ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Presented by Tugce Tasci, Kyunghee Kim

05/18/2015

Outline

- Goal
- DataSet
- Architecture of the Network
- Reducing overfitting
- Learning
- Results
- Discussion

Goal

	leopard
1000	leopard
100	jaguar
	cheetah
	snow leopard
	Egyptian cat

ImageNet

- Over 15M labeled high resolution images
- Roughly 22K categories
- Collected from web and labeled by Amazon Mechanical Turk

http://image-net.org/

ILSVRC

- Annual competition of image classification at large scale
- 1.2M images in 1K categories
- Classification: make 5 guesses about the image label

EntleBucher

Appenzeller

Convolutional Neural Networks

- Model with a large learning capacity
- Prior knowledge to compensate all data we do not have

ILSVRC

ImageNet Classification error throughout years and groups

Li Fei-Fei: ImageNet Large Scale Visual Recognition Challenge, 2014 http://image-net.org/

SuperVision (SV)

Image classification with deep convolutional neural networks

- 7 hidden "weight" layers
- 650K neurons
- 60M parameters
- 630M connections

- Rectified Linear Units, overlapping pooling, dropout trick
- Randomly extracted 224x224 patches for more data

http://image-net.org/challenges/LSVRC/2012/supervision.pdf

3 Fully Connected Layers

Layer 1 (Convolutional)

- Images: 227x227x3
- F (receptive field size): 11
- S (stride) = 4
- Conv layer output: 55x55x96

Layer 1 (Convolutional)

- 55*55*96 = 290,400 neurons
- each has 11*11*3 = 363 weights and 1 bias
- 290400 * 364 = 105,705,600 paramaters on the first layer of the AlexNet alone!

RELU Nonlinearity

• Standard way to model a neuron f(x) = tanh(x) or $f(x) = (I + e^{-x})^{-I}$

Very slow to train

• Non-saturating nonlinearity (RELU) f(x) = max(o, x)

RELU Nonlinearity

A 4 layer CNN with ReLUs (solid line) converges six times faster than an equivalent network with tanh neurons (dashed line) on CIFAR-10 dataset

Training on Multiple GPUs

Training on Multiple GPUs

Top-1 and Top-5 error rates decreases by 1.7% & 1.2% respectively, comparing to the net trained with one GPU and half neurons!!

Overlaping Pooling

Response normalization layers

Local Response Normalization

- No need to input normalization with ReLUs.
- But still the following local normalization scheme helps generalization.

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2}\right)^{\beta}$$
Response-
normalized
activity of a neuron computed
by applying kernel I at position
(x,y) and then applying the ReLU
nonlinearity

• Response normalization reduces top-1 and top-5 error rates by 1.4% and 1.2%, respectively.

Overlaping Pooling

• Traditional pooling (s = z)

- $s < z \rightarrow$ overlapping pooling
- top-1 and top-5 error rates decrease by 0.4% and 0.3%, respectively, compared to the non-overlapping scheme s = 2, z = 2

Architecture Overview

Outline

- Introduction
- DataSet
- Architecture of the Network
- Reducing overfitting
- Learning
- Results
- Discussion

Data Augmentation

60 million parameters, 650,000 neurons
 → Overfits a lot.

• Crop 224x224 patches (and their horizontal reflections.)

Data Augmentation

• At test time, average the predictions on the 10 patches.

• Softmax

$$L = \frac{1}{N} \sum_{i} -\log \left(\frac{e^{f_{y_j}}}{\sum_{j} e^{f_j}} \right) + \lambda \sum_{k} \sum_{l} W_{k,l}^2$$

$$j = 1...1000$$

$$P(y_i \mid x_i; W) \text{ Likelihood}$$
• No need to calibrate to average the predictions over 10 patches.
$$cf. \text{ SVM}$$

٦

$$L = \frac{1}{N} \sum_{i} \sum_{j \neq y_i} \left[\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \Delta) + \lambda \sum_{k} \sum_{l} W_{k,l}^2 \right]$$

Slide credit from Stanford CS231N Lecture 3

Data Augmentation

• Change the intensity of RGB channels

$$I_{xy} = [I_{xy}^{R}, I_{xy}^{G}, I_{xy}^{B}]^{T}$$

add multiples of principle components
$$[\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}][\alpha_{1}\lambda_{1}, \alpha_{2}\lambda_{2}, \alpha_{3}\lambda_{3}]^{T}$$
$$\alpha_{i} \sim N(0, 0.1)$$

Reducing Overfitting Dropout

Standard Neural Net

- With probability 0.5
- last two 4096 fully-connected layers.

After applying dropout.

Stochastic Gradient Descent Learning

Momentum Update

Batch size: 128

 The training took 5 to 6 days on two NVIDIA GTX 580 3GB GPUs.

Results: ILSVRC-2010

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best resultsachieved by others.

Results: ILSVRC-2012

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

96 Convolutional Kernels

- 11 x 11 x 3 size kernels.
- top 48 kernels on GPU 1 : color-agnostic
- bottom 48 kernels on GPU 2 : color-specific.

Why?

Eight ILSVRC-2010 test images

DIACK WIGOW	lifeboat		go-kart		Jaguar
cockroach	amphibian		moped		cheetah
tick	fireboat		bumper car	Г	snow leopard
starfish	drilling platform	\square	golfcart		Egyptian cat

grille		mushroom	cherry	Madagascar cat		
	convertible	agaric	dalmatian		squirrel monkey	
	grille	mushroom	grape		spider monkey	
	pickup	jelly fungus	elderberry		titi	
	beach wagon	gill fungus	ffordshire bullterrier		indri	
	fire engine	dead-man's-fingers	currant	T	howler monkey	

Five ILSVRC-2010 test images

The output from the last 4096 fully-connected layer : 4096 dimensional feature.

Discussion

• Depth is really important.

removing a single convolutional layer degrades the performance.

K. Simonyan, A. Zisserman.

Very Deep Convolutional Networks for Large-Scale Image Recognition. Technical report, 2014.

→ 16-layer model, 19-layer model. 7.3% top-5 test error on ILSVRC-2012

Discussion

• Still have many orders of magnitude to go in order to match the infero-temporal(IT) pathway of the human visual system.

Discussion

• Classification on video.

video sequences provide temporal structure missing in static images.

K. Simonyan, A. Zisserman.

Two-Stream Convolutional Networks for Action Recognition in Videos. NIPS 2014.

 \rightarrow separating two pathways for spatial and temporal networks analogous to the ventral and dorsal pathways.