
 

1 

Abstract 

 

Car detection and identification is an important task 

in the area of traffic control and management. 

Typically, to tackle this task, large datasets and 

domain-specific features are used to best fit the 

data. In our project, we implement, train, and test 

several state-of-the-art classifiers trained on domain-

general datasets for the task of identifying the make 

and models of cars from various angles and different 

settings, with the added constraint of limited data and 

time. We experiment with different levels of transfer 

learning for fitting these models over to our domain. 

We report and compare these results to that of 

baseline models, and discuss the advantages of this 

approach.  

 

1. Introduction 

Generally speaking, visual fine-grained classification 

can be very challenging due to more subtle differences 

between classes, compared to basic recognition or coarse 

classification, such as on ImageNet. Recognizing the 

makes and models for cars is one such task. For humans, 

this is usually a fairly straightforward task, especially for 

car aficionados. Cars can usually be identified by human 

eye due to certain key aspects, such has logos, hood 

ornaments, or lettering. However, due to the visual 

complexity of cars, this has traditionally been a hard task 

for computers.  

The main challenge for fine-grained classification is 

unarguably the very fine differences between different 

classes. Typically, to learn these minute differences, a 

large dataset is needed. However, in a setting with limited 

time, computational power, or data, this is not feasible. 

In our project, we design, implement, and test a 

lightweight end-to-end system that uses an out of the box 

deep learning framework to fine-tune pre-trained 

classifiers for a specific fine-grained classification test. 

Our approach is based on taking deep learning models 

trained on ImageNet, which typically have very general 

features, and changing as little as possible to fit our 

training data. We investigate the effects of varying the 

levels of tuning on the performances of these fine-tuned 

classifiers. 

We conducted experiments on the Cars dataset [9], a 

fine-grained dataset containing 196 different classes of 

cars. This dataset is particularly challenging due to the 

freeform nature of the images, which contained cars in 

many different sizes, shapes, and poses. Despite our 

resource limitations and the difficulty of the task, we were 

able to obtain very high quality results from fine-tuning.  

2. Previous Work 

2.1. CNNS 

In recent years, much work on image processing and 

classification has been done with convolutional neural 

networks (CNNs). The power of CNNs is their capacity 

for learning not only the weights of features, but the 

features themselves as well. Recently, these CNNs have 

achieved state of the art accuracy on generic image 

classification [11]. In this project, we make extensive 

usage of CNNs as our primary architecture of classifiers.  

2.2. Transfer Learning  

Transfer learning is a machine learning technique that 

focuses on repurposing learned classifiers for new tasks 

[10]. In transfer learning for CNNs, a base network is 

trained on a base dataset to create weights and features. 

This classifier is then transferred to a new dataset by 

retraining a subset of the base network’s learned weights 

and features. The overall effect is a classifier that fits the 

new dataset with significantly less work than retraining a 

new network. 

When the target dataset is significantly smaller than the 

base dataset, transfer learning can be a powerful tool to 

enable training a large target network while minimizing 

overfitting. In certain tasks, transfer learning has been 

shown to achieve near state of the art results [12]. 

2.3. Fine-Grained Classification 

There have been many investigations on fine-grained 

classification in a variety of fields, such as birds [5], plants 

[6], and cars [1], most of which use CNNs. However, 
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previous works in the specific task of identifying car make 

and model have usually involved a single or small fixed 

number of viewpoints [1, 2]. Furthermore, for most tasks, 

the number of examples per classification is usually quite 

large to allow for good generalization accuracy. 

3. Approach and Algorithms 

To alleviate the data and time constraints imposed on 

us, we chose an approach focused around using transfer 

learning to quickly create and train neural networks. For 

comparison, we also implemented two simple baseline 

networks. We used Caffe, a deep learning framework [4], 

to construct, train, and test our networks. The following 

subsections describe the models used in this project. 

3.1. Baselines 

We implemented two simple baselines: an SVM and a 

1-layer CNN. Our baseline SVM setup consists of a single 

fully connected layer with softmax loss. This baseline 

provides a reference for the performance of a simple non-

conv-net setup. 

Our baseline convolutional neural network consists of a 

Conv-ReLU-Pool set, followed by a fully-connected layer 

with softmax loss. This baseline provides a reference for 

the performance of a simple CNN approach. 

3.2. CaffeNet 

 The CaffeNet CNN model [4] is a replication of the 

AlexNet model [11]. AlexNet was originally designed to 

classify over ImageNet, and contains 5 convolutional and 

3 fully connected layers. In addition, it uses dropout to 

avoid overfitting. CaffeNet is more or less identical to 

AlexNet, with a few minor differences in its default 

hyperparameters. 

3.3. GoogLeNet  

GoogLeNet was designed to be a direct improvement 

over AlexNet for the task of classifying ImageNet [7]. It 

has 22 layers, compared to AlexNet and CaffeNet’s 8 

layers, though the number of parameters in the model is 

purportedly 12 times smaller, due to the smaller number of 

weights per fully connected layer. 

GoogLeNet’s model generates 3 outputs for each input, 

at various depths. However, for the sake of brevity, we 

only use results from the last output, as it became apparent 

early on that the performance of the first two outputs 

tended to be strictly worse. 

3.4. VGGNet  

VGGNet was an attempt to improve upon the original 

AlexNet design by adding many layers, similar to 

GoogLeNet, albeit not as compact in terms of number of 

parameters. The architecture consists of multiple stacks of 

convolutional layers, interspersed with several max pools. 

Like the previous two networks, this was designed to 

classify over ImageNet [8]. 

4. Data 

4.1. Source 

We exclusively use the Cars dataset provided by the 

paper 3D Object Representations for Fine Grained 

Categorization by Jonathan Krause, et al. This dataset 

contains 16,185 image-classification pairs of 196 different 

classes, split into 8,144 training and 8,041 test images. 

Each of the 196 classes is very fine-grained on the order of 

year, make and model of a vehicle. 

Although the classes are fine-grained, each class is 

visually distinct from one another; for example, the dataset 

contains a 2012 Volkswagen Golf and a 1991 Volkswagen 

Golf, which are visually very distinct, relatively speaking, 

but it does not contain a 2011 Volkswagen Golf, which is 

virtually identical to the 2012 model. 

 

 
Figure 1: A sample of images from the Cars dataset, 

demonstrating the range of cars, image type, and image 

quality. 

 

Each image consists of a car in the foreground against 

various backgrounds and viewed from various angles. The 

quality of each image, as described by characteristics like 

the focal length, lighting, and positioning of the car and 

camera, varies significantly from image to image – some 

images are professionally-taken press shots; others are 

relatively low-quality images collected from classifieds 

ads and other places on the internet. 

4.2. Preprocessing 

We created our preliminary training and validation sets 

by taking a stratified 1-fold of the provided training set, 

which split the provided training set 80-20 into two sets 

with the same class distribution as the provided training 

set. To exclude extraneous noise in the training data, we 

then cropped the images using bounding boxes provided 

with the dataset that describe the location of the cars 

actually present in each image. To preserve some context 

surrounding the cars, we expanded each bounding box by 

16 pixels on each side before cropping. 

As the training set contains a variety of image 

dimensions and aspect ratios, we resized each cropped 
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image to a square aspect ratio and a resolution of 227x227 

as required by the models. After discussions with Krause, 

we decided to squash images without preserving their 

original aspect ratios instead of scaling and cropping the 

image. 

5. Experiments 

For our baseline SVM and single-layer conv-net 

models, we performed a single experiment that applied 

each model to raw pixel data for 50,000 iterations with a 

learning rate of 0.001 and a decay rate of 0.9. This 

produced an acceptable baseline for which to compare the 

more complex conv-net models to. 

For CaffeNet and GoogLeNet, we performed four 

experiments each. Since GoogLeNet has multiple Softmax 

loss outputs placed at different depths of its network, each 

of the fine-tuning experiments below affected the learning 

rates for the layers before each of the loss outputs. 

 

Fine-tuned last layer After pre-initializing each of the 

networks with ImageNet-trained weights, we adjusted the 

learning rates of the models so the last fully-connected 

layer learned at normal rates while the other layers learned 

at a diminished 0.1 rate. In our results, this is represented 

by the “fine-tuned” figures. 

 

Fine-tuned last three layers After pre-initializing each 

of the networks with ImageNet-trained weights, we took 

the last-layer fine-tuning from the previous experiment 

and expanded it to apply to the last three layers of these 

networks. For CaffeNet, this allowed tuning of the last 

three fully-connected layers before the loss output. For 

GoogLeNet, this allowed tuning of the two fully-

connected layers and convolutional layer immediately 

before each of the loss outputs. In our results, this is 

represented by the “partial-train” figures. 

 

Fully-train all layers After pre-initializing each of the 

networks with ImageNet-trained weights, we allowed the 

entire network to be trained at a normal rate. In our results, 

this is represented by the “full-train” figures. 

 

Fully-train all layers from scratch For this 

experiment, rather than pre-initializing the network with 

ImageNet-trained weights, we initialized the network with 

small random weights. Then, we allowed the entire 

network to be trained at a normal rate with very negligible 

priors. 

 

For an additional point of comparison, we also 

performed last-layer fine-tuning and full-training from 

scratch using a 16-layer VGGNet model. 

 

 

 

6. Results 

 Top 1 

accur. 

Top 5 

accur. 

Final 

loss 

Baseline SVM 0.031  55.48 

Baseline ConvNet 0.062  42.73 

CaffeNet fine-tuned 0.447  2.62 

CaffeNet partial-train 0.418  2.61 

CaffeNet full-train 0.417  3.21 

CaffeNet scratch 0.005  5.31 

GoogLeNet fine-tuned 0.774 0.943 1.25 

GoogLeNet partial-train 0.775 0.943 1.28 

GoogLeNet full-train 0.800 0.951 1.09 

GoogLeNet scratch 0.347 0.636 6.42 

VGGNet fine-tuned 0.789 0.942 1.01 

VGGNet scratch 0.008 0.031 5.51 

Table 1: Top 1 accuracy, Top 5 accuracy, and loss results 

of all experiments. The best performers in each category 

are bolded. 

 

 
Figure 2: Accuracy comparison of all experiments 

 

 

 
Figure 3: Baseline loss and accuracy 
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Figure 4: CaffeNet loss and accuracy 

 

 
Figure 5: CaffeNet confusion matrix 

 

 

 
 

 
Figure 6: GoogLeNet loss and accuracy 

 

 
Figure 7: GoogLeNet confusion matrix 
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7. Discussion 

As expected, due to the large number of classes and 

small amount of data, transfer learning was almost 

necessary to achieve decent performance, outperforming 

nets trained from small, randomly initialized weights. 

 

Baselines Neither baseline model did particularly well. 

This was more or less expected; the simplistic models 

meant that the more sophisticated features present in the 

deeper models never had a chance to be learned. 

 Furthermore, without any sort of transfer learning, both 

massively overfit the data, as shown by the low plateauing 

accuracy, as well as the steadily increasing validation 

losses, when training loss always converged to 0 (omitted 

from graphs for brevity).  

 

Transfer Learning When trained from scratch, most 

models tended to overfit, as shown by the plateauing 

validation accuracy, On the other hand, transfer learning in 

each setup was able to converge to a reasonable 

performance most of the time. Interestingly, both models 

tended to generalize better when fewer layers were fine-

tuned. This is probably due to the quality of the ImageNet 

features in the earlier layers, whereas tuning these on the 

cars dataset tended to cause overfitting. 

7.1. Error Analysis 

As shown by the confusion matrices in the previous 

section, the errors produced by CaffeNet trended towards 

misclassifying many classes as a single class (visualized 

by the vertical “streaks”), whereas GoogLeNet’s errors 

appeared to be more random.  

In both of these models, errors appear to be more 

frequent closer to the diagonal than otherwise. Though the 

classes were reasonably diverse, there were still a few 

classes that were virtually identical to each other (such as 

different years of the same model of car), and would’ve 

proven difficult even for a human to distinguish. Since the 

classes are sorted by make and then model of vehicle, this 

shows that CaffeNet and GoogLeNet’s misclassifications 

are more frequently apparent when distinguishing cars 

from the same make. Examples include different models 

of Audi and BMW sedans, which tend to look very similar 

to each other. When presented with cars that have very 

distinctive appearances, however, the models tended to do 

very well. For example, when presented with a picture of a 

Bugatti Veyron (a well-known "hypercar" with unique 

looks), all of the CNN models predicted the class correctly 

and were very confident of their predictions.  

There are also a few classes of different makes that 

tended to be confused for each other. These tended to 

belong to small clusters of makes that are rather distinctive 

compared to most other cars, but relatively similar to each 

other, such as hatchbacks from Nissan being confused for 

those of Toyota. 

Other than visual similarities, another source of errors 

was the data split distribution. Due to lack of time, we 

were unable to do much k-folding on the data. 

Furthermore, with an average of 30 images per class in the 

training split, there were a few data-starved classes at 

training time, resulting in somewhat skewed weights for 

that class. These can be observed as horizontal streaks 

within the confusion matrix, which represent classes that 

were rarely predicted correctly. 

8. Future work 

Though we were able to achieve significant progress in 

this particular task, there is still much to explore. 

 

Additional models Within the scope of this project, we 

only tested 3 distinct modern CNN models (CaffeNet, 

GoogLeNet, and VGG). Doubtless there are more that we 

could have performed transfer learning on. In addition, 

there was a noticeable lack of diversity within the models; 

all three were designed for and initialized with ImageNet 

weights.  

A possible future direction is using pre-trained nets 

from other tasks, including other fine-grained datasets. 

Another more ambitious direction would have been to 

design, implement, and test our own CNN model, though 

this would have been somewhat difficult to pull off (or at 

least optimize) with our given timeframe. 

 

Additional transfer learning experiments We have 

explored several options in transfer learning, but there are 

many combination of features/final classification weight 

vectors that we could have performed fine tuning on. 

 

Baselines Due to time constraints and the focus of the 

project being transfer learning, not much effort was put 

into baselines beyond the minimum of having comparable 

results. One possible direction would be to implement 

better baselines, though this is probably not as fruitful. 

 

Image Preprocessing For efficiency, we chose a single 

data preprocessing scheme (bounding box cropping, then 

scaling) early on in our investigation. We had also played 

around with other ideas, such as scaling and square 

cropping, or only scaling. These ideas were never fully 

fleshed out in this project. 

Additionally, another direction that had been discussed 

was the effect of the data images’ resolutions on the 

performance. However, this idea was quickly scrapped 

when we realized that we didn’t have a good way of 

transferring weights from pre-trained models of different 

resolutions. A potentially interesting investigation could 

focus on designing such a technique. 
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 Dataset Quality Initially, our investigation was simply 

geared towards fine-grained classification, with the data 

constraint added later after we had already chosen our 

dataset. Though this gave us some insight into the nature 

of training on sparse data, the project perhaps could have 

been improved with more abundant data. 

 

Web demo 

For demonstration purposes, we adapted the Caffe web 

demo for use with our project. This application accepts 

image input through a URL or uploaded file, and then 

classifies it using CaffeNet and GoogLeNet. The top-5 

results and confidences are then presented to the user. The 

demo is hosted here:  

 

http://ld-gargantua.stanford.edu:5000/  
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Appendix 

 Iterations LR LR decay 

Baseline SVM 50,000 0.001 0.9 

Baseline ConvNet 50,000 0.001 0.9 

CaffeNet Finetune 100,000 0.001 0.1 

CaffeNet PartTune 80,000 0.001 0.1 

CaffeNet FullTrain 100,000 0.001 0.1 

CaffeNet Scratch 100,000 0.01 0.9 

GoogLeNet 

Finetune 

50,000 0.0001 0.96 

GoogLeNet 

PartTune 

50,000 0.0001 0.96 

GoogLeNet 

FullTrain 

50,000 0.0001 0.96 

GoogLeNet 

Scratch 

200,000 0.0001 0.96 

VGGNet Finetune 100,000 0.0005 0.1 

VGGNet Scratch 250,000 0.01 0.1 

Table 2: Hyperparameters for all experiments 

 

 
Figure 8: VGGNet confusion matrix 
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