Convolutional Networks for Stock Trading

Ashwin Siripurapu
Stanford University Department of Computer Science
353 Serra Mall, Stanford, CA 94305

ashwin@cs.stanford.edu

Abstract

Convolutional neural networks have revolutionized the
field of computer vision. In these paper, we explore a par-
ticular application of CNNs: namely, using convolutional
networks to predict movements in stock prices from a pic-
ture of a time series of past price fluctuations, with the ul-
timate goal of using them to buy and sell shares of stock in
order to make a profit.

1. Introduction

At a high level, we will train a convolutional neural
network to take in an image of a graph of time series data
for past prices of a given asset (in our cases, SPY contracts
traded on the NYSE). Then, we will predict the movement
of the price in the next few minutes. If the CNN correctly
predicts price movements, we can make money by buying
when the CNN says the price will go up in the future,
and then selling it at the higher price in a few minutes’ time.

We evaluate the trained network both using traditional
statistical performance measures (viz., R?) and also with a
“paper trade” simulator that enables us to see what would
have happened if we had bought and sold contracts accord-
ing to the CNNs predictions; in particular, we can see how
profitable the strategy of following the trained CNN would
be. Naturally, this methodology is subject to the vulner-
ability that it is impossible to tell how other participants in
the market would have reacted to the presence of the CNN’s
buying and selling, but it does give us at least some measure
of confidence as to the CNNGs abilities as a trader.

2. Problem Statement and Technical Approach
2.1. Gathering Data

The first step in the process of training a CNN to pick
stocks is to gather some historical data. [1] provides
minute—by—minute ticker data on the S&P 500 ETF Trust
(symbol: SPY), traded on the NYSE. Specifically, for each

minute of each trading day, we have the data listed in Ta-

ble[ll

2.2. Initial Choice of Features

Since the project requires us to use pixel data, I had
to convert this price data into images. This presents an
interesting challenge in its own right, but a very obvious
starting point is to take as our inputs (features) a graph of
the price of the contract for some period of time into the
past (say, 30 minutes back) and then use that to predict the
price at some time in the future (say, 5 minutes ahead).
Then, if we predict that the price will go up (down), we
will buy (sell) in the present and sell (buy) in 5 minutes to
acquire a profit.

Firstly, what do we mean by “the” price of the contract?
Recall from above that Google Finance provides us with
four separate prices for each minute of the trading day. For
the time being, I have elected to use only the high and low
prices within a given minute, since these implicitly bound
the other two prices (open and close). Moreover, the high
and low intuitively contain more information than the open
and close prices, because the open and close prices are
in a sense statistical artifacts: they are the prices that the
market happened to be at at the time that the price series
was sampled by Google (or whomever was collecting the
data).

Secondly, how far in the past should our time series
graph go? This is in principle another hyperparameter that
should be tweaked once the convolutional network has
been set up, but for now, I have gone with a 30-minute
window into the past.

In conclusion, the inputs to the model are images of
the graph of high and low prices for 30 minute windows
of time. These images are drawn using the numpy and
matplotlib libraries and are saved as RGB images. An
example input is shown below in Figure[2.2]

Later on, I experimented with using slightly different

Column Name Meaning
DATE Time (which minute of the day)
CLOSE Closing price (price at the end of the minute)
HIGH High price (maximum price during the minute)
LOW Low price (minimum price during the minute)
OPEN Opening price (price at the beginning of the minute)
VOLUME How many contracts were offered to be bought/sold in the minute

Table 1. Minute—by—minute data provided by [1]

Figure 1. An example picture input to convolutional network. High
prices are in blue, low prices are in green.

1.0 F2.024e2

081

0.6 -

0.4 1

0.24

features (see Section[6)).

2.3. Choice of Response

I mentioned earlier that we would use a 30-minute
window of past price data (in image form) to predict the
price of the asset at some point in the future. We will now
explore the intricacies involved in choosing the response
variable to predict.

In the first place, as with the features, we have a choice
of how far into the future to predict the price fluctuation.
In practice, we want this length of time (herafter called the
prediction horizon, or just horizon for short) to be short,
because as time goes on, any predictive signal that we
have gets increasingly drowned out by random noise in the
market. At the same time, we cannot make the horizon too
short, or else we will not be able to execute effectively (i.e.,
buy or sell) on the basis of our predictive signal; carried to
the extreme, it is trivial to predict the price one picosecond
into the future with 100% accuracy (since prices cannot
change faster than the speed of light), but this prediction is
utterly useless for the purposes of making money!

For the time being, I have decided to use a horizon of
5 minutes past the end of the window of past prices that
constitutes an input to the model (explained above).

In addition to the choice of horizon, we also have to de-
cide exactly what quantity we want to predict. There is a
wide body of financial literature dedicated to this topic. An
obvious choice is to try and predict the price itself at the end
of the horizon period (i.e., given a window of price data for
30 minutes into the past, from time ¢ — 30 to time ¢, try to
predict the price at time ¢ + 5 if the horizon is 5 minutes).
However, it is more useful to predict the change in price be-
tween time ¢ and time ¢ + 5, as this is ultimately what weill
determined whether it is profitable to buy (sell) now and sell
(buy) in 5 minutes in order to lock in a profit.

Moreover, there are multiple ways to measure the dif-
ference in price at two times ¢{; < ty. In the first place,
we have to decide which price (high, low, open, or close)
we want to predict. Having decided on some measure of
price, and obtained price measurements p; and ps at times
t1 and to respectively, there are two widely—accepted ways
of calculating the change in price (also known as return) in
finance: the arithmetic return, defined as

:P2—P1
P1 ’

T1

and the logarithmic return, defined

_ <p2>
ry=log|—|.
P

I have chosen to define the price of the asset (for the
purposes of defining a response variable) to be the mean
of the high and low prices during the minute that we are
considering. In addition, I have chosen to use log returns
rather than arithmetic returns.

Concretely, the regression problem is: given as input an

image of high and low prices from time ¢ — 30 to time ¢,
predict as output the logarithmic return from time ¢ to time

t + 5, i.e., predict
log (pt+5> 7
Dt

where p; denotes the mean of the high price and low price
in minute ¢ of the trading day.

2.4. Choice of Loss Function

I am going to use an £2 loss function when training the
convolutional network. In future, we can consider different
choices of loss function, but the ¢2 loss is very standard in
regression problems in finance. Moreover, Caffe readily
supports {5 regression with its EUCLIDEAN_LOSS layers.

It is important to note that, unlike the length of the input
window, the choice of loss function is not a hyperparameter
to be tuned. This is because different loss functions are
different problems entirely, not merely different solutions
to the same problem. Different loss functions correspond
to different notions of the “displeasure” or “dissatisfaction”
with our predictions that we are trying to minimize. It
makes no sense to argue that one setting of parameters
is “better” than another when the comparison is across
different loss functions.

That said, in trading, the ultimate test of how good a
strategy or model is is how much money it makes. In that
sense, and in that sense alone, it may make sense to exper-
iment with different loss functions to derive different opti-
mization problems, and then see which optimization prob-
lem yields the most profitable strategy.

3. Establishing a Baseline

The most basic financial model is ordinary least—squares
regression (OLS). For purposes of establishing a baseline
for performance, I used this model on a very simple set of
features.

Concretely, I took the 600 x 800 time series graph
images and scaled each one down to a 32 x 54 thumbnail
image. In addition, I converted the images from four
channels (RGBA) to one (grayscale). The thumbnails then
corresponded to points in the space R1728,

Treating each grayscale thumbnail and its corresponding
log return as a training pair (x;, y;), I then fit a linear model
to a training data set of 4000 points and tested it on a data
set of 996 points.

The within—sample R? of the linear model was 0.428,
which is fairly impressive for such noisy data. However,
the ultimate test of any statistical model is how it performs
out of sample. The out—of—sample R? for this linear model
on the test set was an embarassing —12.2. Clearly no one
should use this model to trade on the market, unless he
wants to lose a lot of money!

It should be possible for the final convolutional network
to beat these results easily. In the first place, the baseline

model used (OLS) was extremely simple. Secondly, the
features (pixel data) bore little linear structure that could
have been exploited to predict log returns well. A convo-
lutional network with many nonlinearities can rectify this
(no pun intended). Finally, the feature space used in this
OLS baseline was heavily reduced: we shrunk the images
to thumbnails and removed all color information. Given the
full input data, a CNN should be able to do significantly
better.

Ideally, we should be able to get R? > 0 on an out—of—
sample test set. This means that we are doing better than
the naive strategy of always guessing that the log return in
the next 5 minutes will be the mean log return in the test
set (usually around 0). If we can do this regularly, then
provided we have good execution (ability to buy and sell
reasonably quickly), we have the makings of a profitable
trading strategy.

4. Workflow

In the following sections, I describe how I systematically
made changes to the network architecture, to the hyperpa-
rameters, and to the features (images) that were put into the
model. Concretely, my workflow was as follows:

1. Generate features from the data using matplotlib.

2. Convert image features and log return response into
HDFS5 using hdf5_convert . py.

3. Generate network architecture file using [4], a script
provided by a fellow student on Piazza.

4. Tune hyperparameters by modifying solver.txt.
5. Train network using Caffe.

6. Visualize weights in trained
visualize_weights.py.

network using

7. Evaluate network by computing out-of-sample R?
with caffe_compute_r2.py.

5. Hyperparameter Tuning

The first thing that I did to achieve lower loss (hence
higher R?) was to tweak the optimization hyperparameters,
as specified in the solver.prototxt file. This includes
the starting learning rate, the learning rate update scheme
and parameters, and the type of solver (SGD, Adagrad, or
NAG [Nesterov accelerated gradient]). I started out with
10,000 training iterations, with momentum SGD. « started
out at 0.01 and was cut down by a factor of v = 0.1 ev-
ery 5,000 iterations (i.e., step_size was set to 5,000). In
addition, the momentum term was set to ;. = 0.9.

Loss vs. training iterations
3.5e-06

training
validation

3e-06

25e-06

2e-06

15e-06

Training iterations

le-06

5e-07

0 2000 4000 6000 8000 10000
Loss

Figure 2. Training and validation loss with SGD, ainit = 0.2,
pw=0.9v=0.5 step_size =2000

Loss vs, training iterations
6e-05

training
validation

5e-05

4e-05

3e-05

Training iterations

2e-05

1e-05

a 2000 4000 6000 8000 10000
Loss

Figure 3. Training and validation loss with NAG

This was far too low a learning rate, and too low a rate
of annealing. As a result, training loss hardly moved from
its initial value and validation loss remained fairly flat, too.

I decided to increase the mobility of the optimization
hyperparameters by increasing the initial learning rate, in-
creasing the value of ~, and decreasing the step size (so «
would be updated more frequently). Concretely, I set the
initial learning rate to 0.2, v to 0.5, and step_size to
2000. p remained at the original value of 0.9. This resulted
in the training and validation loss plot shown in Figure[2]

Following this, I decided to experiment with Nesterov’s
accelerated gradient. To do this, I simply added the line
solver_type: NESTEROV to the solver file. This re-
sulted in the training and validation loss depicted in Fig-
ure 3] This did not significantly improve over momentum
SGD loss.

When I switched to using different network architec-
tures and different features (see below), I had to update
the hyperparameters in solver.prototxt appropri-
ately. Nonetheless, the same basic approach (come up with
some hyperparameters, run the network, plot the training
and validation loss curves) proved useful and, in fact, the

1.0¥2.02de2 ‘ ‘ i . 350000

300000

0.8}
4250000

061 1200000

1150000
0.4}
{100000

450000
0.21

Figure 4. An example image input. As before, high prices in blue,
low prices in green. Volume (right axis) in red.

same hyperparameter settings were generally near—optimal
with slight modifications.

6. Feature Engineering

Recall from Figure what a typical input price
window image looks like. After the poster session, some
commentors suggested a better choice of inputs. In
particular, my image inputs did not use the red channel to
encode any data at all. The red channel could have been put
to better use, for example, by using it to store data about
the average of the low and high prices, or the volume at
each minute of the trading dayﬂ Others suggested that I
use a different visualization in the image data: rather than
plotting the absolute price at each time for a short window,
I could instead plot a spectrogram and visualize the price
data in the frequency domain.

Ultimately, I experimented with two more kinds of in-
puts. The first one was similar to the original image data
in that it used a time—domain representation of the price se-
ries, except that I also used volume data, which was plotted
in red on a separate set of axes. An example of this kind of
input is shown in Figure 4]

The other kind of representation that I tried was the so—
called correlation features. Recall that the S&P 500 is a
weighted basket of 500 different individual stocks (equi-
ties). That is, owning a single unit (share) of SPY is equiv-
alent to owning some number of shares of each of the 500
constituent corporations. The ten companies which com-
prise the biggest share of the S&P 500 basket are shown in

IRecall that volume is the total quantity of contracts available to be
bought or sold in a given minute. In actual trading scenarios, this is usu-
ally expressed as two numbers (number of contracts available for sale, and
number available for purchase), but Google Finance’s data added the two
together and expressed them as a single sum.

Company Symbol | % Assets
Apple Inc. AAPL 4.03
Exxon Mobil Corporation Common XOM 2.01
Microsoft Corporation MSFT 1.93
Johnson & Johnson Common Stock INJ 1.54
Berkshire Hathaway Inc Class B BRK.B 1.44
General Electric Company Common GE 1.40
Wells Fargo & Company Common St | WFC 1.38
Procter & Gamble Company (The) PG 1.23
JP Morgan Chase & Co. Common St JPM 1.23
Pfizer, Inc. Common Stock PFE 1.16

Table 2. Top 10 components of the S&P 500. Data from [2]

Figure 5. An example image input. There are ten color swatches;
each represents the correlation of SPY with a different stock from
among the top 10.

Table

Collectively, these top ten comprise 17.53% of the S&P
500 basket. I used these 10 constituent components to com-
pute inputs to the neural network in the following way:
within each 30 minute window, I gathered the average price
(mean of low and high) time series for the S&P 500 and for
each of the top ten constituents. Then, I computed the cor-
relation coefficient between the price series for the SPY and
the price series of each of the constituents. This resulted in
ten different values between -1 and 1. I then plotted these
ten values in a heatmap, with colors ranging from red (high
correlation) to blue (low correlation). An example feature
image is shown below. The hope is that, when the S&P
500 is trending upwards, its correlations with its constituent
stocks will exhibit a different pattern than when it is trend-
ing downward.

7. Network Engineering

The first network structure that I tried repeated
convolution—ReLU—pool layers (5 blocks) followed by a

fully—connected layer. Call this the original architecture.
Unfortunately, this led to rather poor performance: out of
sample R? was —0.06, slightly worse than the strategy
of “always guess that the log return will be the mean log
return (approximately 0)” which would achieve an R? of 0.

Following Yuke’s advice, I visualized the weights in the
last convolution layer in the initial network structure to see
what the problem might be. The problem was that there has
been too much pooling, so that the input to the final layers
was very blurry, and the final layers of the network (in
particular the affine layer) could not distinguish between
distinct images when they are so blurred.

To remedy this, I tried a new network structure which
didn’t employ pooling until several cycles of convolution—
ReLU. Concretely, I used three blocks of conv—ReL.U, fol-
lowed by two blocks of conv—ReL.U—pool, followed by a
single affine layer. Let us call this the reduced architec-
ture since it has fewer layers than the original architecture.
This resulted in somewhat improved performance; results
are shown in Table 3] The weights of this new network
structure, when trained on the windows of price and vol-
ume data features from above (as in Figure f) are shown
below in Figure[6] and Figure[7] Clearly some of the struc-
ture of the price and volume charts is being captured by the
weights in the last layer, i.e., the image is not getting blurred
too badly as it passes through the network.

In addition, I visualized the final convolution layer
weights for the same (reduced) architecture network trained
on the hetmap features. This data appears in Figure[8] The
influence of the vertical stripes of colors is clearly visible.

8. Results

For each of the two architectures (the original one, which
resulted in blurring of the image by the final layers; and the
reduced architecture) and each of the two new types of fea-
tures, we trained the network, tweaked the hyperparameters
until convergence was achieved in at most 10,000 iterations,

R ‘> LA FIY 1A
'EPENENyacoR
mn’h:'-.“o‘»‘ an
ROAPPURATDRAAT
NN EA SO NNS
R b L L LA)

3 T 142 1T A1 T
2RI ESTRAYNEN
MIewRorvgors
NIBLAT"S28440
“PPREIRI |
0 lk) 20 3k) 4‘0

Figure 6. The weights of the first layer of the reduced architecture
network after training on price and volume features.

Figure 7. The weights of the last convolution layer of the reduced
architecture network after training on price and volume features.

Figure 8. The weights of the last convolution layer of the reduced
architecture network after training on heatmap features.

problem. I suspect that using a classification-based ap-
proach may be better in practice, especially in the high—
frequency setting, because in reality, price movements are
discrete (prices fluctuate in ticks no smaller than a penny).

Future work will also focus on the execution side of this
problem, once R? is positive; that is, once we have a better—
than—chance predictive edge, it remains to be seen whether
this statistical predictive ability can be translated into actual
cash by executing the strategy optimally (buying and selling
when the strategy says to).

Lastly, it remains to be seen whether image features are
best. Naturally we could feed historical price, volume, cor-
relation, or any other data into a neural network directly,
instead of encoding it as an image. This would get the data
into the network more directly than via the circuitous route
that the current implementation takes.

10. References

Original arch. | Reduced arch.
Price windows with volume —0.05 —0.014
Correlation features —0.42 —0.013

References

Table 3. Out—of—sample R? for different features, architectures

and computed an out—of—sample R? on a test set of data.
The results of that process are shown in Table [3]

Overall the results are underwhelming. We were unable
to achieve an out—of-sample R? greater than 0; that is to
say, you would be better off guessing that the next price
movement is going to be the mean price movement (typi-
cally 0) than following our model. Nonetheless, this was a
good learning experience and

9. Further Work

It remains to be seen whether ¢5 regression is the best
formulation of this finance problem as a machine learning

[1] http://www.google.com/finance/
getprices?i=60&p=20d&f=d, o, h, 1,
c, védf=cpct&g=SPY

[2] http://finance.yahoo.com/qg/hl?s=
SPY+Holdings

[3] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv
preprint arXiv: 1408.5093, 2014.

[4] Das, Subhasis. gen_proto.py, a Python script for
y p
generating Caffe network architecture files.

http://www.google.com/finance/getprices?i=60&p=20d&f=d,o,h,l,c,v&df=cpct&q=SPY
http://www.google.com/finance/getprices?i=60&p=20d&f=d,o,h,l,c,v&df=cpct&q=SPY
http://www.google.com/finance/getprices?i=60&p=20d&f=d,o,h,l,c,v&df=cpct&q=SPY
http://finance.yahoo.com/q/hl?s=SPY+Holdings
http://finance.yahoo.com/q/hl?s=SPY+Holdings

