
Eye in the Sky: Live Blackjack Card Counting via Real-Time Video Analysis

Ankur Jai Sood
Stanford University

jaisood@stanford.edu

Cameron Heskett
Stanford University

cheskett@stanford.edu

Mini Rawat
Stanford University

minir07@stanford.edu

Abstract

Card counting in blackjack provides players a statisti-
cal advantage but is challenging to perform consistently
in real time. In this work, we develop and evaluate two
fully automated computer vision pipelines to perform Hi-
Lo card counting from video inputs. Our pipelines com-
pare YOLOv5 for multiple object detection and SegFormer
for semantic segmentation, with models trained both on 52-
card and Hi-Lo subgroupings. We achieve high detection
accuracy across both card-specific and Hi-Lo class group-
ings, with mean average precision of 0.974 and 0.932 re-
spectively. We then estimate the running Hi-Lo count by
aggregating detected card classes across video frames, us-
ing DeepSORT for object tracking. On a held-out test set
of 20 videos of Blackjack hands, both our pipelines produce
perfect Hi-Lo counts in 40% of hands with a mean absolute
count error of ≈ 1.0. These results demonstrate the fea-
sibility of our approaches for real-time visual card count-
ing using computer vision architectures and highlight the
strengths and weaknesses of our different pipelines.

1. Introduction
Recent advances in deep learning architectures and ob-

ject tracking algorithms, combined with high-resolution,
high-framerate sensors, have enabled the development of
real-time computer vision workflows. Powerful edge hard-
ware and low-latency networking further support live video
annotation, which has seen increasing research and indus-
trial adoption in recent years. In particular, the live enter-
tainment and surveillance industries have taken the lead in
the commercial deployment of such systems [9]. For this
project, we were inspired by the National Basketball Asso-
ciation (NBA) and their partner Second Spectrum [10] to
investigate the engineering problem of real-time video an-
notation in live sports and games.

Real-time video annotation is challenging due to strict la-
tency requirements and the need for robustness in dynamic
environments. Whether running on the cloud with network
delays or on edge devices with limited compute, the system

must deliver consistent performance. Many modern high-
performance vision models are difficult to deploy in real
time due to their size and inference cost [21]. Our project
aims to investigate these challenges by designing a real-time
pipeline to accurately count cards in the game of Blackjack.

1.1. Problem Statement

Blackjack is a classic casino game where players com-
pete against the casino (the house). Even when employing
perfect basic strategy, players still face a slight inherent dis-
advantage of approximately 0.5% against the casino [18].
Advanced blackjack players attempt to reverse this disad-
vantage by using card counting strategies, which maintain
a running count of high and low valued cards dealt from
the deck. This count indicates when the remaining cards fa-
vor the player, signaling when to increase or decrease bets
accordingly. When executed perfectly, these strategies can
shift the advantage to the player by up to 1.2% [18]. How-
ever, card counting requires precise mental tracking, mak-
ing it challenging for human players to perform reliably in
practice; even minor errors in the running count can elimi-
nate the player’s advantage.

In this project, we explore the use of computer vision
techniques including object detection, segmentation, classi-
fication, and tracking, to develop a computer vision pipeline
capable of accurately performing real-time card counting
from input video data. This automated solution aims to
overcome the practical limitations faced by human players,
providing consistent precision and reliability.

2. Related Work
There have been previous works focusing on solving the

problem of accurate card counting in Blackjack. Zutis et
al. [23] used a stereo camera setup and classical computer
vision techniques to detect card counters in a fixed envi-
ronment. The solution was restricted by requiring a fixed
stereo camera configuration and although performed well in
fixed lighting and background conditions, was untested in
dynamic environments.

A more recent example, DeepGamble [14], utilized a
mask R-CNN based method to build a card counting and

1



bet detection pipeline deployed on the cloud, with video
feed streamed from a Raspberry Pi acting as an edge de-
vice. DeepGamble achieved impressive results in card de-
tection (≈ 98%) when the cards were not occluded, but
performance suffered in occluded scenarios. Additionally,
throughput was limited by the sequential nature of the R-
CNN pipeline and the latency introduced from the cloud ar-
chitecture (≤ 10 FPS).

More modern object detection architectures can perform
object detection, including both classification and localiza-
tion, in one shot. YOLO (You Only Look Once) is a pop-
ular example of this approach [13]. YOLO reframes ob-
ject detection as a regression problem and directly predicts
bounding boxes and class probabilities from the entire input
image. YOLO first divides the input image into a n × n
grid, with each grid square predicting m bounding boxes
and corresponding class probabilities. As a single convo-
lution network, YOLO is much faster than multi-stage ap-
proaches like R-CNN and is suitable for real-time applica-
tions.

YOLOv10 [17] introduces further improvements, no-
tably removing Non-Maximum Suppression (NMS) by
adding a one-to-one head optimized concurrently during
training with the traditional one-to-many head. During in-
ference, only the one-to-one head is used, enhancing speed
by 1.8× compared to RT-DETR-R18 on COCO, with 2.8×
fewer parameters.

Recently transformers [16] have been heavily utilized for
multiple object detection. DETR [4] integrates CNNs and
transformers to predict bounding boxes and object classes
directly, without anchoring or region proposal networks,
significantly reducing preprocessing and meeting real-time
requirements for card counting systems.

We also investigate semantic segmentation for real-time
video annotation. Unlike object detection, semantic seg-
mentation classifies each pixel, enabling detailed visual ef-
fects and interactions without extensive manual preprocess-
ing. Early methods leveraging deep learning used large fully
convolutional network architectures [7], effective but com-
putationally expensive. Recent advances like SegFormer
[20], based on the transformer architecture, improve com-
putational efficiency and performance.

Finally, we examine object tracking using DeepSORT
[12], an enhancement to Simple Online and Realtime Track-
ing (SORT) [19]. DeepSORT incorporates a deep appear-
ance descriptor trained on a large-scale re-identification
dataset, combined with motion information via the Maha-
lanobis distance, significantly reducing identity switches by
approximately 45%. Running at roughly 20 Hz on modern
GPUs, DeepSORT demonstrates robust, efficient tracking
suited for real-time applications.

3. Methods

Our approach to automated blackjack card counting
uses two complementary architectures for per-frame card
localization: SegFormer for semantic segmentation and
YOLOv5 for object detection (Figure 1). SegFormer pro-
duces pixel-wise masks of visible cards, while YOLOv5
outputs bounding boxes around card regions.

Although both models serve the same high-level goal,
SegFormer requires pixel-level annotations, and YOLOv5
requires bounding-box labels, resulting in slightly different
training requirements and final model behaviors. To assign
consistent frame-to-frame IDs to each detection, we inte-
grate DeepSORT into both pipelines. Detected cards de-
rived from masks or boxes are converted into bounding-box
inputs for the tracker, which then assigns a persistent track-
ing ID to each unique card instance. Using these tracking
IDs, we attempt to ensure that every card appearing in the
video is counted exactly once despite occlusions or brief
tracking drops, and that duplicate detections of the same
card within a single hand do not lead to double counting.

(a) Pipeline with multiple object detection & object tracking

(b) Pipeline with semantic segmentation & object tracking

Figure 1: Our two pipeline architectures for performing card
counting on input video. Green boxes indicate software
components which are different between pipelines.

3.1. Object Detection with YOLO

We built our card detection pipeline using YOLOv5[15],
fine-tuning all layers and replacing the final prediction
heads for our target classes. Although we initially explored
YOLOv10, we chose YOLOv5 for its strong performance,

2



easier PyTorch integration, and reliable results on our down-
stream task. We fine-tuned two YOLOv5 variants: one with
52 classes (one per card) and another with three classes de-
signed specifically for directly classifying the Hi-Lo card
counting categories (High: 10–A, Low: 2–6, None: 7–9).
Both models were trained for 50 epochs on NVIDIA GPUs
using YOLOv5’s default training hyperparameters along
with custom parameters for data augmentation. The full set
of training hyperparameters can be found in Appendix A,
Table 8.

To train the final versions of our models, we created a
custom variant of the Playing Card Detection Dataset (see
Section 4.1). In the original dataset, each card is annotated
with one or two small, tight bounding boxes, one around
each corner pip, resulting in up to two detections per card.
Since we only want the model to produce a single detection
for each card, we converted those tight-corner boxes into
one full-card box. Specifically, whenever a card was repre-
sented by two corner boxes, we treated those two boxes as
opposite diagonal points of a larger rectangle and replaced
them with the enclosing full-card bounding box.

3.2. Semantic Segmentation with SegFormer

For our second pipeline, we investigate semantic seg-
mentation with SegFormer [20]. We use the Python trans-
formers library, primarily developed by Hugging Face, to
load the nvidia/segformer-b4-finetuned-ade-512-512 check-
point and finetune the entire model with our card segmen-
tation task for our card counting task. SegFormer is pre-
trained on ImageNet1000 [5] with 1000 output classes and
so we modify the output of the segmentation head to match
the number of classes we are predicting.

During training, each input image is first resized to 512
× 512. We then assemble a batch of these 512 × 512
images and their corresponding ground-truth masks. The
model outputs raw logits for each pixel, which we com-
pare against the integer-valued, 512 × 512 masks using a
pixel-wise cross-entropy loss. For some models we set ig-
nore background pixels which ignores background pixels
for the loss calculation. Backpropagation is performed on
this loss to update all model parameters. Unless otherwise
stated, we apply the data augmentations and hyperparame-
ters summarized in Appendix A, Table 9 for every experi-
ment.

We experiment with three different target label sets:

• 53-class Segmentation: We train on the raw unmod-
ified dataset (see Section 4.2) so that each pixel is as-
signed a class for one of 52 card types or Background.

• 4-class Segmentation: We collapse every card pixel
into one of three classes: High, Low, or None and add
a fourth Background class (see Section 4.4). This par-

allels our YOLOv5 setup but with Background to ac-
commodate a semantic segmentation head.

• 13-class Segmentation: We combine High, Low, and
None with each of the four suits (♣, ♡, ♠, ♢) plus a
Background class, yielding 13 total classes (see Sec-
tion 4.4).

3.2.1 Per Pixel Classification Map to Card Objects

Since SegFormer outputs a class label for every pixel in
a 512 × 512 frame, we must convert this dense per-pixel
segmentation into discrete card detections (object instances
with bounding boxes and confidence scores). At inference
time we take the model’s raw per-pixel logits and compute a
softmax over the class dimension to obtain a (C ×H ×W )
tensor of class probabilities, where C is the number of
classes. We then collapse that probability volume into a
(H ×W ) hard mask by applying equation 1.

maskhard(i, j) = arg max
c∈{0,...,C−1}

pc(i, j) (1)

bink(i, j) =

{
1, if maskhard(i, j) = k,

0, otherwise
(2)

Next, for each non-background class k (e.g. 7♡ or Low
in the 4 class model), we extract a binary mask (Equa-
tion 2) and apply a small morphological closing followed
by an opening (using an ellipse shaped kernel of radius
5 − 10 pixels). This step removes outlier pixels and
smooths each contiguous region belonging to class k. We
then run a connected component analysis using (OpenCV’s
findContours) on bin k to obtain one or more con-
nected components. For each component, we compute its
bounding box (x, y, w, h) and discard any boxes whose area
w · h falls below a minimum pixel area threshold or whose
average per pixel class-k probability falls below a speci-
fied confidence threshold. Each remaining component is
then reported as a card detection of class k with confi-
dence equal to the mean softmax probability inside that con-
tour. In this way, each SegFormer frame produces a set
of (x, y, w, h, class, score) detections that can be passed to
DeepSORT or any other downstream tracker.

3.3. Object Tracking with DeepSORT

For both our pipelines we integrate DeepSORT [12] for
object tracking. DeepSORT enhances the original SORT [3]
tracking algorithm by incorporating appearance information
to improve tracking performance, especially in scenarios
with occlusions and re-identification challenges. These sce-
narios are frequently seen in card games as cards are often
stacked near or on top of each other, making object detec-
tion and tracking significantly more difficult.

3



SORT employs a Kalman filter for predicting the future
position of objects, which helps in associating detections
across frames. For data association, SORT uses the Hungar-
ian Algorithm, matching detected objects to existing tracks
based on their predicted positions and appearance features.
DeepSORT extends the original SORT and uses a learned
appearance embedding (such as Resnet, REID, or clip) to
extract appearance features from detected objects, which are
then used for re-identification purposes across frames. The
final output includes not only the detection boxes and class
labels but also track IDs that indicate which detections be-
long to the same object across frames.

The combined system is designed for real-time process-
ing, making it suitable for applications like surveillance, au-
tonomous driving, and robotics. YOLOv5-DeepSort com-
bines two powerful techniques for object detection and
tracking: YOLOv5 and DeepSORT. YOLOv5, a family of
object detection architectures and models pretrained on the
card dataset, are passed to a DeepSORT algorithm which
combines motion and appearance information based on
Resnet50 in order to tracks the objects.

3.3.1 DeepSORT with Multiple Object Detection

The integration of YOLOv5 and DeepSORT involves using
YOLOv5 for detecting objects in each frame of a video and
then passing these detections to DeepSORT for tracking.
YOLOv5 comes in various sizes (s, m, l). Using a smaller
model like YOLOv5s can significantly increase processing
speed but at a tradeoff with accuracy and feature representa-
tion. Using a large model captures feature vectors more ac-
curately and performs better with detecting cards even with
poor image quality. However, if the detection latency is high
and cards move around the scene very rapidly missed detec-
tions are much more likely.

Applying techniques like model quantization or pruning
help improve performance. Model quantization can reduce
the model size and increase inference speed. Quantization
converts model weights from floating-point to lower preci-
sion such as INT8. Model pruning removes less important
weights, resulting in a smaller and faster model without sig-
nificant loss in accuracy.

3.3.2 DeepSORT with Semantic Segmentation

To integrate DeepSORT with SegFormer we needed to per-
form some additional postprocessing and tuning for class
prediction stability. Notably, we perform frame level tem-
poral smoothing where we take a weighted combination of
the current frame and the previous frames pixel wise class
distributions before extracting objects and bounding boxes.

p̂t(i, j, c) = α p̂t−1(i, j, c) + (1− α) pt(i, j, c) (3)

In equation 3, pt(i, j, c) is the softmax probability for class
c at pixel (i, j) in frame t, p̂t(i, j, c) is the smoothed prob-
ability, and α is the smoothing factor where 0 ≤ α ≤ 1.
After smoothing frames we proceed with object extraction
as outlined in Section 3.2.1. The objects are then filtered by
two thresholds: a minimum pixel area, and a minimum con-
fidence threshold. Finally, the filtered objects are provided
to DeepSORT for tracking.

3.3.3 DeepSORT Parameter Tuning

We tune DeepSORT for each of our two pipelines sepa-
rately. Appendix A, Tables 8 and 9 present our final Deep-
SORT parameters for each pipeline.

We performed DeepSORT parameter tuning by imple-
menting a grid search for confidence thresholds and IOU
thresholds. We used mAP@0.5 as the objective metric
to optimize the thresholds. This approach provided a bal-
ance of reducing noise while also increasing the accu-
racy of our detections. We experimented with various ver-
sions of the YOLOv5 model and found optimal results with
YOLOv5 tag 7.0. Integrating DeepSORT code with the
above YOLOv5 code required some significant code refac-
toring along with environment updates to produce optimal
results. In addition, we also implemented an automated
evaluation pipeline to evaluate results for our various ex-
periments. These experiments were run on Amazon AWS
with Ubuntu 22.04, PyTorch 2.6.0+cu126, and on a NVidia
T4 GPU. [22]

4. Datasets
We leverage two datasets for our work in this project and

preprocess them to prepare them for training our models for
the Blackjack card counting task. We describe these datasets
in the sections below. Both datasets were generated by dif-
ferent authors using a well documented playing card dataset
generator [6] and were found on Kaggle.

4.1. Playing Card Detection Dataset

The first dataset is the Playing Card Detection dataset [2].
It includes 20000 images of size 416× 416× 3 in JPG for-
mat. Each image contains multiple playing cards in various
orientations and levels of occlusion. Bounding boxes for
playing cards are annotated via their corners: i.e there is a
bounding box around corners of the playing card withe one
of 52 class labels. The dataset is split into train/test/valid
(70/20/10). Images are annotated in YOLO v5 PyTorch
format. Training examples from this dataset can be seen in
Figure 2.

4.2. Playing Card Segmentation Dataset

The second dataset is the Playing Card Segmentation
dataset [8]. The dataset is proviced in .pck format but we

4



(a) (b)

(c) (d)

Figure 2: (a-b) Original training examples from the Playing
Card Detection dataset. (c-d) Our merged dataset examples
with calculated full-card bounding boxes.

extract it and process the images masks for prepropcessing.
The dataset consists of 3000 images of size 256 × 256 × 3
which we save in .png format as well as corresponding im-
age masks for each sample. Every pixel in each mask is
labeled with a class label between 0 − 52 where 0 is the
background and each card in a standard deck is assigned
a unique class ID. Hence there are 53 classes enumerated.
We also save each mask in .png format with 8 bits per
pixel, preserving the class labels. We split the dataset into
train/test/val (80/10/10) with a heavier allocation to train
due to the datasets smaller size. A training example from
this dataset can be seen in Figure 3.

Figure 3: Training example with segmentation mask from
the Playing Card Segmentation dataset.

4.3. Blackjack Videos for Count Validation

For validation of our end-to-end card counting pipeline
we collect 20 clips of single Blackjack hands from different
YouTube videos [11], [1]. We manually annotate the num-
ber of High, Low, and None category cards in each clip and
we validate our pipelines by comparing the output counts of
our pipelines with respect to our ground truth and by count-
ing the errors. We split pipeline errors into two categories:
tracking errors which correspond to errors related to the ob-
ject tracking portion of our pipeline such as double counting
and classification errors which correspond to errors due to
the object detection and classification portion of our pipeline
such as misclassification.

4.4. Data Preprocessing and Augmentation

To prepare our data for model training we perform the
following data preprocessing.
Preprocessing on detection dataset:

1. We preprocess each sample to combine bounding
boxes of corners of the same card so that there is only
one large bounding box per card (Figure 2).

2. We preprocess each sample in this dataset to create an
additional set of labels for each bounding box. The
new set relabels each bounding box with [0− 2] corre-
sponding to {Low, None, High}. We test both sets of
labels during out model training.

Preprocessing on segmentation dataset:

1. We preprocess each sample in this dataset from .pck
format to two .png files, one for the image and one for
the mask. We resize each image and mask from the
original 256× 256 to 512× 512.

2. We preprocess each sample in this dataset and create
two additional set of masks. The first new set relabels
each pixel with [0 − 12] where 0 is background and
[1 − 12] is {Low, None, High} for each suit {Club,
Spade, Heart, Diamond}. The second new set relabels
each pixel with [0−3] where 0 is background and [1−3]
corresponds to {Low, None, High}.

3. We add 30 additional images of casino tables and
casino chips to the dataset where each image corre-
sponds to pure background and the masks are all 0.
We do this to solve problems with card hallucinations
which we will discuss in the next part of this report.

During training we perform different data augmentation
to our samples for each pipeline. For the object detec-
tion pipeline using YOLO the augmentations are outlined
in Appendix A, Table 8. For the semantic segmentation
pipeline using SegFormer the augmentations are outlined in
Appendix A, Table 9.

5



5. Results & Discussion
5.1. Final Scoring Metrics

We categorize each detected card into one of three
classes: Low ({2, 3, 4, 5, 6}), High ({10, J,Q,K,A}), or
None ({7, 8, 9}), following the standard Hi-Lo card count-
ing scheme [18]. These class labels are either predicted di-
rectly or obtained via post-processing for final evaluation.
To assess per-class detection quality, we compute:

Precisionc =
TPc

TPc + FPc
,Recallc =

TPc

TPc + FNc
,

F1c = 2
Precisionc × Recallc
Precisionc + Recallc

,

where for each c ∈ {Low,High,None}:

• TPc (True Positives): number of correctly detected
cards of class c.

• FPc (False Positives): number of cards incorrectly de-
tected as class c.

• FNc (False Negatives): number of ground-truth cards
of class c that the model failed to detect.

We also report overall precision, recall, and F1-score:

Precisiono =

∑
c TPc∑

c(TPc + FPc)
,Recallo =

∑
c TPc∑

c(TPc + FNc)
,

F1o = 2
Overall Precision × Overall Recall
Overall Precision + Overall Recall

.

For each video in the test set, we compare the ground-
truth Hi-Lo count, computed manually, against the model’s
predicted score obtained by summing over the detected card
classes. According to the Hi-Lo algorithm, High cards con-
tribute a score of −1, Low cards contribute +1, and None
cards contribute 0. For example, a video containing 4 high
cards, 1 low card, and 1 none card would yield a score of:

Hi-Lo = (−1)× 4 + 0 + (+1)× 1 = −3.

Letting sgt and spred denote the ground-truth and predicted
scores respectively, we evaluate model performance by
computing the number of videos for which sgt = spred
(i.e., perfect predictions), and analyze the distribution of the
signed error spred − sgt for the remaining cases. Final score
results for the pipelines discussed in our methods are cap-
tured in Table 5.

5.2. Object Detection with YOLO

We evaluated object detection performance using
YOLOv5 trained on two labeling schemes: (1) a fine-
grained 52-class setup, and (2) a coarse-grained 3-class Hi-
Lo scheme (Low, High, None). The results are summarized
in Tables 1 and 2, respectively.

Metric Avg. Min Classmin Max Classmax Std.

Precision 0.960 0.818 A♡ 1.000 4♣ 0.034
Recall 0.969 0.820 A♡ 1.000 4♣ 0.038
mAP@50 0.974 0.895 A♡ 0.995 4♣ 0.022
mAP@50–95 0.834 0.720 A♡ 0.881 5♠ 0.035

Table 1: YOLOv5 Performance Across 52 Card Classes

Metric Avg. Min Classmin Max Classmax Std.

Precision 0.961 0.945 None 0.977 Low 0.013
Recall 0.972 0.961 None 0.990 Low 0.013
mAP@50 0.974 0.967 None 0.983 Low 0.007
mAP@50–95 0.823 0.808 None 0.854 Low 0.022

Table 2: YOLOv5 Performance Across 3 Card Classes

On the pure detection task, both the 52-class and 3-class
models achieved an average mAP@50 of 0.974, indicat-
ing that the model is highly effective at detecting playing
cards regardless of class granularity. The mean performance
across precision and recall was similarly strong, with aver-
age recall exceeding 0.96 in both labeling schemes.

Within the 52-class model, the best performing cards
were consistently 4s and 5s, which achieved perfect or near-
perfect scores across all metrics. In contrast, the Aces exhib-
ited the lowest precision and recall, pulling down the class-
wise minimum for each metric. We hypothesize that this is
due to visual ambiguity because this card’s design has a lot
of white space and a centered icon, resulting in difficulty in
extracting distinct features.

In the 3-class Hi-Lo version, Low achieved the highest
precision and recall, while the None class underperformed.
We hypothesize that the None class struggles due to two key
factors: (1) the class represents a smaller subset of training
examples, and (2) cards in this class share similar charac-
teristics to some cards in both the High class (10s) and Low
class (6s).

Overall, the results validate YOLOv5 as a strong baseline
detector for real-time card recognition and suggest that even
coarse-grained 3-class labeling is sufficient to enable robust
Hi-Lo count estimation downstream.

5.3. Semantic Segmentation with SegFormer

We evaluated semantic segmentation performance simi-
larly but at the pixel level. Below we report the results for
our 3 labeling schemes: (1) a 53-class setup, (2) a coarser
13-class scheme of (Low, High, None) for each suit (♣, ♡,
♠, ♢) and Background, and a 4-class scheme of (Low, High,
None, Background).

We experimented with ignoring background pixels as we
hypothesized that it would provide a stronger learning sig-

6



nal for learning card pixels since the data was vastly dom-
inated by background pixels (cards take a small portion of
the overall scene). We ultimately found that training with
background pixels incorporated into the loss calculation was
superior and so the results we present are for those model
variants. For min/max metrics we exclude the Background
class and consider only card specific classes.

We first trained our 53-class model using the parameters
outlined in Appendix A, Table 9. The results are summa-
rized in Table 3. We see a significant imbalance between
SegFormer performance across classes. The model has a
much easier time detecting face cards but struggles much
more with None category cards like 7 and 8. This is re-
flected not only in IoU (min 0.669 for 7♢ vs. max 0.943 for
Q♠) but also in precision/recall. For face cards both met-
rics exceed 0.95, whereas precision for 7♠/8♣ dips below
0.85 and recall falls under 0.80. Mean AP (mAP) follows a
similar pattern, worst at 0.644 for 6♠ and best at 0.943 for
Q♠ which mirrors the IoU rankings.

Metric Avg. Min Classmin Max Classmax Std.

Precision 0.924 0.806 6♠ 0.985 A♣ 0.050
Recall 0.918 0.752 7♢ 0.982 Q♢ 0.062
m(AP) 0.849 0.644 6♠ 0.943 Q♠ 0.076
IOU 0.851 0.669 7♢ 0.943 Q♠ 0.069

Table 3: SegFormer Performance (Pixel Level) Across 53
Card Classes

These results make sense given our relatively small
dataset of 3000 examples. Even with data augmentation ap-
plied, there aren’t enough training examples for the model
to effectively learn all the subtle card variations. In the
53 model confusion matrix (Appendix D) we see that the
most common misclassifications are between similar look-
ing classes, for example 7s and 8s, whereas very distinct
classes like face cards are easier for the model to distin-
guish. When we evaluate the 53 class version on our video
dataset we see a very high FP and FN rate, flickering mis-
classifications, and poor performance with the overall count.

Metric Avg. Min Classmin Max Classmax Std.

Precision 0.966 0.939 Low♠ 0.986 None♣ 0.014
Recall 0.964 0.936 None♢ 0.979 Low♡ 0.016
m(AP) 0.932 0.899 None♢ 0.947 Low♣ 0.024
IOU 0.927 0.901 None♢ 0.947 Low♣ 0.016

Table 4: SegFormer Performance (Pixel Level) Across 13
Card Classes

Next we evaluated the same SegFormer model trained
on our collapsed 13-class configuration (12 card categories

plus background). Table 4 reports pixel-level Precision, Re-
call, mAP, and IoU. Relative to the 53-class model, overall
Precision and Recall each increase by nearly three percent-
age points, with similar gains in mAP and IoU. The hard-
est to segment classes remain the None cards (particularly
None♢), reflecting the visual ambiguity of mid-rank cards
(7–9). In contrast, Low cards achieve the highest scores,
benefiting most from consolidation. These results confirm
that collapsing suits and ranks into broader Low, None,
and High groups significantly boosts segmentation reliabil-
ity while sacrificing only minimal semantic detail, which is
acceptable since exact rank recognition is less critical than
grouping accuracy for counting.

Finally, we trained a further-collapsed 4-class model (see
Section 4.4). Although it outperforms the 13-class version
on core metrics (Appendix B, Table 10), it proved unsuitable
for card counting due to overlapping cards of the same class
being frequently detected as a single object (see Section 7,
video results).

5.4. YOLOv5 & DeepSORT Tracking Results

We evaluated our end-to-end pipeline using the best-
performing 3-class YOLOv5 model on 20 Blackjack hand
video clips (see Section 4.3). As shown in Table 5, the
pipeline achieved a perfect Hi-Lo count on 40% of the clips,
with a mean absolute count error of 1.15 cards and a worst-
case error of 6 cards. Several factors contributed to errors.
When cards were visible for only a few consecutive frames,
DeepSORT often failed to assign cards tracking IDs, lead-
ing to missed detections. Reducing the n init parame-
ter helped in those cases but also introduced false positives
due to ID fragmentation, leading to double counting when
confidence scores fluctuated across frames. Missed or in-
correct detections were especially common when cards ap-
peared at the top of the frame, farthest from the camera. We
hypothesize this is because our training data contained few
examples of cards at that angle. Adding more examples that
more closely resemble the evaluation videos could improve
performance in such cases.

Metric YOLOv5-3 YOLOv5-52 SegFormer-13

Perfect Predictions 8/20 (40%) 7/20 (35%) 8/20 (40%)
Mean Abs. Error 1.15 1.05 0.90
Max Error 6 3 2

Table 5: Hi-Lo count results on 20 blackjack hands for our
YOLOv5 and one SegFormer pipelines

5.5. SegFormer & DeepSORT Tracking Results

To evaluate our end to end segmentation pipeline, we
train versions of our 13 class and 4 class SegFormer models
trained for 60 epochs. We evaluate these models on the same

7



Class TP FP FN Precision Recall F1

Low 41 16 2 0.719 0.953 0.820
High 40 8 3 0.833 0.930 0.879
None 17 2 5 0.895 0.773 0.829

Overall 98 26 10 0.790 0.907 0.845

Table 6: Classification Accuracy by Hi-Lo Class (YOLOv5
3 class with DeepSORT)

Figure 4: Histogram of Hi-Lo count errors across 20 test
videos using our YOLOv5 pipeline. Most predictions are
within ±2 of the ground-truth count, with a mean absolute
error of 1.15.

20 Blackjack hand video clips (see section 4.3). Our 13
class version outperforms our 4 class version and we sum-
marize its performance in Table 5.

Over all 20 Blackjack hands our pipeline is able to per-
fectly predict the count across 40% of hands with a mean
count error of less than 1 per hand. In its worst perform-
ing hand, it is off from the true count by 2. Compared to
Pipeline 1, our new pipeline has a lower FP rate (Table 7),
hence higher precision, but a higher FN rate, which corre-
sponds to the observed drop in recall. Figure 5 shows our
distribution of count errors across each video with respect to
the ground truth. We see that the distribution here is tighter
than in pipeline 1 but that this pipeline seems to over count
when compared to pipeline 1. Qualitatively, we found that
double counting often occurs when a card moves quickly
and the tracker loses its original identity, causing a new track
to be created.

6. Conclusion & Future Work

Our pipelines achieved a perfect count on 40% of the
Blackjack hand videos, each of which exhibited distinct
strengths and failure modes. YOLOv5 performed well on
static detection, but struggled once DeepSORT tracking was
introduced, especially when cards appeared on-screen for
only a few frames. It also often failed to recognize cards

Class TP FP FN Precision Recall F1

Low 40 7 4 0.851 0.909 0.879
High 37 3 6 0.925 0.860 0.892
None 15 4 6 0.789 0.714 0.750

Overall 92 14 16 0.868 0.852 0.860

Table 7: Classification Accuracy by Hi-Lo Class (Seg-
Former 13 class with DeepSORT)

Figure 5: Histogram of Hi-Lo count errors across 20 test
videos using our SegFormer pipeline. All predictions are
within ±2 of the ground-truth count, with a mean absolute
error of 0.90.

near the top of the frame, possibly because those cards ap-
peared smaller in the video frames than in our training data.
SegFormer, in contrast, localized the card boundaries more
accurately, but was prone to double counting once tracking
was introduced whenever the confidence per frame fluctu-
ated. Although our 13-class and 4-class segmentation mod-
els reduced double-counting, they sometimes merged adja-
cent cards of the same class into a single segment, leading
to false negatives. For interesting outputs from our pipelines
see Appendix C.

To improve performance in future work, we can con-
sider enhancing our training data by generating more varied
synthetic examples, rather than simply merging bounding
boxes. Incorporating temporal modeling directly into the
pipeline by training end-to-end on video clips rather than
individual frames may also be worth exploring to reduce
tracking error as compared to DeepSORT. For the segmen-
tation approach, exploring architectures like MaskFormer,
which combine semantic and instance segmentation, could
enable the model to distinguish touching cards of the same
class at the pixel level, thereby reducing false negatives.

8



7. Demonstration Video & Source Code
Our code is available at:
https://github.com/ankurjaisood/cs231n
_eye-in-the-sky
Demonstration video of our card-counting pipelines:
https://www.youtube.com/watch?v=yUcEbM
6uDno

8. Contributions & Acknowledgments
• Ankur Jai Sood: Initial finetuning of YOLOv10 for

the milestone, dataset preprocessing for classifiction
dataset and for segmentation dataset, SegFormer train-
ing pipeline, DeepSORT integration with SegFormer,
SegFormer evaluation pipeline, integrating data aug-
mentations for SegFormer, SegFormer + DeepSORT
frame interpolation, tuning DeepSORT for SegFormer,
weights and biases integration, multiple rounds of
training for final SegFormer and DeepSORT pipelines
(53 class / 13 class / 3 class versions), various bug fixes.

• Cameron Heskett: Multiple rounds of training and
finetuning of final YOLOv5 and DeepSORT YOLOv5
3 Class detection pipeline, creation of scoring metrics
and tooling for evaluating all pipelines, custom data
augmentations for YOLOv5 training, created black-
jack evaluation video dataset with ground truth la-
bels, edited and uploaded YouTube video demonstrat-
ing pipeline examples.

• Mini Rawat: Finetune YOLO and DeepSORT for
YOLOv5 52 Class pipeline; DeepSORT and YOLOv5
latest model integrations; AWS Training machine
setup; Evaluating different YOLO/DeepSORT models
by running several hours of Deep Learning training on
NVidia T4 GPUs in AWS; Grid Search implementa-
tion for Conf and IOU thresholds; Tuning model for
optimal results balancing accuracy and noise; Identi-
fied bugs and corner cases. Generated perfect and in-
teresting case video samples from model runs.

We would also like to thank our TA mentor Zhoujie (Ja-
son) Ding and the entire CS231n teaching team for their
help and hardwork during the Spring 2025 quarter.

References
[1] All-Casino-Action. https://www.youtube.com/wa

tch?v=J5hF0umt0jE, May 2025. YouTube video, All
Casino Action.

[2] Andy8744. Playing cards object detection dataset. https:
//www.kaggle.com/datasets/andy8744/pla
ying-cards-object-detection-dataset, 2021.
Accessed: 2025-05-16.

[3] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple
online and realtime tracking. In 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, Sept. 2016.

[4] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov,
and S. Zagoruyko. End-to-end object detection with trans-
formers, 2020.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[6] Geaxgx. Playing Card Detection. https://github.com
/geaxgx/playing-card-detection, 2019. GitHub
repository.

[7] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. CoRR, abs/1411.4038,
2014.

[8] luanademi. Playing card ensemble – segmentation masks.
https://www.kaggle.com/datasets/luanadem
i/playing-card-ensemble-segmentation-mas
ks. Accessed: 2025-05-20.

[9] S. Nallola and V. Ayyasamy. Twenty-five years of real-time
surveillance video analytics: a bibliometric review. Multime-
dia Tools and Applications, 83:1–34, 01 2024.

[10] National Basketball Association. Nba and genius
sports/second spectrum expand partnership to deepen nba
league pass innovations with enhanced basketball analytics
and develop new next gen platform. https://pr.nba.c
om/nba-genius-sports-second-spectrum-e
xpanded-partnership/, Mar. 2023. Accessed: 2025-
05-10.

[11] Perfect-Pair. https://www.youtube.com/watch?
v=al-T7OsAR8g, May 2025. YouTube video, Perfect Pair.

[12] A. Pujara and M. Bhamare. Deepsort: Real time multi-object
detection and tracking with yolo and tensorflow. In 2022 In-
ternational Conference on Augmented Intelligence and Sus-
tainable Systems (ICAISS), pages 456–460, 2022.

[13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection, 2016.

[14] D. Syed, N. Gandhi, A. Arora, and N. Kadam. Deepgamble:
Towards unlocking real-time player intelligence using multi-
layer instance segmentation and attribute detection. In 2020
19th IEEE International Conference on Machine Learning
and Applications (ICMLA), page 376–383. IEEE, Dec. 2020.

[15] ultralytics. yolov5. https://github.com/ultraly
tics/yolov5. Yolov5 GitHub repository.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. CoRR, abs/1706.03762, 2017.

9

https://github.com/ankurjaisood/cs231n_eye-in-the-sky
https://github.com/ankurjaisood/cs231n_eye-in-the-sky
https://www.youtube.com/watch?v=yUcEbM6uDno
https://www.youtube.com/watch?v=yUcEbM6uDno
https://www.youtube.com/watch?v=J5hF0umt0jE
https://www.youtube.com/watch?v=J5hF0umt0jE
https://www.kaggle.com/datasets/andy8744/playing-cards-object-detection-dataset
https://www.kaggle.com/datasets/andy8744/playing-cards-object-detection-dataset
https://www.kaggle.com/datasets/andy8744/playing-cards-object-detection-dataset
https://github.com/geaxgx/playing-card-detection
https://github.com/geaxgx/playing-card-detection
https://www.kaggle.com/datasets/luanademi/playing-card-ensemble-segmentation-masks
https://www.kaggle.com/datasets/luanademi/playing-card-ensemble-segmentation-masks
https://www.kaggle.com/datasets/luanademi/playing-card-ensemble-segmentation-masks
https://pr.nba.com/nba-genius-sports-second-spectrum-expanded-partnership/
https://pr.nba.com/nba-genius-sports-second-spectrum-expanded-partnership/
https://pr.nba.com/nba-genius-sports-second-spectrum-expanded-partnership/
https://www.youtube.com/watch?v=al-T7OsAR8g
https://www.youtube.com/watch?v=al-T7OsAR8g
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5


[17] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and
G. Ding. Yolov10: Real-time end-to-end object detection,
2024.

[18] Wikipedia contributors. Card counting. https://en.w
ikipedia.org/w/index.php?title=Card_co
unting&oldid=1267976662, 2025. Last edited on 7
January 2025; accessed 25 April 2025.

[19] N. Wojke, A. Bewley, and D. Paulus. Simple online and re-
altime tracking with a deep association metric, 2017.

[20] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Álvarez, and
P. Luo. Segformer: Simple and efficient design for seman-
tic segmentation with transformers. CoRR, abs/2105.15203,
2021.

[21] J. Yang, S. Liu, Z. Li, X. Li, and J. Sun. Streamyolo: Real-
time object detection for streaming perception, 2022.

[22] ZQPei. yolov5. https://github.com/ZQPei/dee
p_sort_pytorch. Deep Sort Pytorch GitHub repository.

[23] K. Zutis and J. Hoey. Who’s counting? real-time blackjack
monitoring for card counting detection. pages 354–363, 10
2009.

10

https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1267976662
https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1267976662
https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1267976662
https://github.com/ZQPei/deep_sort_pytorch
https://github.com/ZQPei/deep_sort_pytorch


A. Training & Augmentation Hyperparame-
ters

YOLOv5 Optimizer & Loss

lr0 0.01
lrf 0.1
momentum 0.937
weight decay 0.0005
warmup epochs 3.0
warmup momentum 0.8
warmup bias lr 0.1
box 0.05
cls 0.3
cls pw 1.0
obj 0.7
obj pw 1.0
iou t 0.20
anchor t 4.0
fl gamma 0.0

Dataset Augmentation Parameters

hsv h 0.015
hsv s 0.7
hsv v 0.4
degrees 15.0
translate 0.2
scale 0.9
shear 10.0
perspective 0.0005
flipud 0.0
fliplr 0.5
mosaic 1.0
mixup 0.15
copy paste 0.3

DeepSORT Paramaters
max cosine distance 0.2
min confidence 0.5
nms max overlap 0.5
max iou distance 0.7
max age 70 frames
n init 3 frames
embedder REID

Table 8: YOLOv5 Training and Augmentation Hyperpa-
rameters

Segformer Optimizer & Loss

lr 0.00005
weight decay 0.01
epochs 20.0
batch size 16.0
ignore background pixels 0

Dataset Augmentation Parameters

Type Value Probability

random rescale ±20% 100%
image interpolation LINEAR if rescaled
mask interpolation NEAREST if rescaled
padding 0 (masks/images) if rescaled down
random crop 512× 512 if rescaled up
horizontal flip - 50%
vertical flip - 20%
random rotation ±15 deg 50%
random brightness ±20% 50%
random contrast ±20% 50%

DeepSORT Paramaters
max cosine distance 0.2
min confidence 0.6
nms max overlap 0.5
max iou distance 0.7
max age 20 frames
n init 5 frames
embedder clip RN50x4
min pixel area 1500 pixels
min bounding box area 250 pixels

Table 9: SegFormer Training and Augmentation Hyperpa-
rameters

B. Additional Results & Tables

Metric Avg. Min Classmin Max Classmax Std.

Precision 0.976 0.958 None 0.976 Low 0.014
Recall 0.977 0.965 None 0.974 Low 0.013
m(AP) 0.957 0.926 None 0.954 Low 0.012
IOU 0.942 0.925 None 0.952 Low 0.012

Table 10: SegFormer Performance (Pixel Level) Across 4
Card Classes

11



C. Interesting Examples from Pipeline Outputs

(a) 52 Class YOLOv5 + Deep-
SORT Pipeline

(b) 3 Class YOLOv5 + Deep-
SORT Pipeline

(c) SegFormers-4 pipeline
showing bounding boxes
tracked by DeepSORT

(d) SegFormers-4 segmenta-
tion mask showing overlapping
class detection in 4 class model

(e) SegFormers-13 pipeline
showing bounding boxes
tracked by DeepSORT

(f) SegFormers-4 segmentation
mask showing segmentation
mask class detections

Figure 6: Six interesting outputs from our image pipelines

D. YOLOv5 Training Graphs (52-class Model)

(a) (b)

(c) (d)

Figure 7: (a) Confusion Matrix (b) F1 Curve (c) Labels Cor-
relogram (d) Labels

(a) (b)

(c) (d)

Figure 8: (a) P Curve (b) PR Curve (c) R Curve (d) Training
Batch 0

12


