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Abstract

In this work, we investigate the effect of convolutional
network depth, receptive field size, dropout layers, recti-
fied activation unit type and dataset noise on its accuracy in
Tiny-ImageNet Challenge settings. In order to make a thor-
ough evaluation of the cause of the peformance improve-
ment, we start with a basic 5 layer model with 5x5 convo-
lutional receptive fields. We keep increasing network depth
or reducing receptive field size, and continue applying mod-
ern techniques, such as PReLu and dropout, to the model.
Our model achieves excellent performance even compared
to state-of-the-art results, with 0.444 final error rate on the
test set.

1. Introduction

Convolutional neural networks have demonstrated
recognition accuracy better than or comparable to humans
in several visual recognition tasks, including recognizing
traffic signs, faces, and handwritten digits. In particular,
an important role in the advance of deep visual recognition
architectures has been played by the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [12], which has
served as a testbed for a few generations of large-scale im-
age classification systems.

In this project, we work on the Tiny ImageNet Visual
Recognition Challenge. This challenge runs similar to the
ImageNet Challenge (ILSVRC). The goal of the challenge
is to do as well as possible on the Image Classification prob-
lem. The performance is measured by the test set error rate,
the fraction of test images that are incorrectly classified by
the model.

We experiment with various convolutional neural net-
works, which differ in depth, receptive field size, nonlin-
earity layer and number of dropout layers. Our results show
that deeper networks with smaller receptive fields and larger
number of channels usually perform better. Some of our
networks achieve excellent performance even compared to
state-of-the-art results.
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The rest of the paper is organised as follows. We dis-
cuss relevant literature in Section 2 and describe our prob-
lem and data set in Section 3. The details of our technical
approaches are presented in Section 4. In Section 5, we
describe our convolutional neural network configurations,
implementation details and experiment results. Section 6
concludes the paper.

2. Related Work

Recently there have been tremendous improvements in
recognition performance, mainly due to advances in two
technical directions: building more powerful models, and
designing effective strategies against overfitting.

Neural networks are becoming more capable of fitting
training data. This is majorly due to the development of the
following areas: sophisticated layer designs [[L7, 4]; new
nonlinear activations [11, |10, 20, |16} |3, |5)]; and increased
complexity, including increased depth [17, [14], enlarged
width [[19}13]], and the use of smaller strides [[19} 13} [1} [14].

Since networks are more complex, it’s necessary to have
better strategies for model generalization. This is achieved
by large-scale data [2| [12], aggressive data augmentation
[9L[7114,117], and effective regularization techniques [6} 15}
3L18].

3. Problem Statement

The goal of this challenge is to estimate the content of
photographs for the purpose of retrieval and automatic an-
notation using a subset of the large hand-labeled ImageNet
dataset (10,000,000 labeled images depicting 10,000+ ob-
ject categories) as training. Test images will be presented
with no initial annotation — no segmentation or labels —
and algorithms will have to produce labelings specifying to
which category the images belong. New test images are
collected and labeled especially for the original ImageNet
Challenge and are not part of the previously published Im-
ageNet dataset. The general goal is to identify the main
objects present in images and to make image classification.



3.1. Data

The TinylmageNet dataset is a subset of the ILSVRC-
2012 classification dataset. It consists of 200 object classes,
and for each object class it provides 500 training images,
50 validation images, and 50 test images. All images have
been downsampled to 64 x 64 x 3 pixels. The training and
validation sets are released with images and annotations, in-
cluding both class labels and bounding boxes. But the main
goal of this project is to predict the class label of each im-
age without localizing the objects. The test set is released
without labels or bounding boxes.

3.2. Evaluation

For each image, algorithms will produce one label which
has largest estimated probability. The quality of a labeling
will be evaluated based on the ground truth label for the
image. The error of the algorithm for that image would be 1
if the predicted label doesn’t match the ground truth label,
and 0 otherwise. The overall error score for an algorithm is
the average error over all test images.

4. Technical Approach
4.1. Model Architecture

In the last few years, mainly due to the advances of deep
learning, more concretely convolutional networks, the qual-
ity of image recognition and object detection has been pro-
gressing at a dramatic pace. Therefore we will focus on a
deep neural network architecture for this project. We will
experiment with the following architectures with several
dropout layers inserted in the network and use the valida-
tion set to tune the hyperparameters, including filter size,
number of filters, network depth, learning rate and regular-
ization strength, etc.

1. [conv-relu-pool] XN - conv - relu - [affine] xM - [soft-
max or SVM]

2. [conv-relu-pool] xN - [affine] xM - [softmax or SVM]

3. [conv-relu-conv-relu-pool] XN - [affine]xM - [soft-
max or SVM]

4.2. Reduce Overfitting

Since there are only 500 training images for each
class, which is a much smaller training set compared to
the ILSVRC-2012 classification dataset, it’s insufficient to
learn a deep neural network without considerable overfit-
ting. We consider the following two primary ways to reduce
overfitting.

4.2.1 Data Augmentation

The easiest and most common method to reduce overfit-
ting on image data is to artificially enlarge the dataset us-
ing label-preserving transformations. We will employ four
distinct forms of data augmentation at training time, all of
which allow transformed images to be produced from the
original images with very little computation, so the trans-
formed images do not need to be stored on disk. At training
phase, the network random choose from ten transformed
images of the given test image, which are the four corner
crops and the center crop, as well as their horizontal reflec-
tions. At test time, the network makes a prediction based on
the center crop.

1. Random crops. The images of Tiny ImageNet Chal-
lenge are 64 x 64 x 3. Instead of feeding our training
images directly to the convnet, at training time we will
randomly crop each training image to 56 x 56 x 3 and
train our network on these extracted crops.

2. Random flips. We will randomly flip half of the train-
ing images horizontally.

4.2.2 Dropout

The recently-introduced technique “dropout” [15]] is a very
efficient version of model combination that only costs about
a factor of two during training. While training, dropout is
implemented by only keeping a neuron active with some
probability p, or setting it to zero otherwise. At test time,
we will use all the neurons but multiply their outputs by p.

Since the dropped-out neurons do not contribute to the
forward pass and do not participate in back-propagation, the
neural network samples a different architecture every time
an input is presented, while all these architectures share
weights. In this way, a neuron cannot rely on the presence
of particular other neurons. Therefore, the droput technique
reduces complex co-adaptations of neurons, and is forced
to learn more robust features that are useful in conjunction
with many different random subsets of the other neurons.

For this project, we will use the inverted dropout, which
performs the scaling at train time, leaving the forward pass
at test time untouched, with p = 0.5.

4.3. Other Techniques
4.3.1 Model Ensemble

One reliable approach to improving the performance of
Neural Networks is to train multiple independent models,
and at test time average their predictions. Usually the im-
provements are more dramatic with higher model variety in
the ensemble. We will use the following two ways to form
an ensemble. Using which one will depend on the complex-
ity of the network.



1. Top models discovered during cross-validation. We
will use cross-validation to determine the best hyper-
parameters, then pick the top few models to form
the ensemble. This can be easier to perform since it
doesn’t require additional retraining of models after
cross-validation.

2. Different checkpoints of a single model. For complex
networks which are expensive to train, we will take
different checkpoints of a single network over time and
use those to form an ensemble.

4.3.2 Parametric Rectifiers

We will experiment with the network that replaces the
parameter-free ReLU activation by a learned parametric ac-
tivation, called Parametric Rectified Linear Unit (PReLU)
[S]. This activation function adaptively learns the param-
eters of the rectifiers, and improves accuracy at negligible
extra computational cost.

Formally, the activation function is defined as f(y;) =
maz(0,y;)+a; min(0, y;), where y; is the input of the non-
linear activation f on the ith channel, and a; is a coefficient
controlling the slope of the negative part, which allows the
nonlinear activation to vary on different channels. If a; = 0,
it becomes ReL.U; if a; is a small and fixed value, PReLU
becomes the Leaky ReLU (LReLU) in [10]. The number of
extra parameters that PReLu introduces is equal to the total
number of channels, which is negligible when considering
the total number of weights.

5. Experiment
5.1. Model Configuration

We experiment with nine different models. The config-
urations of these convolutional neural networks and their
number of parameters are outlined in Table [T} one per col-
umn. Particularly, Model 9 is inspired by VGG model [14]
and modified to fit our dataset. These model configurations
differ in the following ways:

1. Depth: The depth ranges from 5 layers in Model 1 to
16 layers in Model 9.

2. Receptive field size: Most conv layers in Model 1-4
have 5 x 5 receptive fields, while all conv layers in
Model 5-9 use 3 x 3 receptive fields.

3. Number of kernels: The number of kernels ranges
from 128 in Model 1 to 512 in Model 9.

4. Dropout. As the neural net gets deeper, we add more
dropout layers.

5. ReLU layer: Each convoluational layer in Model 1-4
and Model 9 is followed by a ReLU layer, while con-
volutional layer in Model 5 is followed by a PReLLU
layer, and each convolutional layer in Model 6-8 is fol-
lowed by a LReLu layer.

5.2. Implementation Details

We implemented our models using the publicly available
C++ Caffe toolbox [I8]] on GPUs provided Amazon Web Ser-
vices. We modified the caffe code to add PLeRu layers (and
LReLu is just a special case of PReLU). Here we focus on
the implementation details of Model 8 and Model 9 as these
two models have the best performances and they are evalu-
ated on the test set.

5.2.1 Training Methodology

The training is carried out by minimizing the regularized
multinomial logistic regression loss using mini-batch gra-
dient descent with momentum. All the training images are
randomly cropped to 56 x 56 x 3 images.

The original Imagenet Challenge has input dataset as
224x224, but the Tiny Imagenet Challenge only has input
size 64x64. With cropping the input image, some objects
are located in the corner. During data augmentation, with
random crop, the object will be even further away from the
center of our view, or even outside the crop. This makes
the image become an invalide training data, and we need to
eliminate them from the training dataset. With the provided
object bounding box, this becomes feasible. We check the
object location of each image, if less than 1/4 of the object is
a random crop, we will remove the image from the dataset.
Specifically, Model 1-4 are trained using all training im-
ages, while Model 5-9 are trained using screened images.

For all of our models, the batch size was set to 200, mo-
mentum to 0.9 and dropout ratio to 0.5. The learning rate
was initially set to 0.02 for Model 8 and 0.01 for Model 9,
and then decreased by a factor of 0.1 and 10 respectively
when the validation set accuracy stopped improving. The
weight decay (the L2 penalty multiplier) was set to 1 x 104
for Model 8 and 5 x 10~* for Model 9.

For deep networks, it’s important to have good initializa-
tions due to the non-convexity of the learning objective. We
adopted the training strategy in [14]], where we began with
training first few convolutional layers and the last three fully
connected layers so that the network is shallow enough to
be trained with random initialisation. Then we initialised
the first few convolutional layers and the last three fully
connected layers with the weights derived from previous
training, and initialised the intermediate layers randomly.
For random initialisation, we use the caffe xavier algorithm
to fill weights, which automatically determines the scale of



Table 1. ConvNet configurations (shown in columns). The depth of the configurations increases from the left (Model 1) to the right
(Model 9), as more layers are added. The convolutional layer parameters are denoted as conv (receptive field size)-number of channels.

The ReLU activation function is not shown for brevity.

Input Size Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
conv5-64 conv5-64 conv5-64 conv5-64 conv3-64 conv3-64 conv3-128  conv3-128 conv3-64
56 conv3-64 conv3-64 conv5-64 conv3-64 conv3-64 conv3-128 conv3-128 conv3-64
maxpool
conv5-64 conv5-128  conv5-128  conv5-128  conv3-128  conv3-128  conv3-256  conv3-256 conv3-128
28 conv3-128  conv3-128  conv3-128  conv3-128  conv3-128  conv3-256  conv3-256 conv3-128
dropout
maxpool
conv5-128  conv3-256  conv3-256  conv3-256  conv3-256  conv3-256  conv3-512  conv3-512 conv3-256
conv3-256  conv3-256  conv3-256  conv3-256 conv3-512 conv3-512 conv3-256
14 conv3-256
dropout dropout dropout dropout
maxpool
7 six conv3-512 layers
Fe1 256 1024 1024 1024 1024 1024 2048 2048 4096
dropout
FC2 2048 2048 4096
dropout dropout dropout
FC3 200
softmax
depth (conv+fc) 5 7 8 8 8 8 9 9 16
parameters (M) 1.97 13.74 14.33 14.33 14.20 14.20 60.56 60.56 138

initialization based on the number of input and output neu-
rons, and we simply initialize the bias as 0.

5.2.2 Testing Methodology

At test time, the test image is cropped from center to size
56 x 56 x 3 without any flipping. The trained convolutional
neural network is then applied to the cropped image to ob-
tain the soft-max class posteriors for the image.

5.3. Results

We perform the experiments on the 200-class Tiny-
ImageNet. The results are measured by top-1 error rate. We
only use the provided data for training. All the results are
evaluated on the validation set, except for the final results,
which is evaluated on test set. The validation accuracy is
listed in Table [2| and the final accuracy of the ensemble
model on the test set is 0.556.

5.3.1 Comparison between Dropouts

In Table [2] we compare the effects of adding dropout lay-
ers. We used one dropout layer in Model 3, but two dropout
layers in Model 4. We can see that there is more than 1%
top-1 accuracy improvement. The improvement is mainly
because the dropout layers can help reduce overfitting. The
difference bewteen training loss and testing loss is smaller

Table 2. Convolutional neural network performance on vali-
dation set.

Model Name Depth Nonlinear  Screen  Val Accuracy (%)
Model 1 5 ReLu N 37.27
Model 2 7 ReLu N 28.20
Model 3 8 ReLu N 38.29
Model 4 8 ReLu N 39.55
Model 5 8 PReLu Y 29.00
Model 6 8 LReLu Y 40.19
Model 7 9 LReLu Y 42.07
Model 8 9 LReLu Y 46.45
Model 9 16 ReLu Y 59.50

Ensemble Model 8+Model 9 Y 61.23

for Model 4 than Model 3, which confirms the regulariza-
tion effect of dropout.

5.3.2 Comparison between ReL U, LReLLU and PReL.U

We implemented Parametric ReLU in caffe and used it in
model 5, whose network architecture is the same as that of
model 4 except that model 4 uses ReLLU. Results in Table
show that parametric ReLU does not help to improve the
accuracy. The reason could be that PReLu introduces more
parameters in the model, resulting in an even worse overfit-
ting.



Since PReLU does not work well in our case, we replace
ReLU with LReLU and set the slope to 0.01. Comparing
Model 6 with Model 3, or Model 7 with Model 4, we can
see there is around 2% accuracy improvement. But this im-
provement may also result from smaller receptive fields or
training data screening.

5.3.3 Comparison between Screening Dataset Results

When the object only has less than 1/4 part in a random
crop, we treat this image as noise in the dataset. With filter-
ing out this kind of images, we get a slightly performance
improvement. The improvement is smaller than we ex-
pected mainly due to two reasons. One is we only removed
1535 images whose object is at the corner. And statistics
show that beside those invalide images we still have 1891
images whose object area is smaller than 8 x 8. In this case,
it will also be difficult for human to see, but we have not fil-
ter those images out. The other reason is that many images,
whose object is at corner or small, are in the same class such
as basketball. If we remove all of them from the dataset, it
will also drop the classification peformance for that class.
Due to this trade-off, we did not remove the images that has
small objects. And we see only a small accuracy increase.

5.3.4 Comparision between Single-model Results

Next we compare single-model results. We start with a ba-
sic 5 layer model, and track three directions: increasing ker-
nel numbers, reducing kernel window and increasing net-
work depth. Comparing model 1 with model 3 or model 4,
the only difference is we increase the network depth, and we
see around 2% accuracy improvement. However, increasing
network depth does not always make peformence between,
for example, model 2 get higher error rate.

With more smaller kenel window, we see around 2% ac-
curacy improvement by comparing model 3 with model 6
or model 4 with model 7. But this improvement may also
comes with LReLLU and screening dataset.

With more kernels and adding another fully-connected
layer, we see more than 4% accuracy improvement if we
compare model 7 with model 8. However, it needs much
larger number of parameters and takes longer to train.

5.3.5 Comparision between Multi-model Results

We ensembled the Model 8 and Model 9 in Table[2l For the
time being we have only one model for each architectrue,
except architecture 3, we have two models based on differ-
ent regularization. Since the last few models such as model
8 are much better than the smaller network such as model
1, the smaller network does not contribute to the ensembled
result. We tried with ensembling all the models, and get val-
idation accuracy as 0.54, but with combining Model 8 and
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Figure 1. t-SNE graph for 50 classes of validation set using model
9.

Model 9, we get 0.61 validation accuracy. This indicates
that combining few stronger models is better than combin-
ing more poor models. The multi-model accuracy on the
test set is 0.556.

5.4. Visualization

We visualize the classification of our model 9 by extract-
ing the feature output of the second fullu-connected layer
and plot in t-SNE graph. In t-SNE, the points with the same
color belongs to the same class. If a certain cluster is fur-
ther away from other points in the graph, the network is
more certain about this group of points belong to a certain
class. From Figure [I] we can see, most points are clustered
well, except for a few points in the center. This implies we
have a decent classification accuracy of model 9.

5.5. Error Analysis

While our results get close to state-of-the-art convolu-
tional neural network performance, we still get some mis-
classifications shown in Figure 2] Some missclassification
is because some objects have similar shapes, for example,
in the first row of Figure[2] the first image (val_1153) shows
a vestment, but has been recoginized as alp, and the second
image(val_4311) is a bucket or pail, but has been classified
as frying pan. Since convolutional neural networks are very
sensitive to texture rather than shape, we are not surprised
to see this kind of miss classification. There are some other
miss classification that are resulted in image down-sampling
or crop shown in the second row of Figure[2] such as the first
image(val_7570) in that row is moving van, but has been
recoginazed as pop bottle, and the second image(val_8160)
is lawn mower, but has been predicted as alp, and we found
even human feel hard for this kind of images.



GT: vestment GT: bucket/pail
alp frving pan

GT: lawn mower

GT: moving van
pop bottle/soda bottle alp

Figure 2. Example validation images incorrectly classified by
model 9. For each image, the ground-truth label and the top-1
label predicted by our method are listed.

6. Conclusion

Our results get close to the state-of-the-art convolutional
neural network peformance on ImageNet Challenge. The
down-sampling of the input images make the network more
difficult to classify correctly due to the information loss,
however, less classes of the dataset compensate that. We
also found that deeper network with more kernels gener-
ally improve the accuracy. Parametric ReL U is not always
better than ReLU or LReLU if not well-initilized or no reg-
ularization introduced. Last, screening dataset by the object
location can also help improve peformance.
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