

1

Abstract

Car detection and identification is an important task

in the area of traffic control and management.

Typically, to tackle this task, large datasets and

domain-specific features are used to best fit the

data. In our project, we implement, train, and test

several state-of-the-art classifiers trained on domain-

general datasets for the task of identifying the make

and models of cars from various angles and different

settings, with the added constraint of limited data and

time. We experiment with different levels of transfer

learning for fitting these models over to our domain.

We report and compare these results to that of

baseline models, and discuss the advantages of this

approach.

1. Introduction

Generally speaking, visual fine-grained classification

can be very challenging due to more subtle differences

between classes, compared to basic recognition or coarse

classification, such as on ImageNet. Recognizing the

makes and models for cars is one such task. For humans,

this is usually a fairly straightforward task, especially for

car aficionados. Cars can usually be identified by human

eye due to certain key aspects, such has logos, hood

ornaments, or lettering. However, due to the visual

complexity of cars, this has traditionally been a hard task

for computers.

The main challenge for fine-grained classification is

unarguably the very fine differences between different

classes. Typically, to learn these minute differences, a

large dataset is needed. However, in a setting with limited

time, computational power, or data, this is not feasible.

In our project, we design, implement, and test a

lightweight end-to-end system that uses an out of the box

deep learning framework to fine-tune pre-trained

classifiers for a specific fine-grained classification test.

Our approach is based on taking deep learning models

trained on ImageNet, which typically have very general

features, and changing as little as possible to fit our

training data. We investigate the effects of varying the

levels of tuning on the performances of these fine-tuned

classifiers.

We conducted experiments on the Cars dataset [9], a

fine-grained dataset containing 196 different classes of

cars. This dataset is particularly challenging due to the

freeform nature of the images, which contained cars in

many different sizes, shapes, and poses. Despite our

resource limitations and the difficulty of the task, we were

able to obtain very high quality results from fine-tuning.

2. Previous Work

2.1. CNNS

In recent years, much work on image processing and

classification has been done with convolutional neural

networks (CNNs). The power of CNNs is their capacity

for learning not only the weights of features, but the

features themselves as well. Recently, these CNNs have

achieved state of the art accuracy on generic image

classification [11]. In this project, we make extensive

usage of CNNs as our primary architecture of classifiers.

2.2. Transfer Learning

Transfer learning is a machine learning technique that

focuses on repurposing learned classifiers for new tasks

[10]. In transfer learning for CNNs, a base network is

trained on a base dataset to create weights and features.

This classifier is then transferred to a new dataset by

retraining a subset of the base network’s learned weights

and features. The overall effect is a classifier that fits the

new dataset with significantly less work than retraining a

new network.

When the target dataset is significantly smaller than the

base dataset, transfer learning can be a powerful tool to

enable training a large target network while minimizing

overfitting. In certain tasks, transfer learning has been

shown to achieve near state of the art results [12].

2.3. Fine-Grained Classification

There have been many investigations on fine-grained

classification in a variety of fields, such as birds [5], plants

[6], and cars [1], most of which use CNNs. However,

Monza: Image Classification of Vehicle Make and Model Using Convolutional

Neural Networks and Transfer Learning

Derrick Liu

Stanford University
lediur@stanford.edu

Yushi Wang

Stanford University
yushiw@stanford.edu

2

previous works in the specific task of identifying car make

and model have usually involved a single or small fixed

number of viewpoints [1, 2]. Furthermore, for most tasks,

the number of examples per classification is usually quite

large to allow for good generalization accuracy.

3. Approach and Algorithms

To alleviate the data and time constraints imposed on

us, we chose an approach focused around using transfer

learning to quickly create and train neural networks. For

comparison, we also implemented two simple baseline

networks. We used Caffe, a deep learning framework [4],

to construct, train, and test our networks. The following

subsections describe the models used in this project.

3.1. Baselines

We implemented two simple baselines: an SVM and a

1-layer CNN. Our baseline SVM setup consists of a single

fully connected layer with softmax loss. This baseline

provides a reference for the performance of a simple non-

conv-net setup.

Our baseline convolutional neural network consists of a

Conv-ReLU-Pool set, followed by a fully-connected layer

with softmax loss. This baseline provides a reference for

the performance of a simple CNN approach.

3.2. CaffeNet

 The CaffeNet CNN model [4] is a replication of the

AlexNet model [11]. AlexNet was originally designed to

classify over ImageNet, and contains 5 convolutional and

3 fully connected layers. In addition, it uses dropout to

avoid overfitting. CaffeNet is more or less identical to

AlexNet, with a few minor differences in its default

hyperparameters.

3.3. GoogLeNet

GoogLeNet was designed to be a direct improvement

over AlexNet for the task of classifying ImageNet [7]. It

has 22 layers, compared to AlexNet and CaffeNet’s 8

layers, though the number of parameters in the model is

purportedly 12 times smaller, due to the smaller number of

weights per fully connected layer.

GoogLeNet’s model generates 3 outputs for each input,

at various depths. However, for the sake of brevity, we

only use results from the last output, as it became apparent

early on that the performance of the first two outputs

tended to be strictly worse.

3.4. VGGNet

VGGNet was an attempt to improve upon the original

AlexNet design by adding many layers, similar to

GoogLeNet, albeit not as compact in terms of number of

parameters. The architecture consists of multiple stacks of

convolutional layers, interspersed with several max pools.

Like the previous two networks, this was designed to

classify over ImageNet [8].

4. Data

4.1. Source

We exclusively use the Cars dataset provided by the

paper 3D Object Representations for Fine Grained

Categorization by Jonathan Krause, et al. This dataset

contains 16,185 image-classification pairs of 196 different

classes, split into 8,144 training and 8,041 test images.

Each of the 196 classes is very fine-grained on the order of

year, make and model of a vehicle.

Although the classes are fine-grained, each class is

visually distinct from one another; for example, the dataset

contains a 2012 Volkswagen Golf and a 1991 Volkswagen

Golf, which are visually very distinct, relatively speaking,

but it does not contain a 2011 Volkswagen Golf, which is

virtually identical to the 2012 model.

Figure 1: A sample of images from the Cars dataset,

demonstrating the range of cars, image type, and image

quality.

Each image consists of a car in the foreground against

various backgrounds and viewed from various angles. The

quality of each image, as described by characteristics like

the focal length, lighting, and positioning of the car and

camera, varies significantly from image to image – some

images are professionally-taken press shots; others are

relatively low-quality images collected from classifieds

ads and other places on the internet.

4.2. Preprocessing

We created our preliminary training and validation sets

by taking a stratified 1-fold of the provided training set,

which split the provided training set 80-20 into two sets

with the same class distribution as the provided training

set. To exclude extraneous noise in the training data, we

then cropped the images using bounding boxes provided

with the dataset that describe the location of the cars

actually present in each image. To preserve some context

surrounding the cars, we expanded each bounding box by

16 pixels on each side before cropping.

As the training set contains a variety of image

dimensions and aspect ratios, we resized each cropped

3

image to a square aspect ratio and a resolution of 227x227

as required by the models. After discussions with Krause,

we decided to squash images without preserving their

original aspect ratios instead of scaling and cropping the

image.

5. Experiments

For our baseline SVM and single-layer conv-net

models, we performed a single experiment that applied

each model to raw pixel data for 50,000 iterations with a

learning rate of 0.001 and a decay rate of 0.9. This

produced an acceptable baseline for which to compare the

more complex conv-net models to.

For CaffeNet and GoogLeNet, we performed four

experiments each. Since GoogLeNet has multiple Softmax

loss outputs placed at different depths of its network, each

of the fine-tuning experiments below affected the learning

rates for the layers before each of the loss outputs.

Fine-tuned last layer After pre-initializing each of the

networks with ImageNet-trained weights, we adjusted the

learning rates of the models so the last fully-connected

layer learned at normal rates while the other layers learned

at a diminished 0.1 rate. In our results, this is represented

by the “fine-tuned” figures.

Fine-tuned last three layers After pre-initializing each

of the networks with ImageNet-trained weights, we took

the last-layer fine-tuning from the previous experiment

and expanded it to apply to the last three layers of these

networks. For CaffeNet, this allowed tuning of the last

three fully-connected layers before the loss output. For

GoogLeNet, this allowed tuning of the two fully-

connected layers and convolutional layer immediately

before each of the loss outputs. In our results, this is

represented by the “partial-train” figures.

Fully-train all layers After pre-initializing each of the

networks with ImageNet-trained weights, we allowed the

entire network to be trained at a normal rate. In our results,

this is represented by the “full-train” figures.

Fully-train all layers from scratch For this

experiment, rather than pre-initializing the network with

ImageNet-trained weights, we initialized the network with

small random weights. Then, we allowed the entire

network to be trained at a normal rate with very negligible

priors.

For an additional point of comparison, we also

performed last-layer fine-tuning and full-training from

scratch using a 16-layer VGGNet model.

6. Results

 Top 1

accur.

Top 5

accur.

Final

loss

Baseline SVM 0.031 55.48

Baseline ConvNet 0.062 42.73

CaffeNet fine-tuned 0.447 2.62

CaffeNet partial-train 0.418 2.61

CaffeNet full-train 0.417 3.21

CaffeNet scratch 0.005 5.31

GoogLeNet fine-tuned 0.774 0.943 1.25

GoogLeNet partial-train 0.775 0.943 1.28

GoogLeNet full-train 0.800 0.951 1.09

GoogLeNet scratch 0.347 0.636 6.42

VGGNet fine-tuned 0.789 0.942 1.01

VGGNet scratch 0.008 0.031 5.51

Table 1: Top 1 accuracy, Top 5 accuracy, and loss results

of all experiments. The best performers in each category

are bolded.

Figure 2: Accuracy comparison of all experiments

Figure 3: Baseline loss and accuracy

0 0.2 0.4 0.6 0.8 1

VGGNet scratch

VGGNet fine-tuned

GoogLeNet scratch

GoogLeNet full-train

GoogLeNet partial-train

GoogLeNet fine-tuned

CaffeNet scratch

CaffeNet full-train

CaffeNet partial-train

CaffeNet fine-tuned

Baseline ConvNet

Baseline SVM
Accuracy

Top 5 Top 1

4

Figure 4: CaffeNet loss and accuracy

Figure 5: CaffeNet confusion matrix

Figure 6: GoogLeNet loss and accuracy

Figure 7: GoogLeNet confusion matrix

5

7. Discussion

As expected, due to the large number of classes and

small amount of data, transfer learning was almost

necessary to achieve decent performance, outperforming

nets trained from small, randomly initialized weights.

Baselines Neither baseline model did particularly well.

This was more or less expected; the simplistic models

meant that the more sophisticated features present in the

deeper models never had a chance to be learned.

 Furthermore, without any sort of transfer learning, both

massively overfit the data, as shown by the low plateauing

accuracy, as well as the steadily increasing validation

losses, when training loss always converged to 0 (omitted

from graphs for brevity).

Transfer Learning When trained from scratch, most

models tended to overfit, as shown by the plateauing

validation accuracy, On the other hand, transfer learning in

each setup was able to converge to a reasonable

performance most of the time. Interestingly, both models

tended to generalize better when fewer layers were fine-

tuned. This is probably due to the quality of the ImageNet

features in the earlier layers, whereas tuning these on the

cars dataset tended to cause overfitting.

7.1. Error Analysis

As shown by the confusion matrices in the previous

section, the errors produced by CaffeNet trended towards

misclassifying many classes as a single class (visualized

by the vertical “streaks”), whereas GoogLeNet’s errors

appeared to be more random.

In both of these models, errors appear to be more

frequent closer to the diagonal than otherwise. Though the

classes were reasonably diverse, there were still a few

classes that were virtually identical to each other (such as

different years of the same model of car), and would’ve

proven difficult even for a human to distinguish. Since the

classes are sorted by make and then model of vehicle, this

shows that CaffeNet and GoogLeNet’s misclassifications

are more frequently apparent when distinguishing cars

from the same make. Examples include different models

of Audi and BMW sedans, which tend to look very similar

to each other. When presented with cars that have very

distinctive appearances, however, the models tended to do

very well. For example, when presented with a picture of a

Bugatti Veyron (a well-known "hypercar" with unique

looks), all of the CNN models predicted the class correctly

and were very confident of their predictions.

There are also a few classes of different makes that

tended to be confused for each other. These tended to

belong to small clusters of makes that are rather distinctive

compared to most other cars, but relatively similar to each

other, such as hatchbacks from Nissan being confused for

those of Toyota.

Other than visual similarities, another source of errors

was the data split distribution. Due to lack of time, we

were unable to do much k-folding on the data.

Furthermore, with an average of 30 images per class in the

training split, there were a few data-starved classes at

training time, resulting in somewhat skewed weights for

that class. These can be observed as horizontal streaks

within the confusion matrix, which represent classes that

were rarely predicted correctly.

8. Future work

Though we were able to achieve significant progress in

this particular task, there is still much to explore.

Additional models Within the scope of this project, we

only tested 3 distinct modern CNN models (CaffeNet,

GoogLeNet, and VGG). Doubtless there are more that we

could have performed transfer learning on. In addition,

there was a noticeable lack of diversity within the models;

all three were designed for and initialized with ImageNet

weights.

A possible future direction is using pre-trained nets

from other tasks, including other fine-grained datasets.

Another more ambitious direction would have been to

design, implement, and test our own CNN model, though

this would have been somewhat difficult to pull off (or at

least optimize) with our given timeframe.

Additional transfer learning experiments We have

explored several options in transfer learning, but there are

many combination of features/final classification weight

vectors that we could have performed fine tuning on.

Baselines Due to time constraints and the focus of the

project being transfer learning, not much effort was put

into baselines beyond the minimum of having comparable

results. One possible direction would be to implement

better baselines, though this is probably not as fruitful.

Image Preprocessing For efficiency, we chose a single

data preprocessing scheme (bounding box cropping, then

scaling) early on in our investigation. We had also played

around with other ideas, such as scaling and square

cropping, or only scaling. These ideas were never fully

fleshed out in this project.

Additionally, another direction that had been discussed

was the effect of the data images’ resolutions on the

performance. However, this idea was quickly scrapped

when we realized that we didn’t have a good way of

transferring weights from pre-trained models of different

resolutions. A potentially interesting investigation could

focus on designing such a technique.

6

 Dataset Quality Initially, our investigation was simply

geared towards fine-grained classification, with the data

constraint added later after we had already chosen our

dataset. Though this gave us some insight into the nature

of training on sparse data, the project perhaps could have

been improved with more abundant data.

Web demo

For demonstration purposes, we adapted the Caffe web

demo for use with our project. This application accepts

image input through a URL or uploaded file, and then

classifies it using CaffeNet and GoogLeNet. The top-5

results and confidences are then presented to the user. The

demo is hosted here:

http://ld-gargantua.stanford.edu:5000/

Acknowledgements

We would like to thank the CS231N course staff for their

advice and guidance during this project and Jonathan

Krause for his expertise, data, and patience. We would

also like to thank the CS210 teaching team and Jay

Borenstein for providing dedicated CUDA hardware for

the bulk of our computation, Microsoft Azure for

providing access and complementary credit for their G-

series compute-intensive virtual instances, and the BVLC

team and other contributors for building the Caffe deep

learning framework.

References

[1] L. Dlagnekov and S. Belongie: Recognizing cars.

UCSD, La Jolla, CA, TR. CS2005-0833, 2005. 1, 2

[2] G. Pearce and N. Pears: Automatic make and model

recognition from frontal images of cars. In AVSS,

September 2011. 1, 2

[3] V. Petrovic and T. Cootes: Analysis of features for

rigid structure vehicle type recognition. In BMVC,

2004.

[4] Y. Jia. Caffe: An open source convolutional

architecture for fast feature embedding.

http://caffe.berkeleyvision.org/, 2014.

[5] Farrell, R., Oza, O., Zhang, and N., Morariu, V.I.,

Darrell, T., Davis, L.S.: Birdlets: Subordinate

categorization using volumetric primitives and pose-

normalized appearance. In: ICCV 2011

[6] Angelova, A. and Zhu, S.: Efficient object detection

and segmentation for fine-grained recognition. In:

CVPR 2013

[7] Szegedy, et al.: Going deeper with convolutions. In:

CVPR 2014

[8] Simonyan, K. and Zisserman, A.: Very Deep

Convolutional Networks for Large-Scale Image

Recognition. In: ICLR 2015

[9] Krause, J. et al: 3D Object Representations for Fine-

Grained Categorization. In: 4th IEEE Workshop on 3D

Representation and Recognition, at ICCV 2013

[10] Pan, S. and Qiang, Y.: A Survey on Transfer

Learning. In: IEEE Transactions on Knowledge and

Data Engineering 2010

[11] Krizhevsky, A., Sutskever, I. and Hinton, G.:

ImageNet Classification with Deep Convolutional

Networks. In: NIPS 2012

[12] Donahue, J. et al.: A Deep Convolutional Activation

Feature for Generic Visual Recognition. 2014

Appendix

 Iterations LR LR decay

Baseline SVM 50,000 0.001 0.9

Baseline ConvNet 50,000 0.001 0.9

CaffeNet Finetune 100,000 0.001 0.1

CaffeNet PartTune 80,000 0.001 0.1

CaffeNet FullTrain 100,000 0.001 0.1

CaffeNet Scratch 100,000 0.01 0.9

GoogLeNet

Finetune

50,000 0.0001 0.96

GoogLeNet

PartTune

50,000 0.0001 0.96

GoogLeNet

FullTrain

50,000 0.0001 0.96

GoogLeNet

Scratch

200,000 0.0001 0.96

VGGNet Finetune 100,000 0.0005 0.1

VGGNet Scratch 250,000 0.01 0.1

Table 2: Hyperparameters for all experiments

Figure 8: VGGNet confusion matrix

http://ld-gargantua.stanford.edu:5000/

