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Abstract

The issue of waste management has been of great inter-
est to the computer vision community over the last three
decades, with environmental problems pushing this issue
to the fore of public discourse. Previous work in this field
have attempted to tackle this problem from a plethora of dif-
ferent avenues. This paper seeks to apply computer vision
models, specifically image classification models, to images
taken from a drone flying over a beach. Here, the perfor-
mance of YOLO-v8, DINOv2, and MobileNetv4 are com-
pared on the same dataset. Here, we find that the YOLO-v8
model performs the best on the provided task, achieving a
100% accuracy on the test set, followed by DINOv2 with
a 98.6% accuracy, finally followed by MobileNetv4 with a
97.2% accuracy. Thus, the models perform similarly across
the board. These results provide evidence that a lighter
model such as MobileNet can keep up with more complex
models and may be useful for groups looking for low-cost
options for fieldwork, but that YOLO-v8 seems to be the best
model for this task.

1. Introduction

The issue of managing solid waste production has been a
thorn in the sides of communities globally as consumption,
waste production, and population size has exploded within
the last century with the rise of industrialization [I1]. In
addition to being a difficult logistical problem, increas-
ing waste production has had major adverse environmen-
tal effects on wildlife and in hydrological contexts, where
disease-carrying insect vectors like mosquitoes can breed
and where chemical byproducts can effectively poison resi-
dents with ammonia and methane [18].

To address this issue, communities—especially urban
ones—have turned to municipal solid waste (MSW) man-
agement. At a non-technical community level, this can be
implemented in the usage of distinct recycling and trash col-

lection. In the last two decades, advancements in the field
of computer vision have allowed scientists to explore the
idea of using automated systems to complete this work, as
research has shown that humans’ ability to sort waste into
defined categories is less than adequate [7]. This problem
has been explored within the computer vision community,
following the shift from traditional machine learning strate-
gies to deep learning techniques.

A review completed by Lu and Chen [8] provides a
roadmap for how computer vision models have been used
since 1997 to attempt to address this problem, ranging from
linear classifiers to region-based convolutional neural net-
works (R-CNNs), with increasing success on the task. How-
ever, there are major limitations on the usefulness of the
work. For one, many existing datasets only work on well-
defined objects on a plain background, which is not how
most waste is deposited. Thus, they limit the utility of this
research to being a tool to aid human sorting at the time of
waste production rather than after waste collection.

However, there are some special cases where these mod-
els can be applied. One such case is in that of environmental
monitoring groups such as Save our Shores [12], who or-
ganize beach cleaning days with local volunteers annually.
While these efforts may make headway into making people
more cognizant of their waste production, the task itself is
rather arduous. One way of streamlining this task is using
drone imaging to remotely detect garbage and then sending
volunteers to physically collect the trash. In MSW manage-
ment, implementation of this remote sensing method has
been steadily increasing [!3]. With waste-specific imple-
mentations showing promise in denser waste collection ar-
eas, applying computer vision methods to drone-mediate re-
mote sensing footage to help these groups in their collection
efforts seems fruitful.

2. Related Work

As mentioned above, a large review has previously been
published on the application of computer vision models to



MSW, written by Lu and Chen [&]. To expand on this, this
section will delve deeper into the history of work on this
topic.

2.1. Early Work

The first paper in this field is a system created for robot-
mediated paper recycling, published in 1997 by Faibish et
al. [5] that used geometry and texture data, provided by
both stereo vision and sensors, that the authors say draws
from ’automated target recognition’ systems. For this pa-
per, the authors tried both linear classification and nearest-
neighbor analysis, and found that the linear classifier re-
ported the most accurate results. While this project merged
both computer vision and robotics tasks into one, it was
a landmark step in setting up the field to use these meth-
ods in waste management. One of its largest weaknesses,
which they acknowledge in the discussion section, was that
they relied heavily on multiple kinds of sensors to get the
level of detail necessary to classify the images properly. Re-
markably, however, Lu and Chen find that the accuracy of
their model outperformed later linear classification models
through the mid-2010s. Other models created for classifi-
cation tasks, such as Ramli et al. [10] writing on plastic
bottle classification, focused more heavily on easily visual
differences, while still using the linear classifier, this time
with slightly better performance than Faibish. While these
papers led those collected by Lu and Chen that used linear
classifiers, more complex, deep learning models have since
performed much better.

2.2. Deep Learning Models

Deep learning models have since revolutionized the field
of computer vision, and in turn created more complex sys-
tems for researchers to build upon. For these models, re-
searchers focused in two different directions: for one, fine-
tuning a number of models to reveal which one included the
best underlying understanding for this specific task. An-
other approach involved training a model without any pre-
trained weights. Comparing these two approaches provided
researchers in this area with a direction to focus on. One
such paper, written by Bircanoglu et al. in 2018 [3], exam-
ined how ResNet, ImageNet, DenseNet, XCeption, and Mo-
bileNet performed on these tasks, with ResNet Inception,
the best-performing model without pre-trained weights, was
handily outperformed by a fine-tuned model built upon
DenseNet121, a model that uses Dense CNNs. On aver-
age, DenseNet and VGG performed the best out of the 12
deep learning-specific models that Lu and Chen examined.
(61151 [14]

This research suggests that the best-performing method-
ology comprises of fine-tuning pre-trained model weights
on specific data. While MSW analysis covers a large range
of tasks, this conclusion makes sense within the obser-

vations of the larger computer vision field, where deeply
trained models are able to discern patterns that specifically
trained models may not. By using transfer learning from
models trained on objects and living things, fine-tuned mod-
els are able to harness that enriched knowledge for better
predictions.

3. Dataset and Features

The dataset used in this project comes from a set of
videos taken from drone footage on beaches in Taiwan,
originally recorded by National Cheng Kung University.
At this time, there seem to be no publications that stem
from this data, but the model that they used is available on
Roboflow. Despite its publishing, there is very little public
metadata about this dataset. The model, based on YOLO
v8, attempted to classify objects on the beach into one of
the following trash categories (with examples):

1. Glass: glass bottles, containers

2. Plastic Bottle/Takeaway Cup: Fast food drink con-
tainers, styrofoam cups.

3. Retort pouch: Layered metal and plastic bags, such
as those that contain jerky.

4. Take-away container: Styrofoam or plastic contain-
ers used to carry food.

5. Aluminum Cans: Sealed preserve containers, etc.

Additionally, this dataset was already split into training,
validation, and testing sets, which was useful in compar-
ing the original base model to the alternatives that were ex-
plored in this project. This split was created by user Van-
shika Mishra on Kaggle, which is the source from which the
data for this project was downloaded [17].

Table 1, below, shows the split between classes and train-
ing, validation, and testing sets. There is a clear bias to-
wards plastic bottles and aluminum cans in the dataset,
while glass is underrepresented (less than 5% of the im-
ages).

While the specificity of these categories may seem lim-
iting, this approach can be helpful to environmental efforts
that seek to remove trash from these areas before they can
be washed into the sea, where many public campaigns have
shown the adverse effects that these can have on wildlife.
For instance, aluminum cans and plastic bottles have been
shown to suffocate ocean animals, and other sharpened
pieces of waste can also harm them [9]. By automating
remote sensing of certain areas of interest, a model trained
on this data will be able to make the job of these groups,
who are often comprised of volunteers, much more stream-
lined.



Table 1: The distribution of images across the five described garbage classes and along the train/validation/test divisions.
Overall, there are 1,898 images in the dataset.

Garbage Class \ Training | Validation | Testing \ Total ‘
Glass 81 6 6 87
Plastic Bottle (Takeaway) 567 63 20 650
Retort Pouch 339 33 16 388
Takeaway Container 129 6 4 139
Tin/Aluminum Cans 594 16 24 634

Retort Pouch

Plastic Bottle/Cup Aluminum Cans

Glass

Take-Away Container

Figure 1: Examples of images in each category’s training folders.

Due to the highly differential nature of these categories,
it will be interesting to see how transfer learning of general
models performs here, and if the models’ ability to under-
stand different shapes will be useful in this context. Exam-
ples of images from each category can be seen in figure 1.
One interesting detail is that despite being taken from the
same drone video, each image is a different size, an issue
that will be addressed in the Methods section.

4. Methods

Drawing inspiration from the comparative nature of
many previous studies, this project sought to compare three
different cutting-edge deep learning models to understand
which may perform best on this specialized task. The
dataset used was constructed to use in an image classifi-
cation model. As one of the most common computer vision
tasks, there are a number of models available to perform
this task. However, the added functionality of certain mod-
els to be built into drones is something that has yet to be
explored with this data. Thus, the models chosen to fine-
tune for testing on this dataset were all lightweight, image
classification-able models: YOLO-v8, DINOv2, and Mo-
bileNetv4.

4.1. YOLO-v8

As mentioned above, the original creators of the dataset
intended for the images to be used in a You-Only-Look-
Once (YOLO) model, specifically YOLO-v8. This ap-
proach to object detection was revolutionary in the quest
to create models that were both fast and reliable. The orig-
inal YOLO model contains 24 convolutional layers, trained
on ImageNet classification, that are then fed into 2 fully-

connected layers, that predict bounding boxes and labels
from a single pass of the image, which classifies it as a
single-stage object detector, similar to SSD or RetinaNet.

Later models built on this backbone, with large bounds
being made in YOLO-v3, with the replacement of the orig-
inal architecture with Darknet-53, which is a complex con-
volutional neural network (CNN) that comprises of 53 con-
volutional layers. This deep architecture allowed YOLO-v3
to perform better on object detection tasks with small ob-
jects, while still maintaining its speed.

The release of YOLO-v5 and YOLO-v8 by the com-
pany Ultralytics have made YOLO even more easily ac-
cessible to the general public, and remain as popular mod-
els for object detection tasks. Importantly, the introduc-
tion of YOLO-v8 allowed for the model to support a wider
berth of tasks, including the image classification that this
project harnesses. In addition, YOLO-v8 has also integrated
transformer-based attention into its architecture, improving
even more upon the leaps that YOLO-v3 made over the
original model.

4.2. DINOv2

DINOV2 is a state-of-the-art object detection model
created by Meta engineers that relies heavily on self-
distillation, which can be explained more handily as a
student-teacher model. This concept, known popularly
as "Be Your Own Teacher,” was introduced by Zhang et
al.  [19]. It relies on knowledge distillation, which is
the idea of training a model to match the outputs of an-
other, larger model, which in practice provides similar out-
comes much more cheaply [2]. In the case of DINOv2,
an identically-constructed teacher and student vision trans-
former model are fed variations of the same image, and the



student learns from the teacher to match its output via back-
propagation. The student’s performance is then used to up-
date the weights of the teacher’s model via a moving aver-
age, making it more stable than the student’s. Importantly,
this is a self-supervised model, which means that it will per-
form well without pre-labeled training data. While that fea-
ture is less applicable in this more traditional case, this is
one of the major selling points for using DINOv2.

In this project, DINOv2 is used as a backbone and com-
bined with a simple linear classifier head that takes in the
features that DINOv2 discovers to robustly predict the cat-
egory of waste shown in the image. I define a range of
augmentations that can be performed to make the self-
distillation process more robust, including resizing, flip-
ping, rotations, perspective shifts, and color changes.

4.3. MobileNetv4

MobileNet is known as a state-of-the-art architecture that
is used for relatively resource-light computational settings
such as mobile devices. The family of MobileNet architec-
tures are built on the concept of depthwise separable convo-
lutions, which decomposes a convolution into two steps:

1. A depthwise grouped convolution that performs a con-
volution for all M channels in an input.

2. A point-wise convolution that applies [V filters ina 1x1
convolution.

This dramatically reduces the computational load of run-
ning a model without sacrificing its efficacy, allowing com-
plex models to be applied in a wider set of contexts. Mobile
devices such as cell phones are one such context, which in
this case may be a volunteer organizer’s cell phone that is
being fed imagery from a drone.

MobileNetv4’s updates are very similar to those of
YOLO-v8 in that it introduces transformer layers into the
model architecture. It also mirrors YOLO-v8 in that this
new version updates the single model to perform a wider
range of tasks on its own, including classification which is
used in this project. Further optimizations for mobile hard-
ware and more condensed architecture are also included in
this new version.

In all three cases, the smallest available model was used
as a way to reflect the computational capabilities in practice
for these models.

5. Results

In running these models, I aimed to use similar batch
sizes, epoch counts, learning rates, and optimizers across
all three. As this project focused on building off of exist-
ing models, I used one of the most common optimizers,
AdamW. For this optimizer, it is common practice to set
the learning rate to 0.001, as platforms such as PyTorch and

validation test

Backbone Acc \ mAP \ Acc \ mAP ‘
YOLO-v8 100% | 1.000 | 100% | 1.000
DINOv2 97.6% | 0.969 | 98.6% | 0.960
MobileNetv4 | 93.1% | 0.997 | 97.2% | 1.000

Table 2: Accuracy & Mean Average Precision (mAP) 50
values for the three models.
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Figure 2: YOLO-v8 Confusion Matrix

Keras set their default learning rate to that value. Addition-
ally, I used batch sizes of 32, which may not have worked
very well given the disparities with the smaller waste cat-
egories (such as glass). Still, this batch size settled as a
happy medium between the cons of both small and large
batch sizes. In terms of epoch count, I allowed the original
YOLO-v8 model to run for 100 epochs or until it recognized
no improvement in performance, which ended at 27 epochs.
Thus, for both DINOv2 and MobileNetv4 the epoch count
was also set at this number to understand their comparative
performances.

Overall, all three models performed extremely well on
the data, with overall test and validation set accuracy and
mean average precision (mAP)-50 reported for all three
models in table 2, which are common metrics for perfor-
mance on classification tasks. Here, we can see that all
models had an accuracy greater than 97% on the testing set
with YOLO performing the best at 100% accuracy.

The normalized confusion matrices for each model show
a similar story of high performance, as seen in figures 2, 3,
4, where all but three categories had perfect performance:

* DINOV2 glass classified as a takeaway container

* MobileNetv4 plastic bottle/takeaway cup classified as
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Figure 3: DINOv2 Confusion Matrix

MobileNetv4 Confusion Matrix
1.0

glass % % 0% 0% 0%
0.8

plastic_bottle_takeaway_cup - 0%

retort_pouch - 0%

- 0.4

take_away_container - 0%
-0.2
tin_aluminium_cans - 0%
' -0.0
L] & 5 &
e C)Q o < &
S ~ & & ¥
Y &7 o &
53 <O < S
3 & ol &
& & g
227 ’Ib >
& @wg' &7

Figure 4: MobileNetv4 Confusion Matrix

retort pouch and takeaway container

* MobileNetv4 retort pouch classified as plastic bot-
tle/takeaway cup

One oddity of these results is the perfect performance of
the YOLO model. While this would explain why the dataset
authors decided to use the YOLO framework, I would be in-
terested in using more images from the same beach, prefer-
ably at different times of day or seasons, to see whether this
is a coincidence with this specific set of images, or if the
YOLO framework is by far the most useful model for this
task. Closer examination of the augmented images as seen
in Figure 5 shows that some of the transformations seem to
mimic these different conditions, and the model still seems
to work as well as it does.

Figure 6: Testing images with their respective true labels.

Figures 6 and 7 showcase the success with which YOLO
labeled parts of a testing batch. While these are all clas-
sified properly, it is very difficult to discern some of the
waste. This introduces the question about a limitation of
the dataset to only the five categories, as it’s possible that
real, unannotated drone footage may not capture any waste
in a frame. In that novel case, it’s certain that any of these
models trained on this dataset may not be applicable in a
real-life context.

These results showcase that novel classification models
are making deep headways into at least one facet of the
complex link between MSW and computer vision and pave
a way for environmental efforts to coalesce with computer
vision researchers to create low-cost solutions for these
problems. Their promise, however, raises a wealth of new
questions that may be able to be solved using these models
and others, related or novel.

6. Further Work

In this paper, multiple new classification models were
tested against one another to attempt to understand which
of these three major new models would perform best on this
specific classification task. However, all three models are
part of different families of model architecture, which opens
up questions about what other models might be available to
apply to this dataset.

One such model is PAWS, which was released alongside



Figure 7: Testing images with their respective predicted
labels by YOLO-vS.

DINO by Meta’s Al division. This model differs slightly
from DINO in that it is not fully self-supervised, but rather
uses a small amount of labelled input data to learn how to
label unlabeled data [4]. While this was an avenue I was
unable to fully explore, an expansion of this dataset would
be a great way to test the efficacy of this model in more
complex situations.

Another interesting avenue to consider is the application
of YOLOV9 through 11, which have been released over the
past year, far past the publication of this dataset. At the
moment, since YOLOV9 and YOLOvV10 are currently only
used for object detection tasks according to the Ultralytics
site, they was not a candidate for this project [16]. How-
ever, a further project attempting to build a classification
head over the YOLOV9 backbone would be another interest-
ing extension, similarly to what was built here over DINO.
It would also be interesting to see how YOLOvI11, which
was very recently released, performs against YOLOVS, as it
is their first major update to include a classification head.

While this project focused on examining other methods
of image classification, another project that can be built off
of this one is to use DINO and YOLO as they were meant to
be—object detection models. While this project is a good
first step in examining how individual frames might be clas-
sified, training these models on complete drone videos may
provide more practical considerations for drone-based scan-
ning and waste management practices. In these more prac-
tical cases, it may also be worth adding a sixth category
that covers the case in which there is no waste captured.
Beach cleanup tasks where a drone classifies everything it
flies over as having waste, though possible, would negate
the need for this kind of technology.

On a similar note, as mentioned in the previous section,
extensions of this dataset would be incredibly helpful in de-
termining the best model for this task. Creating a diverse
dataset of beaches from around the world, including dif-
ferent types of sand at different times of the year and at
varying distances from coastlines would make this set more
robust. As drone imaging technologies continue to grow

cheaper [!], this kind of international effort becomes much
more feasible. In doing this, it will likely require an ex-
pansion of the categories beyond the idea mentioned prior
of a "no waste” class. Waste is diverse around the world,
and it would be a wonderful challenge to examine if these
models can hold up as research into this topic increases in
complexity.
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