Playing FlappyBird with Deep Reinforcement Learning

Naveen Appiah
Mechanical Engineering
nappiahb@stanford.edu

Abstract

Learning to play games has been one among of the pop-
ular topics researched in Al today. Solving such problems
using game theory/ search algorithms require careful do-
main specific feature definitions, making them averse to
scalability. The goal here is to develop a more general
framework to learn game specific features and solve the
problem. The game we are considering for this project is
the popular mobile game - Flappy Bird. It involves navi-
gating a bird through a bunch of obstacles. Though, this
problem can be solved using naive RL implementation, it
requires good feature definitions to set up the problem. Our
goal is to develop a CNN model to learn features from just
snapshots of the game and train the agent to take the right
actions at each game instance.

1 INTRODUCTION- PROBLEM
DEFINITION

Flappy bird (Figure 1) is a game in which the player
guides the bird, which is the "hero" of the game through
the space between pairs of pipes. At each instant there
are two actions that the player can take: to press the 'up’
key, which makes the bird jump upward or not pressing
any key, which makes it descend at a constant rate.

Today, the recent advances in deep neural networks,
in which several layers of nodes are used to build up
progressively more abstract representations of the data,
have made it possible for machine learning models to
learn concepts such as object categories directly from
raw sensory data. It is has also been observed that deep
convolutional networks, which use hierarchical layers of
tiled convolutional filters to mimic the effects of receptive
fields produce promising results in solving computer
vision problems such as classification and detection.
The goal here is to develop a deep neural network to
learn game specific features just from the raw pixels and

Sagar Vare
Stanford ICME

svare@stanford.edu

decide on what actions to take. Inspired by [1] and [2],
we propose a reinforcement learning set-up to learn and
play this game..

Reinforcement learning is essential when it is not suf-
ficient to tackle problems by programming the agent with
just a few predetermined behaviors. It is a way to teach
the agent to make the right decisions under uncertainty
and with very high dimensional input (such as a cam-
era) by making it experiencing scenarios. In this way, the
learning can happen online and the agent can learn to re-
act to even the rarest of scenarios which the brutal pro-
gramming would never consider.

Flap

ot Flappy eap
Bird

Gravity

Figure 1: Flappybird Game - Schematics

2 RELATED WORK

Google Deepmind’s efforts to use Deep learning tech-
niques to play games have paved way to looking at ar-
tificial Intelligence problems with a completely different
lens. Their recent success, AlphaGo [4], the Go agent that
has been giving a stiff competition to the experts in the
game show clearly the potential of what Deep learning is

_____%
Eﬁ‘ eg

SCORES

—

|——3

L]

~_
=
—
g

e

Figure 2: Schematic Architecture of the Convolutional Neural Network.

capable of. Deepmind’s previous venture was to learn and
play the Atari 2600 games just from the raw pixel data.
Mnih et al. are able to successfully train agents to play
these games using reinforcement learning, surpassing
human expert-level on multiple games [1],[2]. Here, they
have developed a novel agent, a deep Q-network (DQN)
combining reinforcement learning with deep neural net-
works. The deep Neural Networks acts as the approximate
function to represent the Q-value (action-value) in Q-
learning. They also discuss a few techniques to improve
the efficiency of training and better the stability. They use
a "experience replay" of previous experiences from which
mini-batches are randomly sampled to update the net-
work so as to de-correlate experiences and delayed up-
dates for the cloned model from which target values are
obtained (explained in detail later) to better the stability.
Another advantage of this pipeline is the complete ab-
sence of labeled data. The model learns by playing with
the game emulator and learns to make good decisions
over time. It is this simple learning framework and their
stupendous results in playing the Atari games, inspired us
to implement a similar algorithm for this project.

3 METHODS

In the following section, we describe how the model is pa-
rameterized and the Q-learning algorithm. The task of
the AI agent when the model gets deployed is to extract
images of game instances and output the necessary ac-
tion to be taken from the set of feasible actions that can
be taken. This is similar to a classification problem. Un-
like the common classification problem, we don’t have la-

beled data to train the model on. Instead, a reinforcement
learning setting tries to evaluate the actions at a given
state based on the reward it observes by executing it.

3.1 MODEL FORMULATION

The actions the bird can take are to flap (a = 1) or do noth-
ing (a = 0). The state at time (frame) ¢ is derived by pre-
processing the raw image of the current frame (x;) with
a finite number of previous frames (x;-1, x;—2,...). This
way, each state will uniquely recognize the trajectory the
bird had followed to reach that position and thus provide
temporal information to the agent. The number of previ-
ous frames stored becomes a hyper-parameter. Ideally, s;
should be a function of all frames from ¢ = 1 but to reduce
the state-space, only a finite number of frames are used.

As we know, that the bird dies when it hits the pipe or
the edges of the screen, we can associate a negative re-
ward for bird crashing and a positive reward if it passes
through the gap. This will be close to what a human
player tries to do, i.e try to avoid dying and score as many
points as possible. Therefore, there are two rewards,
rewardPass and rewardDie. A discount factor (y) of
0.9 is used to discount the rewards propagated from the
future action-values

4 (Q-LEARNING

The goal of reinforcement learning is to maximize the to-
tal pay-off (reward). In Q-learning, which is off-policy, we
use the bellman equation as an iterative update

Qisi(s,@) = r +ymaxQ;(s’,a) e)

where, s’ and a’ are the state and action at the next frame,
r is the reward and y is the discount factor. Q; (s, a) is the
Q-value for (s, a) at the i th jteration. It can be shown that
this iterative update converges to an optimal Q-function.
To prevent rote learning, this action value function can
be approximated with a function (deep network in this
case) so that it can generalize to unseen states as well.
This update neglects the stochasticity in state transitions
which is the case in this game. A sequence of observa-
tions sy, a;, 14, St+1 becomes an input point to the learning
algorithm. Basically, the Q-function should fit through a
bunch of such input points to create a model that favors
actions that maximizes the overall reward. The task is to
model this function as a Convolutional Neural Network
and update its parameters using the update rule in equa-
tion 1. Equations 2 and 3 would be the loss function and
its gradient to model this function.

L=} (Q(sa6)-(r+ymaxQ(s,a;67))° (2)

s,a,1,s' a

VoL=) -2(QCs a;H)—(r+yn;a,1xQ(s’, a’;07))VeQ(s, a;0)

s,a,r,s'

3)
Here, 0 are the DQN parameters that get trained and
0~ (explained in later sections) are non updated param-
eters for the Q-value function. Thus, we can simply use
stochastic gradient descent and backpropagation on the
above loss function to update the weights (6) of the net-
work. The training methodology we plan for is inspired
by the work in [3]. 1 is the algorithm we have devised
for training. Training involves an e-greedy approach to
increase exploration. That is, when we are training, we
select a random action with probability ¢ or otherwise
choose the optimal action a,p; = argmaxy Q(s, a;0).
The € anneals linearly to zero with increase in number of

updates.

4.1 PRE-PROCESSING

The direct output of the Flappy bird game is 284x512, but
to save on memory we worked with down-sized images
of 64x64. Each image is on a 0-255 color scale. Addi-
tionally to improve the accuracy of the convolutional net-
work, the background layer was removed and substituted
with a pure black image to remove noise. To process a set
of images from a finite number of frames before the cur-
rent frame into a state (as mentioned in model formula-
tion section), the following approach is used. The current
frame is overlapped with the previous frames with slightly
reduced intensities and the intensity reduces as we move

farther away from the most recent frame. Thus, the in-
put image will give good information on the trajectory on
which the bird is currently in.

4.2 DQN ARCHITECTURE

In the current architecture we have 3 hidden layers as
shown in Figure 2. First we have two Convolutional lay-
ers followed by two fully connected layers. The output of
the final fully connected layer is the score for the two ac-
tions, which is given to the loss function. The modified
loss function helps us learn in a Q-learning setting. We
have a spatial batch norm, ReLu and max pooling layer
after every convolutional layer. Additionally, there is a Re-
Lu and batch norm after the first affine layer (the output
of the batchnorm is fed into the final affine layer). For the
convolutional layers we have used 32 Filters of size 3 and
stride 1 with padding and max pooling with a 2x2 kernals.
The input image is of the size 64 x 64. There are two pos-
sible output actions at each instant, and we get a score
value for each of the actions for deciding on the best.

4.3 EXPERIENCE REPLAY AND STABILITY

In Q-learning, the experiences recorded in a sequential
manner are highly co-related. If they are used in the
same sequence to update the DQN parameters, the
training process will be hindered. Similar to sampling a
mini-batch from a labeled data set to train a classification
model, we should bring in some randomness in the
experiences that get selected for updating the DQN. To
make this possible, a replayMemory is setup which
stores the experience (s;, a;, ¢, Sy+1) at every frame until
the max size numReplayMemory is reached. After the
replay memory is filled to a certain number, a mini-batch
of experiences is sampled randomly and used to run a
gradient descent on the DQN parameters. This update to
the DQN parameters happens at regular intervals. As a
result of this randomness in the choice of the mini-batch,
the data that goes in to update the DQN parameters are
likely to be de-correlated.

To better the stability of the convergence of the loss
functions, we use a clone of the DQN model with param-
eters §~ as shown in equation 2 in the bellman update
equation. The parameters 0~ are updated to 0 after ev-
ery C updates to the DQN. This 6~ is used to calculate y;
as shown in algorithm 1

4.4 TRAINING SETUP

The pipeline for the entire DQN training process is shown
in Algorithm 1. As mentioned in the previous parts of this

section, the experiences are stored in a replay memory
and at regular intervals, a random mini-batch of experi-
ences are sampled from the memory and used to perform
a gradient descent on the DQN parameters. Then we up-
date the exploration probability as well as the target net-
work parameters 0~ if necessary.

Algorithm 1 Deep Reinforcement learning

1: Initialize replay memory D to certain capacity
2: Initialize the Q-value function with random weights 0
3: Initialize60~ =0
4: for games = 1 — maxGames do
5 for snapShots=1—T do
6: With probability e select a random action a;
7: otherwise select a; = argmax,Q(st, a; 0)
8 Execute ay and observe ry and next sate s¢41
9: Store transition s¢, ag, ry, Sg+1 in D
10: Sample mini-batch of transitions from D

11: for j =1 — size of minibatch do

12: if game terminates at next state then
13: yi=ry

14: else

15: ¥ :rj+ymaxarQ(s',a’;9_))

16: end if

17: end for

18: Perform gradient descent on the loss w.r.t 0
19: Every C steps reset 0~ =0

20: end for

21: end for

The score of the output game is the sole evaluation
metric. To make the results robust, we take an average
score over a few games rather than a single one. The € fac-
tor is set to zero during test and while training, we use a
decaying value. This is to model the surety of our deci-
sions as we train and learn more.

5 EXPERIMENTS AND RESULTS

5.1 TRAINING PARAMETERS

Model Parameters: The Flappy bird is played at 10 frames
per second, 3 recent frames are processed to generate a
state, the discount factor y is set to 0.9 and the rewards are
as follows: rewardPass = +1.0 and rewardDie = —1.0.

DQN parameters: The exploration probability (€)
linearly decreased from 0.6 to 0 in 1000 updates. The size
of the replay memory is set to 1000 and the mini-batches
are sampled once it has 500 experiences. The parameters
of the target model 8~ are updated every C=100 updates.
A mini-batch of 32 is randomly sampled every 5 frames
to update the DQN parameters.

Training parameters: The Gradient descent update
rule used to update the DQN parameters is Adam with
a learning rate le—6, 1 = 0.9 and B> = 0.999. These
parameters were chosen on a trial and error basis observ-
ing the convergence of the loss value. Our convolution
weights are initialized to have a normal distribution with
mean 0 and variance le —2.

The whole DQN architecture and the Q-learning
setup was developed in python wusing numpy
and matplotlib libraries. The game emulator is
also a python-pygame implementation found at
https://github.com/TimoWilken/flappy-bird-pygame.git

5.2 RESULTS AND ANALYSIS

After training, a few snapshots of the game were tested
with the model to see if results made sense. Figure
3 shows some example snaps and their corresponding
scores which make perfect sense.

0 10 0 E] a0 50 &

(a) Score: UP =1.870, DOWN = -1.830

&

0 10 0] a0 50]

(b) Score: UP =-1.999, DOWN = 1.983

Figure 3: Example snapshots with their corresponding
scores. 3a is scenario where the bird has to jump up and
3b is a scenario where the bird has to go down

To understand more about the working of the trained
CNN model, test image 3b was visualized after the con-
volution layers to notice the activation. It could be seen
that most activation show clear patches on the edges of

https://github.com/TimoWilken/flappy-bird-pygame.git

the gap and the bird (Figure 4). we can clearly infer that
the network is learning to find the relative position of the
bird with respect to the gap

0

5 10 15 2 3

(a) After 1st conv layer

0 2 4 3 s 10 2 1

(b) After 2nd conv layer

Figure 4: Activation after convolution layers

In most of the experiments done in [3] on Atari games,
the loss function used is L2. We experimented with a L1
loss (equation 4) to introduce some regularization. This
resulted in a very steep learning rate in the beginning as
seen in Figure 5. In both cases, it can be seen that there
is steady increase in the average score showing that the
model is learning steadily.

L=) 1Q(sa0)~(r+ymaxQ(s, a0l @)

s,a,r,s'

This is a video of the agent playing the game
https://www.youtube.com/watch?v=vLMpEx9lSuo. It
can be noticed that even though the bird dies sometimes,
itis seen that it tries hard to reach for the gaps and mostly
crashes at the edges of the gap. Possible solution could
be to use a different reward scheme that would make the
bird take a path farthest from both the top and bottom
pipes. Intuitively, humans playing it also try to keep the
bird always at the center of the gap and something sim-
ilar can be achieved through a carefully designed reward
scheme. Improving the model capacity will also be a pos-
sible next step to try out. The more interesting observa-

tion is that the bird starts moving in a straight line. The
implementation of the game dynamics in the emulator
is a little strange in a way that it doesn't let the bird to
have any y displacement if the flap action is taken con-
tinuously at all frames. Surprisingly, the bird has learnt to
do that through just reinforcement learning.

learning curve with L1 loss

Cumulative Average score

200 400 600 800 1000 1200 1400 1600
Number of games

(a) L1 loss

learning curve with L2 loss

Cumulative Average score

200 400 600 800 1000 1200 1400 1600
Number of games

(b) L2 loss

Figure 5: Learning curves for two different loss functions

Human | DQN with L1 | DQN with L2
Avg score 4.25 2.6 3.3
Max score 21 11 15

Table 1: Average scores calculated over 20 games. Hu-
man’s score corresponding to a beginner

Though the results have not surpassed human level,
the model has shown some promising results and it is just
a matter of fine tuning the Q-learning parameters to im-
prove the performance as discussed earlier.

5.3 PRE-TRAINING

Another experiment that we tried out was to pre-train the
DQN with some labeled experience data. The flappy bird
game is in essence an obstacle avoidance problem that
can be solved using simple search algorithms to find a
collision free path if we have access to the internal states
of the game. So, we setup an A* solver to play the game
and it solved for a path at every frame and let the agent

https://www.youtube.com/watch?v=vLMpEx9lSuo

do the first of the series of optimal actions thus derived.
The agent playing with A* algorithm never dies and this is
used to generate a data set of experiences (states s;) and
the corresponding right action (a;). This is like a data set
in any classification problem. The CNN model was then
trained with a simple softmax loss to classify this data
right to 96% accuracy (validation). The hope was that, by
beginning reinforcement learning with the model initial-
ized to parameters of this pre-trained model, the whole
training process would accelerate. But it was observed
from the learning curves that the model seems to unlearn
the pre-trained abilities and tries to learn afresh. This
could be explained from the fact that, the A* search re-
sults in an optimal path that is different from the path re-
inforcement learning considers optimal. Tweaking the re-
ward scheme could be a possible way to let reinforcement
learning generate paths close to that of the A* paths but
this problem is left to be further investigated in a follow-
up project.

6 CONCLUSION AND FUTURE WORK

We were able to successfully implement a deep reinforce-
ment learning framework to play the game FlappyBird
close to human level. Though the results did not show
super-human performance, it was definitely a step in the
right direction. It can be seen from the way the bird plays,
it tries to reach for gaps but unfortunately crashes at the
corners. A possible fix could be to somehow find a way
to train the model to fit more accurately to the experience
data very close to the pipe. In the current design of ex-
perience replay we sample uniformly to obtain the mini-
batch and update the model. Devising a way to sample
more experience points close to the danger areas would
help solving this problem, better the training rate and im-
prove convergence. With respect to the model architec-
ture, an RNN setup could capture the temporal correla-
tions effectively as this game involves decision making
with a well informed knowledge of the previous states.
Moreover, in this game we removed the background and
score to reduce clutter and increase likeliness of success-
ful training. It would be interesting to see how restoring
the background affects agent’s performance. Overall, our
results show the capacity of Deep neural networks and
how a generic reinforcement learning setup such as this
could learn and play the game with very minimal domain
knowledge. This has thus opened up paths for a lot of po-
tential applications.

REFERENCES

[1] C.Clark and A. Storkey. Teaching deep convolutional neural
networks to play go. arXiv preprint arXiv:1412.3409, 2014. 1,
2

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller. Playing atari with deep rein-
forcement learning. arXiv preprint arXiv:1312.5602, 2013. 1,
2

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529-533, 2015. 3,
5

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, 1. Antonoglou, V. Pan-
neershelvam, M. Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016. 1

