure 11. Rolling average reward from “naive” implementation,
and PER+Double DQN implementation
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6. Future Work

We see several paths for improvement. For one, we’d
like to experiment more with prioritized replay - it seems
like low-hanging fruit with its ease of implementation and
its potential impact on convergence times. It wasn’t clear to
us if it was improving our learning or not, so trying metrics
other than TD-error would be interesting. We’d also like to
investigate more improvements to Q-learning, techniques in
the same vein as Double Q-Learning that are relatively sim-
ple to implement and can potentially help us learn faster.
Beyond changes to our algorithm, we’d like to run more ex-
periments, and run them for a lot longer. We observed that
hyperparameters can make or break a trial, so it would make
sense to explore the hyperparameter space much more thor-
oughly than we did with out time constraints (this was also
a comment made in [3]]). Furthermore, we’d like to run ex-
periments multiple times to confirm a negative result wasn’t
simply the consequence of bad initialization. Finally, with
more time we would run our trials for far longer. Most of
our experiments ran to approximately 500 thousand frames.
For comparison, DeepMind was able to train on 50 million
frames for each game they learned. Reinforcement learn-
ing performance is absolutely a function of training time,
so with a couple more orders of magnitude, we would ex-
pect significantly improved results.
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