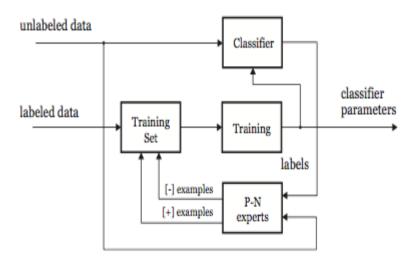


TLD

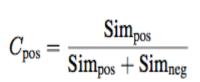

CS231b 2015 Project 2

<u>Link</u>

Iretiayo Akinola Josh Tennefoss

Challenges

- Getting Matlab code to run properly
- Understanding the strange TLD code structure
- Speeding up runtime
- Accuracy

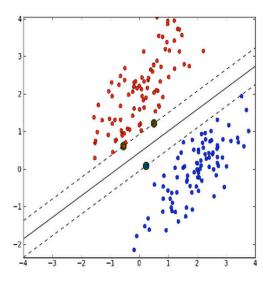


Our Experiments

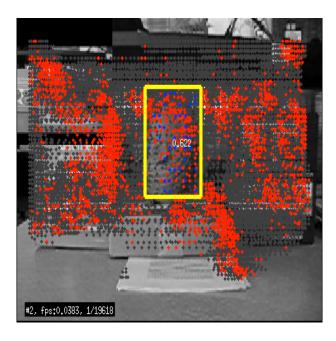
- Detector Algorithm
 - 10-NN
 - SVM
- Training KNN
 - Set maximum number to keep
 - Keep most recent
 - Randomly keep 100, remove 100 per frame
- Combine Detector and Tracker
 - Penalize detector boxes if they are far from tracker

Detector - NN

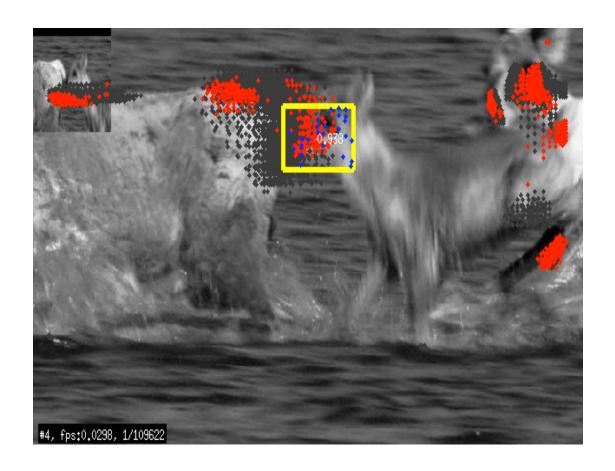
- 1. First filter by variance
- 2. Use FERN features, 20 of them
- 3. 10-NN for pos and neg
- 4. Similarity = # places that are same, over NNs
- 5. Calculate confidences, C
- 6. If C's differ enough, output the higher one


$$C_{
m neg} = rac{
m Sim_{
m neg}}{
m Sim_{
m pos} + Sim_{
m neg}}$$

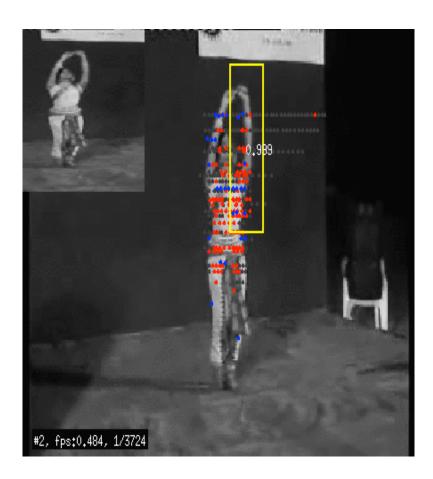
Detector - SVM


SVM Classification

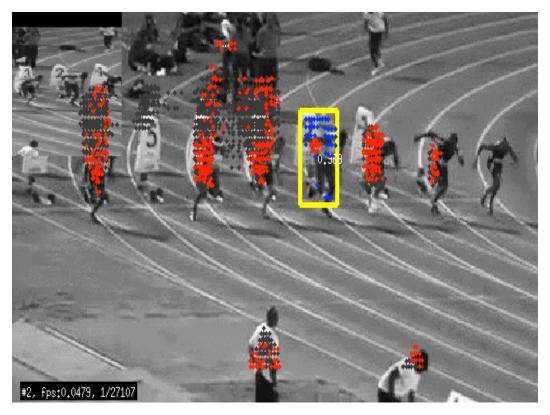
- Keeps only updated support vectors from new frame.
- Confidence score: fits sigmoid curve on margin of the SVM model.
- Learning: updates model to handle false positives and false negative in new frame.


Training KNN

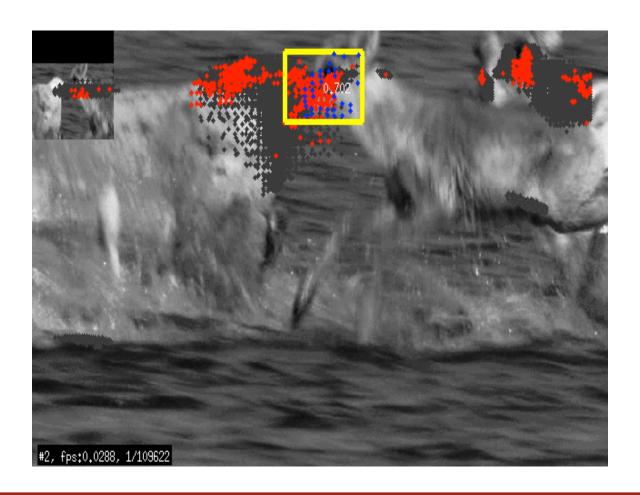
- Set maximum number to keep, MAX
 - Used 200, 500, 1000
- Attempt 1: Keep MAX most recent
- Attempt 2: randomly keep 10, remove 10 per frame to stay at MAX



Combining Tracker and Detector


Penalize detector boxes if they are far from tracker

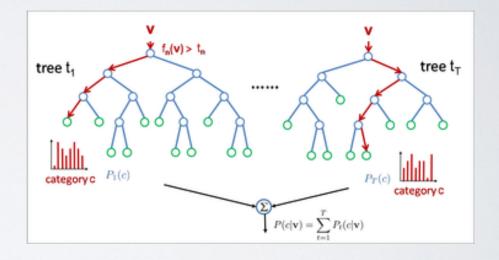
<u>link</u>



• We are still working on... late days:)

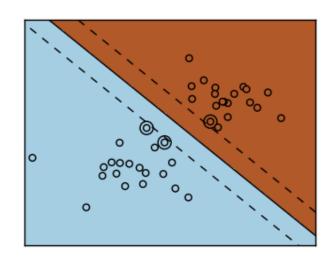
Hopefully Bolt is quicker than our algorithm thinks...

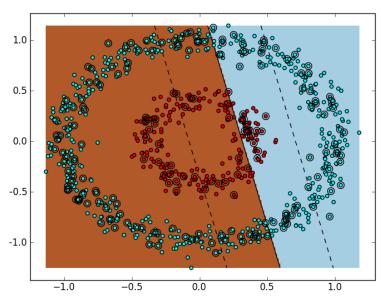
Oops, where's the box?



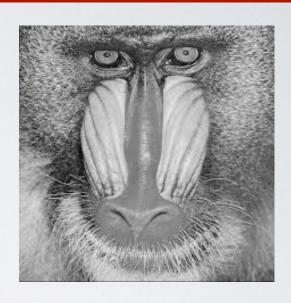
Tracking-Learning-Detection: An Integrated Approach for Robust Tracking

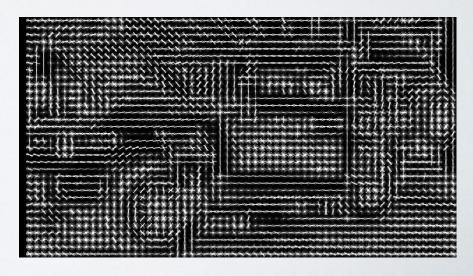
Amani V. Peddada amanivp@cs.stanford.edu


Implementation


- Detector: Random Fern Forest
 - + Nearest Neighbor
 - 10 trees, 9 comparisons
 - 50 trees, 6 comparisons
 - Filter by overlap
- LK Tracker
- Integrator that weights scores of tracker and detector.

Extension: Support Vector Machine


- Max-Margin Binary Classifier
- Trained on linear, quadratic, polynomial, and Gaussian Kernels.
- Superior Performance



Features & Input Data

- Normalized, resized patch
- HOG Features + SVM noisy performance
- HOG Features + Patch intensity — accurate, inefficient

The Integrator

- Finding balance between detection and tracking output is key
- Use confidences as measure of accuracy
- Strategies:
 - Use tracking prediction unless the max detection confidences is larger by a margin
 - Utilize a weighted average of bounding boxes based on confidences

	Dancer2	Deer	Car4	Bolt2
SVM	57.19	51.7	50.1	21.0
Fern Forest	64.77	16.9	14.1	31.2

Average Overlap

Average MAP

	Dancer2	Deer	Car4	Bolt2
SVM	57.4	54.2	46.6	2.90
Fern Forest	89.4	14.45	3.1	5.87

9 comparisons

6 comparisons

HOG Features

Large jumps between frames

SVM vs. Fern Forest

SVM - with Patch features

Fern Forest - 60 classifiers, 5 comparisons

SVM vs. Fern Forest

SVM - with Patch features

Fern Forest - 60 classifiers, 5 comparisons

Further Extensions

- Information Gain to determine optimal tree structure
- Difference between mean values of sub-patches as binary tests less noisy.
- Other discriminative classifiers feed-forward
 Neural Networks (trained less often)

Thank you!

TLD

Bryan Anenberg & Michela Meister 10 May 2015

Standard Implementation

varied performance across different videos ranging from <20% avg. overlap to >65%

Extensions

random fern classifier

strategies for generating positive and negatives

strategies for fusing the detection bounding boxes from your learned detector, and the boxes obtained from the KLT tracker

Standard Implementation

Bolt2: evaluation values: average-overlap=0.137347, success auc=0.160500, map=0.027264 Car4: evaluation values: average-overlap=0.653871, success auc=0.654000, map=0.838637 Deer: The evaluation values: average-overlap=0.302865, success auc=0.320423, map=0.323944 Dancer2: evaluation values: average-overlap=0.672883, success auc=0.674000, map=0.992122

Tracking Project

Eric Holmdahl 231B

TLD Tracking: Results (no extensions)

- First 20 frames of Car4:
 - mAP: 1.0
 - Average overlap: .86
- Full Car4:
 - mAP: .79
 - Average overlap: .70

Using BRIEF Features

More specifically, we define test τ on patch **p** of size $S \times S$ as

$$\tau(\mathbf{p}; \mathbf{x}, \mathbf{y}) := \begin{cases} 1 & \text{if } \mathbf{p}(\mathbf{x}) < \mathbf{p}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases} , \tag{1}$$

where $\mathbf{p}(\mathbf{x})$ is the pixel intensity in a smoothed version of \mathbf{p} at $\mathbf{x} = (u, v)^{\top}$. Choosing a set of n_d (\mathbf{x}, \mathbf{y})-location pairs uniquely defines a set of binary tests. We take our BRIEF descriptor to be the n_d -dimensional bitstring

$$f_{n_d}(\mathbf{p}) := \sum_{1 \le i \le n_d} 2^{i-1} \ \tau(\mathbf{p}; \mathbf{x}_i, \mathbf{y}_i) \ . \tag{2}$$

Pyramid Sampling

- Instead of static 15x15 patch, take increasing size patches (30x30, 60x60, etc) to try and improve resolution
- Similar to pyramid-style SIFT feature extraction

Extension Results

Should have by class Monday!

CS231B Project #2:

Tracking – Learning - Detection

Tugce Tasci
Stanford Universtiy
05/11/2015

Object Detection

Variance Filter

Ensemble Classifier

Nearest Neighbor Classifier

If variance

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

is smaller than a threshold, patch fails

Probability $P_{pos} = P(y=1|F)$ is calculated with random fern classification. If $P_{pos} < 0.5$, patch fails

Relative similarity of the current patch and previous patches is calculated (online learning). If Sr<0.6, patch fails.

Integrator

Decision is based on the number of detections, their confidence values and the confidence of the tracking result

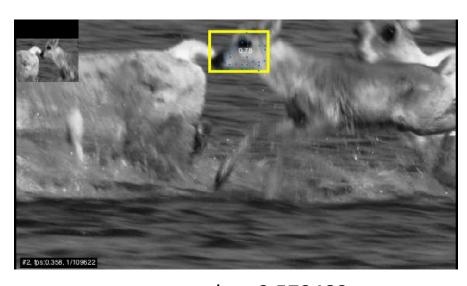
```
If T ~=0
    if |D|==1 && conf(D)>conf(T)
        result = D
    else
        result = T
else if |D| == 1
    result = D
```

For all other cases, object is assumed invisible.

Learning, P/N experts

```
for all patches B
   if overlap>0.6 and classifyPatch(B)<0.5
       calculate and update features for all ferns
       \#of (+) patches +=1
    else if overlap<0.2 and classifyPatch(B)>0.5
       calculate and update features for all ferns
       \#of (-) patches +=1
       if conf(result)>thr
           add it to (-) patches
If conf(result)<thr+
   add it to (+) patches
```

Results


Dancer

average-overlap=0.668031, success auc=0.670667, map=0.977073

Elapsed time is 0.72538 seconds.

Deer

average-overlap=0.573483, success auc=0.585211, map=0.600965

Elapsed time is 2.18415 seconds.

Tracking Project

Jasper Lin

My Implementation

- 10 Fern classifiers with 13 comparisons each
- Limit to 600 positive examples
- Achieved better than baseline for both Car4 and Dancer2

Preliminary Results with Datasets

	Overlap	mAP	Notes
Car4	0.747	0.925	Loses in shadow
Dancer2	0.705	0.894	Occassionaly jumps
Bolt2	~	~	Does not track runner
Deer (10 frames)	0.863	0.870	Always fails on 10th frame even though learning

Preliminary results: Dancer2

Overlap: 0.705, mAP: 0.89

Outside Example

Debugging?

- Focus on implementing and testing a variety of integrators
 - Motocross examples shows need to re-initialize tracker

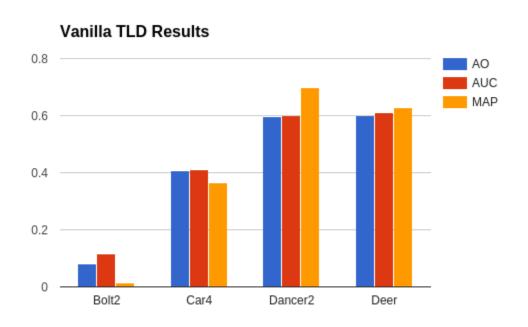
Debugging?

- Focus on implementing and testing a variety of integrators
 - Motocross examples shows need to re-initialize tracker
- Model doesn't track Bolt2
 - Seems like a P-N expert issue in the learning model
 - Tracks other background features, not Bolt

Model tends to fail during transitions in lighting (e.g. Car4 and Human8)

- Model tends to fail during transitions in lighting (e.g. Car4 and Human8)
 - o Introduce different image warps that also change illumination

- Model tends to fail during transitions in lighting (e.g. Car4 and Human8)
 - Introduce different image warps that also change illumination
- Local Binary Pattern Alternative seems to have minimal impact on results


- Model tends to fail during transitions in lighting (e.g. Car4 and Human8)
 - Introduce different image warps that also change illumination
- Local Binary Pattern Alternative seems to have minimal impact on results
 - Naive Implementation isn't much slower than vector implementation for small patches

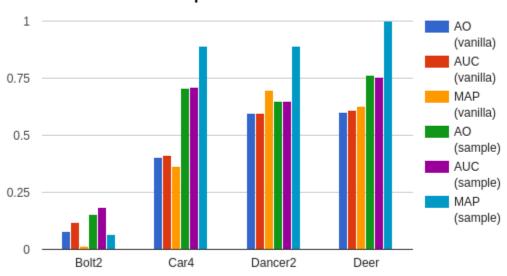
- Model tends to fail during transitions in lighting (e.g. Car4 and Human8)
 - Introduce different image warps that also change illumination
- Local Binary Pattern Alternative seems to have minimal impact on results
 - Naive Implementation isn't much slower than vector implementation for small patches
 - Explore using larger patterns to represent patches more accurately

TLD Tracker

Dylan Rhodes

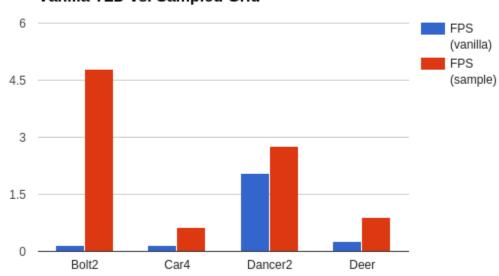
Vanilla Results

Vanilla Results


Vanilla TLD Frames per Second 2.4 1.8 1.2 0.6 Bolt2 Car4 Dancer2 Deer

Sampling Motivation

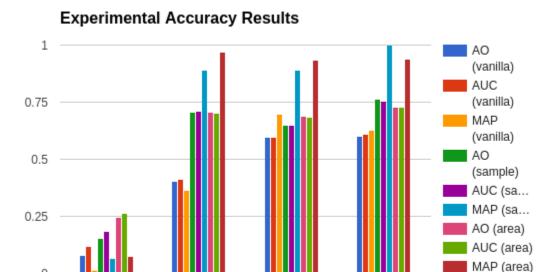
- Trajectories should be fairly stable
 - Boxes which overlap with the current one more will produce a smaller change between frames
 - Subsampling boxes should speed the algorithm
- Sample boxes from grid based on their overlap with the last box and a random coefficient drawn from a gaussian


Sampling Results

Vanilla TLD vs. Sampled Grid

Sampling Results

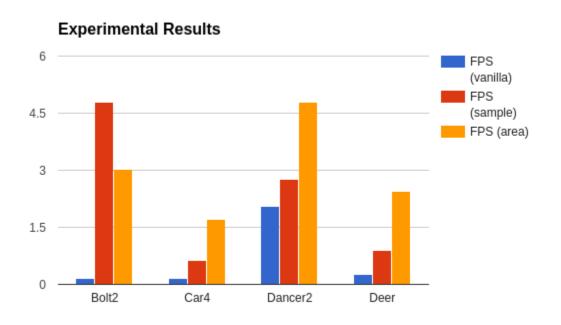
Vanilla TLD vs. Sampled Grid



Area Prior Motivation

Area Prior Results

Bolt2


Dancer2

Deer

cs231b Students 11-May-15

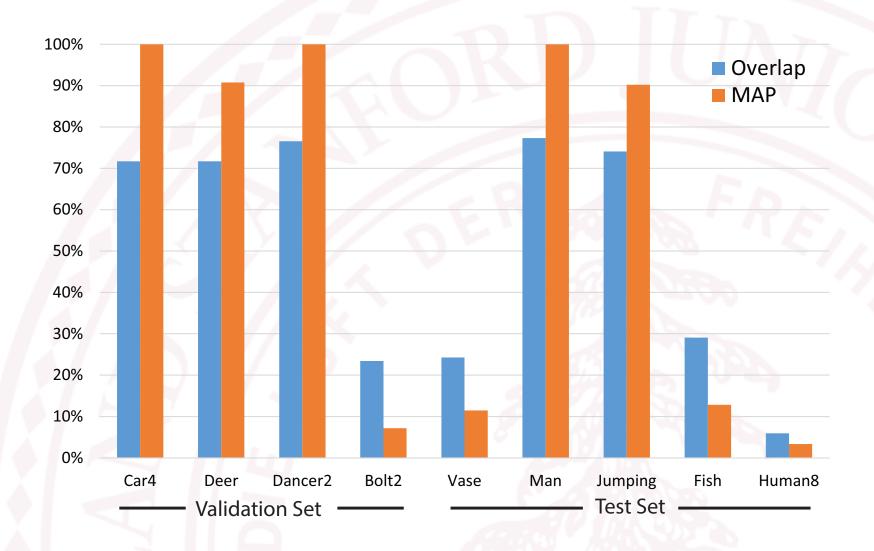
Car4

Area Prior Results

Single Object Tracking with TLD, Convolutional Networks and AdaBoost

Albert Haque and Fahim Dalvi

May 11, 2015


Albert Haque, Fahim Dalvi Stanford University May 11, 2015 1 / 5

Outline

- Patch Features
 - Raw Pixels, HOG, CNN
- Learning Methods
 - ► SVM, AdaBoost
- Tracker Regularization
- Quantitative Results

SVM with Raw Pixels

Albert Haque, Fahim Dalvi Stanford University May 11, 2015 4/5

Convolutional Network Feature Extraction

- ► VGG-16 architecture using fc7 non-rectified features
- ► GTX Titan X
- ► Patches resized to 256×256
- ► Test time batch size of 200
- Overhead: 2 seconds per frame

Albert Haque, Fahim Dalvi Stanford University May 11, 2015 5 / 5

Tracking-Learning-Detection with HOG/SVM & RCNN and Spatial Priors

Ranjay Krishna

Extensions & Experiments

- 1. Pixel Values + SVM
- 2. HOG features + SVM
- 3. Selective Search
- 4. Spatial Prior
 - a. Size Delta
 - b. Overlap Threshold
- 5. RCNN Features
- 6. Generalizing Detections

1: Using Pixels + SVM

	Average Overlap	Success AUC	MAP	Time per Video (s)
Car4	0.58	0.55	0.9	255
Deer	0.64	0.63	0.66	253
Dancer2	0.67	0.67	0.74	196
Bolt2	0.02	0.06	0.01	114
Fish	0.74	0.75	0.77	142
Human8	0.09	0.12	0.06	200
Jumping	0.24	0.27	0.19	176
Man	0.65	0.64	0.98	115
Vase	0.59	0.59	0.55	142

1: Using Pixels + SVM

Example with Deer. Pixels do not capture the face very well and we lose the box for multiple frames when the detector gets confused.

Example of Deer with pixels: <u>link</u>

2: HOG + SVM

	Average Overlap	Success AUC	MAP	Time per Video (s)
Car4	0.65	0.65	0.92	254
Deer	0.66	0.66	0.67	150
Dancer2	0.76	0.77	0.95	176
Bolt2	0.01	0.06	0.01	142
Fish	0.80	0.81	0.88	156
Human8	0.23	0.25	0.19	191
Jumping	0.46	0.46	0.27	188
Man	0.87	0.87	1.00	115
Vase	0.56	0.56	0.63	160

2: **HOG + SVM**

Performance on Vase video goes down because of the large difference in pixels between the object and the background. So, the pixel features perform really well.

Example of the deer now with HOG: <u>link</u>

3. Selective Search

	Average Overlap	Success AUC	MAP	Time per Video (s)
Car4	0.65	0.65	0.92	44
Deer	0.66	0.66	0.67	48
Dancer2	0.76	0.77	0.95	46
Bolt2	0.01	0.05	0.01	42
Fish	0.80	0.81	0.88	90
Human8	0.20	0.21	0.10	90
Jumping	0.42	0.42	0.24	82
Man	0.83	0.87	1.00	15
Vase	0.56	0.56	0.61	53

4. Spatial Priors

1. Size Delta

The object doesn't change in size too much between consecutive frames. So, my integrator checks and rejects boxes that differ in size from the previous detections.

2. Overlap Threshold

Similarly, my integrator checks and only considers detections that have an overlap with previous detections. Prevents detections from jumping around.

Improved results with the Deer: <u>link</u>

5. RCNN Person Detector

Hog Failure on Human8: <u>link</u>

RCNN performs better on Human8: <u>link</u>

Perfect Example with Dancer2: <u>link</u>

6. Generalizing Detections

What happens if we don't warp our positive detection examples?

Without warps: <u>link</u>

With warps: link

Random Musing Project 1 Segmentation Oversegmentation Project 2 Tracking Selective Search Project 3 **RCNN**

Project 2: TLD

Kelsie Zhao

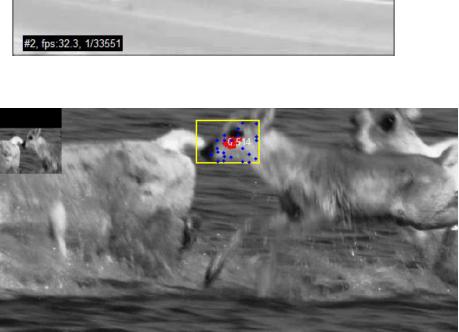
Contents

Results

Some Problems

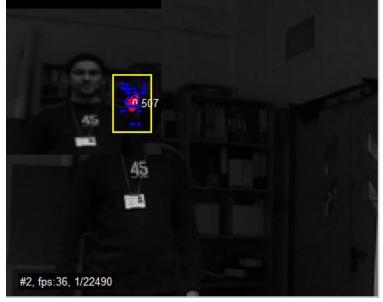
Extensions

Results


- Fair ones
 - > Car4: average-overlap=0.74, map=0.97
 - > Dancer2: average-overlap=0.78, map=1.00
 - > Fish: average-overlap=0.88, map=1.00

Slow motion, low appearance variance

- Unsatisfactory ones: Human8, Bolt2
 - Bounding box not following


Fast motion or Sudden change of appearance

#2, fps:32.7, 1/56539

Some Problems

- NN classifier produces probability always around 0.5
 - > For positives, 0.5043; for negatives, 0.4902
- Cannot handle fast motion
 - Scan a larger region vs Speed
- Cannot handle fast illumination variances
 - > Fern might not handle uneven illumination change

Extensions:

- Detection Strategy
 - Run Classifiers on bounding boxes within a region of the last bounding box
- Priori for detection
 - > Penalize the confidences of the detected bounding boxes which experienced a sudden change in bounding box size.
- HOG & SVM
 - Use HOG feature and SVM in place of Fern + NN

Thank You! Q&A

TLD tracking project

Meng Wu

Main components

- KL tracker -> direction
- SVM classifier -> robustness
- NN classifier -> confirmation
- Integrator
 - 1. SVM rejects wrong detections
 - 2. score = NN conf + SVM score + overlap * KL conf

Parameter setting

• Patch size: 24 x 24

Pattern size: 24 x 24

• SVM:

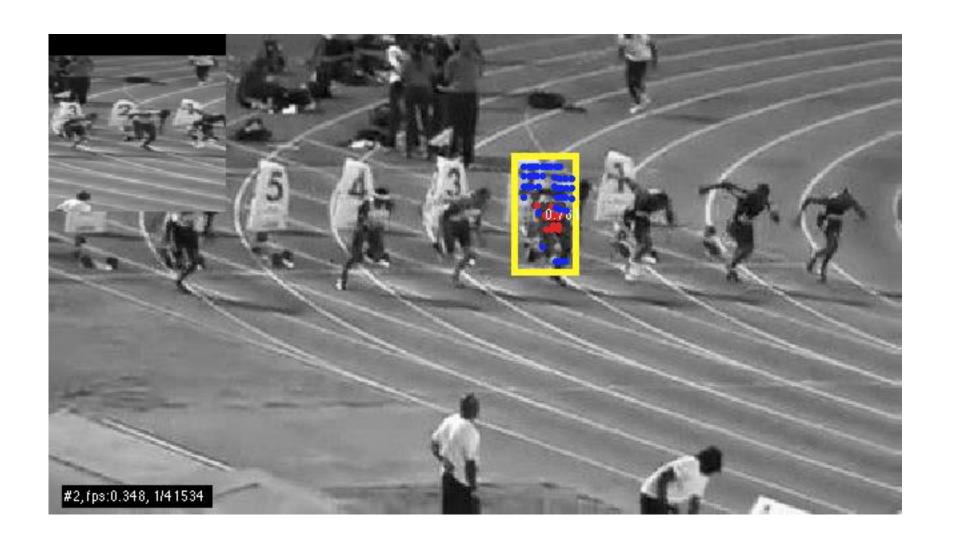
Linear kernel without auto-scale Average 50 – 80 supporting vectors

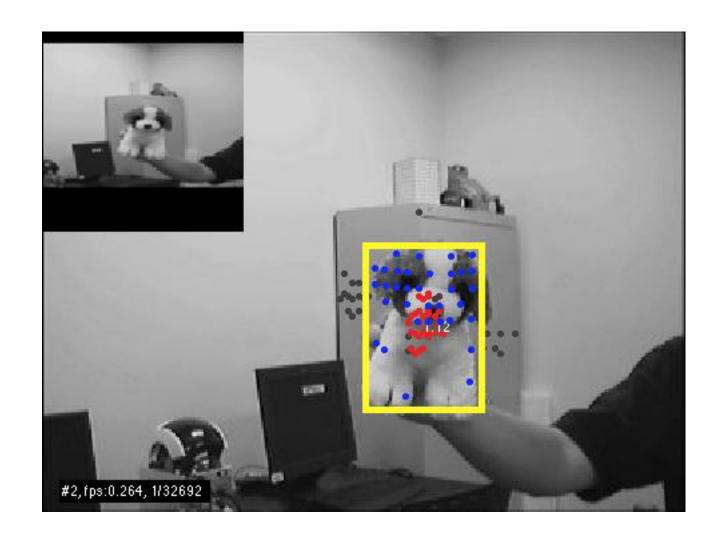
200 Positive/Negative Examples

Always keep the original examples

Keep positive examples most away from negative examples

Randomly replace 100 with new negative examples


Results


	Bolt2	Car4	Deer	Dancer2	Fish
Average overlap	0.601	0.712	0.690	0.764	0.668
Average precision	0.602	0.712	0.686	0.761	0.667
Мар	0.765	0.752	0.87	1.00	0.913
Frame rate	0.46	0.35	0.35	0.16	0.23

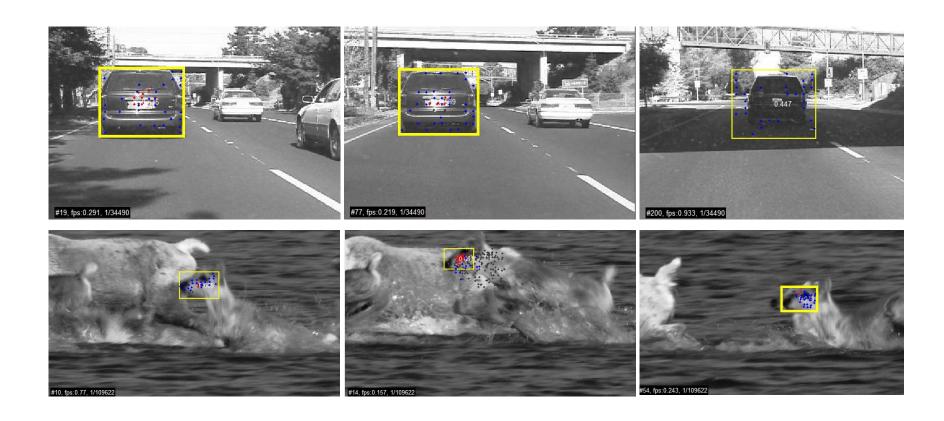
Because adding the SVM scores, the average precision bad.

Some observations

- Important to keep the original positive examples
- Resizing patches takes most of time
- Reduce number of bonding boxes
 - Search in the neighborhood
 - Similar sizes
- Only update the NN datasets when you are sure

TLD Implementation and Evaluation

Lyne P. Tchapmi
Stanford University/CS231B


Building Blocks

- Classifier
 - FERN
 - SVM
- Features
 - ZMUV
 - **–** BRIEF-16
 - BRIEF-32
- Integrator
- Pattern generator

Evaluation

1						
Sequence	SVM+BRIEF-32	SVM+BRIEF-16	SVM+ZMUV	FERN+BRIEF-16	FERN+BRIEF-32	FERN+ZMUV
Bolt2	0.01/0.01	0.02/0.01	0.01/0.00	0.02/0.01	0.02/0.00	0.01/0.00
Car4	0.63/0.67	0.59/0.56	0.76/1.00	0.71/1.00	0.79/1.00	0.79/0.98
Dancer2	0.66/0.92	0.63/0.92	0.58/0.71	0.70/1.00	0.63/0.97	0.62/0.75
Deer	0.29/0.10	0.04/0.03	0.60/0.82	0.11/0.03	0.17/0.06	0.68/0.91
Fish	0.57/0.42	0.58/0.77	0.83/1.00	0.49/0.23	0.44/0.11	0.74/1.00
Human8	0.13/0.10	0.15/0.03	0.06/0.01	0.12/0.02	0.10/0.06	0.09/0.02
Jumping	0.12/0.02	0.17/0.04	0.23/0.15	0.27/0.13	0.10/0.07	0.23/0.15
Man	0.85/1.00	0.87/1.00	0.80/1.00	0.45/0.07	0.53/0.18	0.67/1.00
Vase	0.34/0.11	0.54/0.33	0.48/0.25	0.44/0.22	0.32/0.07	0.51/0.31

FERN+ZMUV

FERN+ZMUV

