

### Outline

- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

### Outline

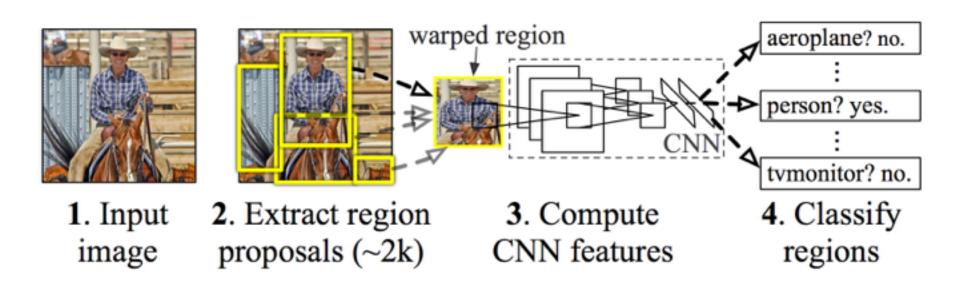
- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

#### R-CNN

- Selective Search + CNN
- Many design choices
- Train SVMs for detection
- Bounding box regression
- Non-max suppression

#### R-CNN

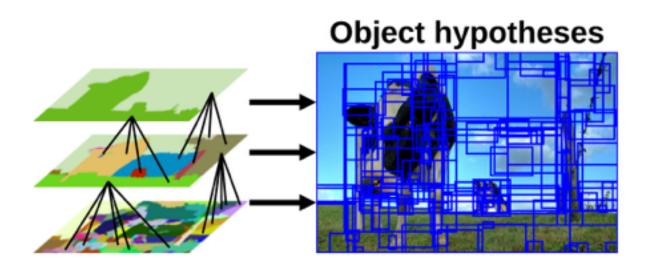
Selective Search + CNN features



Girshick et al., 2014

### Selective Search

- Generic object proposals
- Hierarchical grouping of superpixels based on color



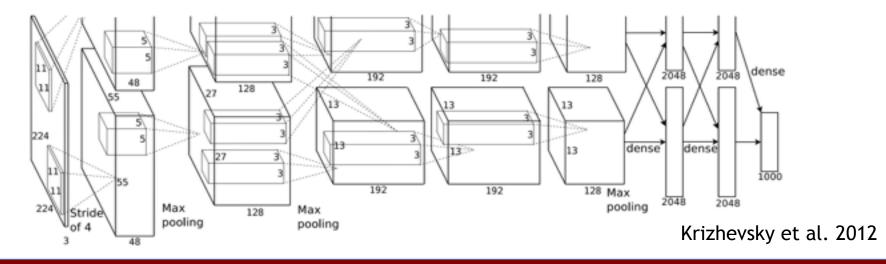
van de Sande et al., 2011

### Selective Search

- A few sec/image (CPU)
- Depends on image resolution!
- 2,307 regions/image on average for our images
- Given to you in Project 3

#### CNN Features

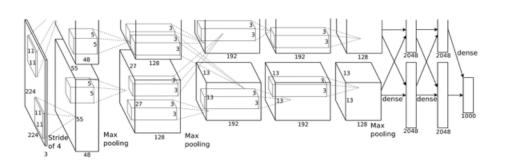
- Typically pre-train on ImageNet
- Can fine-tune on detection data
- The better the CNN for classification, the better it will be for detection



### Network Choice

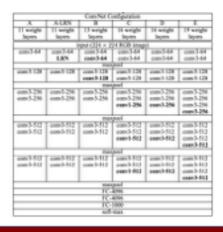
#### AlexNet

- Krizhevsky, Sutskever, Hinton
  Simonyan and Zisserman
- NIPS 2012
- ILSRVC Top-5 Error: 18.2%
- R-CNN AP: 58.5



#### **VGGNet**

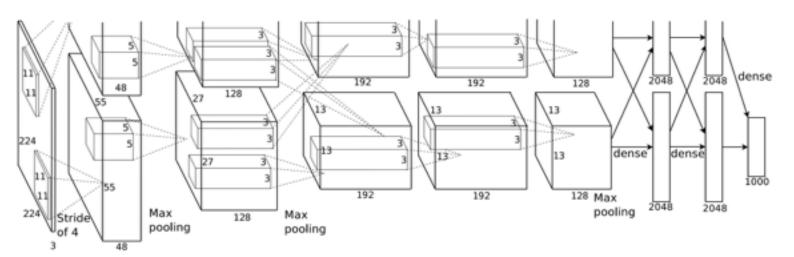
- ICLR 2015
- ILSVRC Top-5 Error: 7.5%
- R-CNN AP: 66.0



### Which Layer?

#### Just try out a few high-level layers

| VOC 2007 test              | aero | bike | bird | boat | bottle | bus  | car  | cat  | chair | cow  | table | dog  | horse | mbike | person | plant | sheep | sofa | train | tv   | mAP  |
|----------------------------|------|------|------|------|--------|------|------|------|-------|------|-------|------|-------|-------|--------|-------|-------|------|-------|------|------|
| R-CNN pool <sub>5</sub>    | 51.8 | 60.2 | 36.4 | 27.8 | 23.2   | 52.8 | 60.6 | 49.2 | 18.3  | 47.8 | 44.3  | 40.8 | 56.6  | 58.7  | 42.4   | 23.4  | 46.1  | 36.7 | 51.3  | 55.7 | 44.2 |
| R-CNN fc6                  | 59.3 | 61.8 | 43.1 | 34.0 | 25.1   | 53.1 | 60.6 | 52.8 | 21.7  | 47.8 | 42.7  | 47.8 | 52.5  | 58.5  | 44.6   | 25.6  | 48.3  | 34.0 | 53.1  | 58.0 | 46.2 |
| R-CNN fc7                  | 57.6 | 57.9 | 38.5 | 31.8 | 23.7   | 51.2 | 58.9 | 51.4 | 20.0  | 50.5 | 40.9  | 46.0 | 51.6  | 55.9  | 43.3   | 23.3  | 48.1  | 35.3 | 51.0  | 57.4 | 44.7 |
| R-CNN FT pool <sub>5</sub> | 58.2 | 63.3 | 37.9 | 27.6 | 26.1   | 54.1 | 66.9 | 51.4 | 26.7  | 55.5 | 43.4  | 43.1 | 57.7  | 59.0  | 45.8   | 28.1  | 50.8  | 40.6 | 53.1  | 56.4 | 47.3 |
| R-CNN FT fc6               | 63.5 | 66.0 | 47.9 | 37.7 | 29.9   | 62.5 | 70.2 | 60.2 | 32.0  | 57.9 | 47.0  | 53.5 | 60.1  | 64.2  | 52.2   | 31.3  | 55.0  | 50.0 | 57.7  | 63.0 | 53.1 |
| R-CNN FT fc7               | 64.2 | 69.7 | 50.0 | 41.9 | 32.0   | 62.6 | 71.0 | 60.7 | 32.7  | 58.5 | 46.5  | 56.1 | 60.6  | 66.8  | 54.2   | 31.5  | 52.8  | 48.9 | 57.9  | 64.7 | 54.2 |

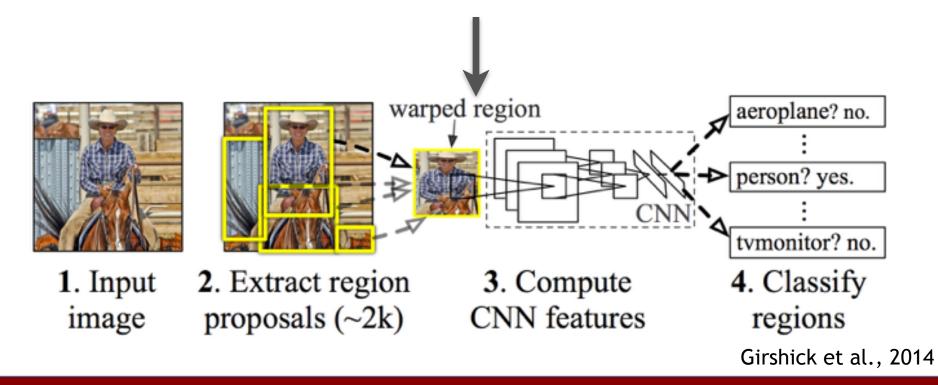


### Our Network

- Took pre-trained AlexNet
- Replaced 4096-d FC layers with 512-d
  - Reduces size of extracted features with some performance loss
- Trained on ILSVRC (i.e. no fine-tuning)

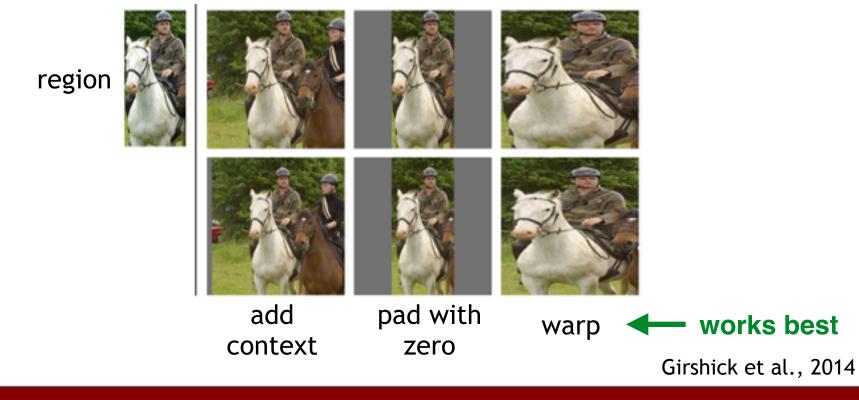
# R-CNN: Extracting Features

- Extract CNN features around a region
- But CNNs take a fixed-size input!



### **Extracting Features**

- Need region to fit input size of CNN
- Region warping method:



### **Extracting Features**

- Context around region
- 0 or 16 pixels (in CNN reference frame)



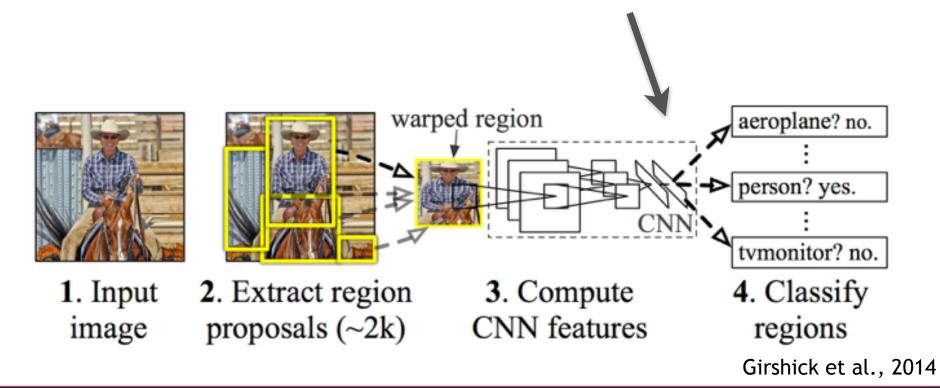
Girshick et al., 2014

### **Extracting Features**

- Takes 15-20 sec/image with a good GPU
- Easily the slowest part for Project 3
- Do this part early!!

#### R-CNN Detector

- Binary SVM for each class on regions
- Lots of implementation details!



# **SVM Training**

- Which regions should be positive vs negative?
- Weights on positive/negative examples
- What type/strength of regularization should you do?
- Feature normalization?
- Use a bias?
- Memory constraints (the big one)

# Positives/Negatives

- Positives: overlap ≥ threshold<sub>1</sub>
- Negatives: overlap ≤ threshold<sub>2</sub>
- Read the paper to get good choices of thresholds/experiment!

# Positive/Negative Weights

- Typically have way more negatives than positives
  - Can lead to favoring negatives too much

- Solution: Weigh positives more in SVM training
  - Many solvers have an option for this

### Regularization

- SVMs need regularization
- L<sub>1</sub> or L<sub>2</sub> regularization?
- What strength?
- Cross-validate this or subsample training to get validation set.
- Super important!

### Feature Normalization

 Often necessary to get high-dimensional SVMs to work.

#### Options

- Zero norm, unit standard deviation
- L<sub>1</sub>/L<sub>2</sub>-normalize
- Make features have a certain norm on average
- Make each dimension fit in range [a,b] (e.g. [-1,1])
- Most of these work fine.

### Bias

- Add a bias to SVMs by augmenting features with a 1 (non-zero constant).
- Most SVM solvers (e.g. liblinear) have an option for this.
- Important when class imbalance
- Do this!

### **Memory Constraints**

- Features take up a lot of space!
  - Typically hundreds of GB
  - For us, only 2-3 GB (smaller CNN, fewer images)

- Even if you have enough memory, training an SVM on that much data is slow
- Subsample negatives: hard negative mining

### Hard Negatives

- Hard as in "difficult"
- Only keep negatives whose decision value is high enough
  - Specific to max-margin, but can be used with other classifiers
- Problem: Need classifier to get decision values in the first place!
- Solution: Iteratively train SVMs

### Training SVMs

#### For each image:

- 1. Add as positives all regions with sufficient overlap
- 2. Add as negatives all regions with low enough overlap with large enough decision values according to current model
- 3. Retrain SVM if it's been too long (for some definition of "too long")

Repeat for some number of epochs

# Implementation Notes

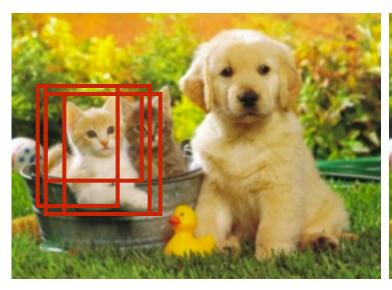
- Use an SVM solver that's memory efficient (i.e. uses single precision, doesn't copy all the data)
- Try training with SGD?
- Runtime performance largely determined by number of negatives

### **Bounding Box Regression**

- Predict new detection window from region-level features
  - R-CNN uses pool<sub>5</sub> features, use those or the default fc<sub>6</sub> ones provided (probably pool<sub>5</sub> works better)
- Class-specific
- Ridge regression on bounding box offset (c<sub>x</sub>, c<sub>y</sub>, log(width), log(height))
- Regularization amount super important

### Non-max suppression

- Turn multiple detections into one
- Approach: merge bounding boxes with
  ≥ threshold IoU, keep the higher scoring box.
- Threshold of 0.3 is decent





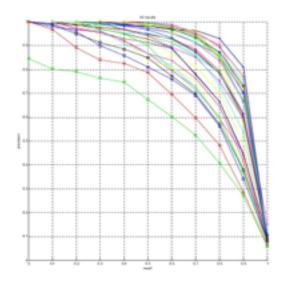
### R-CNN Questions?

### Outline

- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

### **Average Precision**

- Detection is correct if IoU ≥ 0.5 with ground truth
  - Can't have multiple detections for one GT box
- Rank by detection score
- Get area under the curve (roughly)
- Mean AP (mAP) averages across classes



#### "Baseline" Performance

Before bounding box regression:

- Car: 30.72

- Cat: 35.91

- Person: 18.83

- mAP: 28.49

With bounding box regression:

- Car: 32.97

- Cat: 38.58

- Person: 20.05

- mAP: 30.53

Try to get this without any major changes!

### Outline

- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

### What We Provide

- readme.txt: Contains more details about all of this.
  Read this in detail!
- detection\_images.zip: The images. Download from course website (110 MB)
- {train, test}\_ims.mat: Annotations for all images.
- ssearch\_{train, test}.mat: Selective search regions (as bounding boxes)
- extract\_cnn\_feat\_demo.m: Demo script extracting
  CNN features with caffe

#### What We Provide

- Makefile.config.rye: A Makefile you can use if you run on the rye farmshare machines. Change g++ version to 4.7 if on rye02.
- ilsvrc mean.mat: Mean image for the CNN
- cnn\_deploy.prototxt: CNN architecture for extracting features (fc<sub>6</sub>).
- cnn512.caffemodel: Learned CNN weights

#### What We Provide

- display\_box.m: Visualizes a bounding box
- det\_eval.m: Evaluates precision, recall, AP for a single class
- boxoverlap.m: Calculates IoU for many bounding boxes at once (fast).

#### What We Provide

#### • Implement these:

- extract region feats.m
- train rcnn.m
- train bbox reg.m
- test rcnn.m

#### extract region feats.m

- Extract features around for each region in every image
- Also extract them around the ground truth bounding box (for training images)
- Save them for use later

Note: This will take a long time to run. Do this early!

#### train rcnn.m

- Train the classifier on top of CNN features
- Be careful about hard negative mining and all the other parameters!
- Might take a bit of iteration to get this right, but should run relatively fast (less than an hour with a relatively bad implementation)
- Debug with a single class first!

- Train the bounding box regressor
- Independent of the classifier
- Be careful about bounding box and offset representation!
- Pay attention to regularization!

- Run the trained R-CNN on test images
- Run the bounding box regressor
  - Should be able to turn this on and off
- Do non-maximum suppression
  - Code this up yourself
- Do evaluation
  - Code given for single-class evaluation

### Code Subtleties

- It may take some time to get caffe working
  - Ask the TAs if it takes more than a couple hours to get the demo script running
- To extract features from multiple regions at once, need to change the first input\_dim in cnn\_deploy.prototxt before initializing caffe.

# Results to Report

- AP for each class with and without bounding box regression
- At least one qualitative result per class
- Quantitative and qualitative results for any changes made

#### Outline

- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

# Project 3 Report

- Write-up template provided on website (<u>link</u>)
- Use CVPR LaTeX template
- No more than 5 pages (additional figures ok)
- Rough sections:
  - 1. Overview of the field (i.e. detection)
  - 2. The algorithm (how R-CNN works)
  - 3. Any changes/extensions made
  - 4. Code README
  - 5. Results

# Notes from Grading Project 2

- Much better than Project 1 reports:)
- If you tried out something and it worked worse, quantify it!
- When identifying a failure mode, qualitative results are good

#### **Extensions**

 Need at least a few extensions (depending on scope). The more (and the higher quality) the better.

- Feature representation
  - Compare CNN with other vision features
- Which layer of CNN to use
  - Maybe fc<sub>6</sub> is bad when only 512-d?
- Parameters used during training
  - Regularization, overlap thresholds...
  - Try to draw insight!

- Classifier
  - Something better than SVM? Random forest?
- Larger CNN
  - AlexNet or VGGNet?
- Fine-tuning
  - How much does it help in this case?

- Other detection methods
  - DPM? HOG? Other?
- Other region proposals?
  - Edge Boxes? Objectness? Your own?
- Segmentation
  - Combine project 1 and 3

- Fancier training?
  - Dropout?
- Classification via detection
  - What changes do you have to make?
- Joint classification + bbox reg training
  - Does it help?

- NMS
  - Something better than greedy picking?
- Multi-label prediction
  - Predict attributes of objects?

- Make it faster
  - Faster training? Filter out regions?
- Make it better
  - Add some other signal???
- Analyze it
  - What really makes R-CNN tick?

#### Outline

- R-CNN Review
- Error metrics
- Code Overview
- Project 3 Report
- Project 3 Presentations

## Project 3 Presentations

 Every team should submit 4-5 slides to me (jkrause@cs) by 5 pm the day before (Tues June 2)

You know the drill

## Late Days

 Reminder: Total of 7 late days spread across the 3 assignments

20% off per late day afterward

 Most of you have already used up a lot of late days, check with TAs if you need to find out the exact number you have left.

### Important Dates

- June 2 (5 pm): Send presentations to jkrause@cs
- June 3 (in class): Presentations
- June 4 (5 pm): Reports due

### Questions?

You're almost done!