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Image Segmentation

@ Goal: identify groups of pixels that go together
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Gestalt Theory

@ Gestalt: whole or group

» The whole is greater than the sum of its parts f(: \

> Relationships between parts can yield new Jg/
properties/features
@ Psychologists identified series of factors that predispose )(
set of elements to be grouped (by human visual system)

Max Wertheimer (1880-1943)

| stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses and
nuances of color. Do | have "327"7 No. | have sky, house,
and trees.

Untersuchungen zur Lehre von der Gestalt,

Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/
forms.htm
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Gestalt Theory
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@ These factors make intuitive sense, but are very difficult to translate

into algorithms.
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Segmentation as clustering

@ Pixels are points in a high dimensional space

» color: 3d
» color+location:5d

@ Cluster pixels into segment
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K-Means clustering
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K-Means clustering

@ Randomly initialize K cluster centers, ci, ..., ck
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K-Means clustering
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@ Randomly initialize K cluster centers, ci, ..., ck
@ Given cluster centers, determine points in each cluster
» For each point p, find the closest ¢;. Put p into cluster i.
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K-Means clustering
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@ Randomly initialize K cluster centers, ci, ..., ck
@ Given cluster centers, determine points in each cluster

» For each point p, find the closest ¢;. Put p into cluster i.
© Given points in each cluster, solve for ¢;

> Set ¢; to be the mean of points in cluster i
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K-Means clustering
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@ Randomly initialize K cluster centers, ci, ..., ck

@ Given cluster centers, determine points in each cluster

» For each point p, find the closest ¢;. Put p into cluster i.
© Given points in each cluster, solve for ¢;

> Set ¢; to be the mean of points in cluster i

@ If ¢; have changed, repeat Step 2
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K-Means clustering
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Expectation Maximization (EM)

®
L L0

e Goal
» Find blob parameters 6 that maximize the likelihood function:

P(data|f) = H P(x|6)

@ Approach:
@ E-step: given current guess of blobs, compute ownership of each point
@ M-step: given ownership probabilities, update blobs to maximize
likelihood function
© Repeat until convergence
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Expectation Maximization (EM)
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Mean-Shift Algorithm

] mﬂﬂHN W M Wﬂﬂ
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Iterative Mode search
@ Initialize random seed, and window W
@ Calculate center of gravity (the "mean”) of W: > _,,, xH(x)
© Shift the search window to the mean
@ Repeat Step 2 until convergence
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Mean-Shift Segmentation

Iterative Mode search

@ Find features (color, gradients, texture, etc)

@ Initialize windows at individual pixel locations

@ Perform mean shift for each window until convergence

@ Merge windows that end up near the same “peak” or mode
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Expectation Maximization (EM)
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Back to Image Segmentation

@ Goal: identify groups of pixels that go together
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Back to Image Segmentation

@ Goal: identify groups of pixels that go together
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@ Up to now, we have focused on ways to group pixels into image
segments based on their appearance...

» Segmentation as clustering.
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Back to Image Segmentation

@ Goal: identify groups of pixels that go together

,,/,,,

@ Up to now, we have focused on ways to group pixels into image
segments based on their appearance...

» Segmentation as clustering.
@ We also want to enforce region constraints.

» Spatial consistency
» Smooth borders
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What we will learn today?

@ Graph theoretic segmentation
» Normalized Cuts
» Using texture features
@ Segmentation as Energy Minimization

» Markov Random Fields (MRF) / Conditional Random Fields (CRF)
» Graph cuts for image segmentation
» Applications
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What we will learn today?

@ Graph theoretic segmentation

» Normalized Cuts
» Using texture features
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Images as Graphs

@ (Fully-Connected) Graph
» Node (vertex) for every pixel
» Link between (every) pair of pixels, (p,q)
> Affinity weight w,q for each link (edge)
* Wy, measures similarity
* Inverse proportional to distance (difference in color and position)

Slide Credit: Steve Seitz
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Segmentation by Graph Cuts

@ Break Graph into Segments (cliques)

» Delete links that cross between segments

» Easiest to break links that low similarity (low affinity weight)
* Similar pixels should be in the same segment
* Dissimilar pixels should be if different segments

Slide Credit: Steve Seitz
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Measuring Affinity

@ Distance )
exp(—5 5 x — yI)

Source: Forsyth & Ponce
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Measuring Affinity
@ Distance 1
- . 2
exp(— 5 5lIx = ¥I)

@ Intensity
1 2
exp(—5 5 11(x) = 1(V)II¥)

Source: Forsyth & Ponce
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Measuring Affinity

@ Distance 1
exp(— 55 x — v

@ Intensity

xp(~ 53 1110) ~ 10)IP)

o Color 1
exp(— 55 distlc(x),c(¥))?)

suitable color distance

Source: Forsyth & Ponce
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Measuring Affinity

@ Distance 1
exp(— 55 x — v

@ Intensity

xp(~ 53 1110) ~ 10)IP)

o Color 1
exp(— 55 distlc(x),c(¥))?)

suitable color distance

@ Texture 1
L _ 2
exp(— 551 F(x) = F(y) )

Filter output

Source: Forsyth & Ponce
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Scale Affects Affinity

Small o: group only nearby points
Large o: group far-away points

20 0 60 80
2

distance’

small o

Slide Credit: Svetlana Lazebnik
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Graph Cut: Using Eigenvalues

o Affinity matrix W

Philipp Krahenbiihl (Stanford University) Segmentation April 24, 2013 20 / 63



Graph Cut: Using Eigenvalues

o Affinity matrix W
e Extract a single good cluster (v,)
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Graph Cut: Using Eigenvalues

o Affinity matrix W
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> v,(/): probability of point i belonging to the cluster
» Elements have high affinity with each other

-
v, Wy,
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Graph Cut: Using Eigenvalues

o Affinity matrix W
e Extract a single good cluster (v,)

> v,(/): probability of point i belonging to the cluster
» Elements have high affinity with each other

-
v, Wy,

» Constraint v,/ v, = 1
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Graph Cut: Using Eigenvalues

o Affinity matrix W
e Extract a single good cluster (v,)

> v,(/): probability of point i belonging to the cluster
» Elements have high affinity with each other

-
v, Wy,

» Constraint v,/ v, = 1
* Prevents v, — 0o

o Constraint objective

v, Wv, — M1 — v, vi)
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Graph Cut: Using Eigenvalues

o Affinity matrix W
e Extract a single good cluster (v,)

> v,(/): probability of point i belonging to the cluster
» Elements have high affinity with each other

-
v, Wy,

» Constraint v,/ v, = 1
* Prevents v, — 0o

o Constraint objective

v, Wv, — M1 — v, vi)
@ Reduces to Eigenvalue problem

v, W =\v,
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Graph Cut: Using Eigenvalues
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix

@ Compute the eigenvalues and eigenvectors of the affinity matrix
© Until there are sufficient clusters
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix

@ Compute the eigenvalues and eigenvectors of the affinity matrix
© Until there are sufficient clusters

> Take the eigenvector corresponding to the largest unprocessed eigenvalue
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix

@ Compute the eigenvalues and eigenvectors of the affinity matrix
© Until there are sufficient clusters

> Take the eigenvector corresponding to the largest unprocessed eigenvalue
> zero all components corresponding to elements that have already been
clustered
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix
@ Compute the eigenvalues and eigenvectors of the affinity matrix

© Until there are sufficient clusters
> Take the eigenvector corresponding to the largest unprocessed eigenvalue
> zero all components corresponding to elements that have already been
clustered
> threshold the remaining components to determine which element belongs to
this cluster,
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix
@ Compute the eigenvalues and eigenvectors of the affinity matrix

© Until there are sufficient clusters

> Take the eigenvector corresponding to the largest unprocessed eigenvalue

> zero all components corresponding to elements that have already been
clustered

> threshold the remaining components to determine which element belongs to
this cluster,

* choose a threshold by clustering the components, or using a threshold
fixed in advance.
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Clustering by Graph Eigenvectors

@ Construct an affinity matrix

@ Compute the eigenvalues and eigenvectors of the affinity matrix

© Until there are sufficient clusters

> Take the eigenvector corresponding to the largest unprocessed eigenvalue

> zero all components corresponding to elements that have already been
clustered

> threshold the remaining components to determine which element belongs to
this cluster,

* choose a threshold by clustering the components, or using a threshold
fixed in advance.

> If all elements have been accounted for, there are sufficient clusters: end
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Graph Cut: Using Eigenvalues

Effects of the scaling
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Graph Cut

@ Find set of edges whose removal makes graph disconnected
@ Cost of a cut

> Sum of weights of cut edges: cut(A, B) =} 4 qeB Wpq
@ Graph cut gives us a segmentation

» What is a “good” graph cut and how do we find one?

Slide Credit: Steve Seitz
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Graph Cut

Here, the cut is nicely
defined by the block-diagonal
structure of the affinity matrix.

= How can this be generalized?

Image Source: Forsyth & Ponce
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Minimum Cut

@ We can do segmentation by finding the minimum cut in a graph
> a minimum cut of a graph is a cut whose cutset has the smallest
affinity.
» Efficient algorithms exist for doing this (max-flow)
o Drawback
» Weight of cut proportional to number of edges in the cut
» Minimum cut tends to cut off very small, isolated components

. \
Cuts with

@
. ‘ lesser weight
@

than the

‘ ideal cut

Ideal Cut

Slide Credit: Khurram Hassan-Shafique
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Normalized Cut (NCut)

A minimum cut penalizes large segments

This can be fixed by normalizing for size of segments
@ The normalized cut cost is:
cut(A, B) cut(A, B)
assoc(A, V)  assoc(B, V)
1 1

= cut(A, B) +
’ ZpGA,q Wp,q ZqEB,p Wp,q

Neut(A, B) =

assoc(A, V) = sum of weights of all edges in V that touch A

@ The exact solution is NP-hard but an approximation can be computed
by solving a generalized eigenvalue problem.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000
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Interpretation as a Dynamical System

@ Treat the links as springs and shake the system

» Elasticity proportional to cost
» Vibration “modes” correspond to segments
* Can compute these by solving a generalized eigenvector problem

Slide Credit: Steve Seitz
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NCuts as a Generalized Eigenvalue Problem

@ Definitions
» W: the affinity matrix
» D: diagonal matrix, D; = Zj W
» x: a vector in {—1,1}",

@ Rewriting the Normalized Cut in matrix form

cut(A, B) cut(A, B)
assoc(A, V)  assoc(B, V)

Necut(A, B) =

Slide Credit: Jitentra Malik
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Some more math...

Slide Credit: Jitentra Malik
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NCuts as a Generalized Eigenvalue Problem

o After simplifications, we get

y'(D— W)y

Ncut(A, B) =

Hard as a discrete
problem

with y; € {—1,b} and y ' D1 =0

Slide Credit: Jitentra Malik
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NCuts as a Generalized Eigenvalue Problem

o After simplifications, we get

-
Ncut(A, B) = y(DTDW)y Hard as a discrete
nd problem
with y; € {=1,b} and y'D1 =0 I
@ This is the Rayleigh Quotient
> Solution given by the generalized eigenvalue Continuous
problem approximation

(D — W)y = ADy

Slide Credit: Jitentra Malik
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NCuts as a Generalized Eigenvalue Problem

o After simplifications, we get

-
Ncut(A, B) = y(DTDW)y Hard as a discrete
nd problem
with y; € {=1,b} and y'D1 =0 I
@ This is the Rayleigh Quotient
> Solution given by the generalized eigenvalue Continuous
problem approximation

(D — W)y = ADy

@ Subtleties
» Optimal solution is second smallest eigenvector
> Gives continuous result—must convert into
discrete values of y

Slide Credit: Jitentra Malik
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NCuts Example

Smallest eigenvectors S
NCuts Segments u " Image source: Shi & Malik
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NCuts Example

@ Problem: eigenvectors take on continuous values
» How to choose the splitting point to binarize the image?

of —_—

20 40 0 0 100 120

Image Eigenvector NCut scores

@ Possible procedures

» Pick a constant value (0, or 0.5).

» Pick the median value as splitting point.

» Look for the splitting point that has the minimum NCut value:
@ Choose n possible splitting points.
@ Compute NCut value.
© Pick minimum.
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NCuts: Overall Procedure

@ Construct a weighted graph G = (V, E) from an image.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/
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NCuts: Overall Procedure

@ Construct a weighted graph G = (V, E) from an image.

@ Connect each pair of pixels, and assign graph edge weights
Wi;j = Prob. that i and j belong to the same region.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/
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NCuts: Overall Procedure

@ Construct a weighted graph G = (V, E) from an image.

@ Connect each pair of pixels, and assign graph edge weights
Wi;j = Prob. that i and j belong to the same region.

@ Solve (D — W)y = ADy for the smallest few eigenvectors. This yields
a continuous solution.
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@ Construct a weighted graph G = (V, E) from an image.

@ Connect each pair of pixels, and assign graph edge weights
Wi;j = Prob. that i and j belong to the same region.

@ Solve (D — W)y = ADy for the smallest few eigenvectors. This yields
a continuous solution.

© Threshold eigenvectors to get a discrete cut
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NCuts: Overall Procedure

@ Construct a weighted graph G = (V, E) from an image.

@ Connect each pair of pixels, and assign graph edge weights
Wi;j = Prob. that i and j belong to the same region.

@ Solve (D — W)y = ADy for the smallest few eigenvectors. This yields
a continuous solution.

© Threshold eigenvectors to get a discrete cut
» This is where the approximation is made (we're not solving NP).

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/
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NCuts: Overall Procedure

@ Construct a weighted graph G = (V, E) from an image.

@ Connect each pair of pixels, and assign graph edge weights
Wi;j = Prob. that i and j belong to the same region.
@ Solve (D — W)y = ADy for the smallest few eigenvectors. This yields
a continuous solution.
© Threshold eigenvectors to get a discrete cut
» This is where the approximation is made (we're not solving NP).

© Recursively subdivide if NCut value is below a pre-specified value.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/
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NCuts Results

Image Source: Shi & Malik
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Using Texture Features for Segmentation

@ Texture descriptor is vector of filter bank outputs

J. Malik, S. Belongie, T. Leung and J. Shi.

“Contour and Texture Analysis for Image Segmentation”. [JCV 43(1),7-27,2001
[m] = =
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Using Texture Features for Segmentation

@ Texture descriptor is vector of filter
bank outputs.

@ Textons are found by clustering.
» Bag of words

Slide Credit: Svetlana Lazebnik
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Using Texture Features for Segmentation

@ Texture descriptor is vector of filter

bank outputs. .
@ Textons are found by clustering. m - _"h ‘
» Bag of words % : (;%2
o Affinities are given by similarities of *a
texton histograms over windows /\\% ‘ s ‘
given by the “local scale” of the
texture.

Slide Credit: Svetlana Lazebnik
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Results with Color and Texture
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Summary: Normalized Cuts

@ Pros:
» Generic framework, flexible to choice of function
that computes weights ( “affinities” ) between nodes
» Does not require any model of the data
distribution
e Cons:
» Time and memory complexity can be high

* Dense, highly connected graphs — many affinity
computations
* Solving eigenvalue problem for each cut

» Preference for balanced partitions

* |If a region is uniform, NCuts will find the modes
of vibration of the image dimensions

Slide Credit: Kristen Grauman
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What we will learn today?

@ Graph theoretic segmentation

» Normalized Cuts
» Using texture features
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What we will learn today?

@ Segmentation as Energy Minimization

» Markov Random Fields (MRF) / Conditional Random Fields (CRF)
» Graph cuts for image segmentation
» Applications
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Markov Random Fields

@ Allow rich probabilistic models for images
@ But built in a local, modular way
» Learn/model local effects, get global effects out

Observed evidence

Hidden “true states™

Neighborhood relations

Slide Credit: William Freeman
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MRF Nodes as Pixels

Reconstruction
from MRF modeling

Original image

Q D pixel neighborhood
® ) statistics
O
@‘@

Slide Credit: Bastian Leibe
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MRF Nodes as Patches

Image patches

Scene patches

Slide Credit: William Freeman
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Network Joint Probability

P(Tfy) :Hq)(xi’yi)HlP(xﬂxj)

Scene Image-scene Scene-scene
compatibility compatibility
Image function function
Local Neighboring
observations scene nodes

Slide Credit: William Freeman
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Energy Formulation

Joint probability

’D(X y ZHCD Xiy Yi HW(XHX_/

Taking the log turns this into an Energy optimization
x,y) =D olxiyi)+ > (xi, %)
i ij

@ This is similar to free-energy problems in statistical mechanics (spin
glass theory). We therefore draw the analogy and call E an energy
function.

© and v are called potentials.
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Energy Formulation

o Energy function

E(va) = Z SO(Xia}/i) +Z ¢(Xia)g)
"' unary term U pairwise term

o Unary potential ¢
» Encode local information about the given pixel/patch 4,
» How likely is a pixel/patch to belong to a certain class &

(e.g. foreground/background)?

@ Pairwise potential v
» Encode neighborhood information
» How different is a pixel/patch’s label from that of its
neighbor? (e.g. based on intensity/color/texture
difference, edges)

Slide Credit: Bastian Leibe
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Segmentation using MRFs/CRFs

e Boykov and Jolly (2001)

E(Xay) = ZSD(thI') + Z¢(Xi7)<j)
o Variables : Y
> x;: Binary variable

* foreground/background
> y;: Annotation

* foreground/background/empty
@ Unary term

> (X, yi) = Klxi # il

» Pay a penalty for disregarding the
annotation
o Pairwise term

> (X, x;) = [xi # xj]w

» Encourage smooth annotations

» wj affinity between pixels i and j
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Efficient solutions

@ Grid structured random fields

» Efficient solution using
Maxflow/Mincut

» Optimal solution for binary labeling

» Boykov & Kolmogorov, “An
Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision”, PAMI
26(9): 1124-1137 (2004)

o Fully connected models

» Efficient solution using convolution
mean-field

» Krahenbihl and Koltun, “Efficient
Inference in Fully-Connected CRFs
with Gaussian edge potentials”, NIPS
2011
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GrabCut: Interactive Foreground Extraction

Slides credit:
Carsten Rother
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What GrabCut Does

Magic Wand

Intelligent Scissors GrabCut
(Adobe, 2002) Mortensen and Barrett (1995)
User o
Input
Result

Regions

Boundary

Regions & Boundary
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GrabCut

@ Energy function

E(x,k,01) = o(xi, ki, 0lz) + > 1(xi, x|z, )
i ij

@ Variables
x; € {0,1}: Foreground/background label
ki € {0,..., K}: Gaussian mixture component
6: Model parameters (GMM parameters)
I ={z,...,zy}: RGB Image
e Unary term o(x;, ki, 0|z;)
» Gaussian mixture model (log of a GMM)

v

v vy

o Pairwise term

V(xi, xjlzi, ) = [xi # x]exp(—Bllzi — z]|?)
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GrabCut - Unary term

@ Gaussian Mixture Model

P(zi|xi, 8) ZT[‘ xi, K)p(zk|k, )
» Hard to optimize (3>_,) k
@ Tractable solution
» Assign each variable x; a single mixture component k;

P(zi|xi, ki, 0) = 7(xi, ki) p(zx| ki, @)
» Optimize over k;
@ Unary term

©o(xi, ki, 0)z;) = — log m(x;, ki) — log p(z«| ki, 0)

1
— log 7(x;, ki) + 5 log | X (k;)|
1

+ 52— (ki) TE(k) (@i — (k)
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GrabCut - Unary term

@ Unary term

Ui, ki, B121) =~ log (. ki) + - log [7(k)
+ 5@ — (k) Z () (@ — (k)

@ Model parameters

0={ m(x ki) , plk),Z(ki) }

mixture weight mean and variance
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GrabCut - Iterative optimization

@ Initialize Mixture Models
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GrabCut - Iterative optimization

@ Initialize Mixture Models
@ Assign GMM components

ki = arg min <,0(Xi, ki, 9|Zi)
k Foreground

7 4 ""?Background
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GrabCut - Iterative optimization

@ Initialize Mixture Models
@ Assign GMM components

ki = arg min o(xi, ki, 0z;)
© Learn GMM parameters

6 = argmin Z ©(xi, ki, 0z;)

1
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GrabCut - Iterative optimization

@ Initialize Mixture Models
@ Assign GMM components

ki = arg min o(xi, ki, 0z;)
© Learn GMM parameters

6 = argmin Z ©(xi, ki, 0z;)

1

@ Estimate segmentation using mincut

x = argmin E(x, k, 0|1)
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GrabCut - Iterative optimization

@ Initialize Mixture Models
@ Assign GMM components

ki = arg min o(xi, ki, 0z;)
© Learn GMM parameters

6 = argmin Z ©(xi, ki, 0z;)

1

@ Estimate segmentation using mincut
x = argmin E(x, k, 0|1)

© Repeat from 2 until convergence
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GrabCut - Iterative optimization
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GrabCut - Further editing

Automatic

Segmentation

Automatic

Segmentation
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GrabCut - More results

... GrabCut completes automatically
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GrabCut - Live demo

@ Included in MS Office 2010
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels

» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels

» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.

o Efficiency trick: Superpixels
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels

» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.

o Efficiency trick: Superpixels

» Group together similar-looking pixels for efficiency of
further processing.
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels
» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.
o Efficiency trick: Superpixels
» Group together similar-looking pixels for efficiency of

further processing.
» Cheap, local oversegmentation
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels

» Even with efficient graph cuts, an MRF formulation

has too many nodes for interactive results.
o Efficiency trick: Superpixels

» Group together similar-looking pixels for efficiency of
further processing.

» Cheap, local oversegmentation

» Important to ensure that superpixels do not cross
boundaries
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels
» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.
o Efficiency trick: Superpixels
» Group together similar-looking pixels for efficiency of
further processing.
» Cheap, local oversegmentation
» Important to ensure that superpixels do not cross
boundaries

@ Several different approaches possible
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels
» Even with efficient graph cuts, an MRF formulation
has too many nodes for interactive results.
o Efficiency trick: Superpixels
» Group together similar-looking pixels for efficiency of
further processing.
» Cheap, local oversegmentation
» Important to ensure that superpixels do not cross
boundaries
@ Several different approaches possible
» Superpixel code available here
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Improving Efficiency of Segmentation

@ Problem: Images contain many pixels

» Even with efficient graph cuts, an MRF formulation

has too many nodes for interactive results.
o Efficiency trick: Superpixels

» Group together similar-looking pixels for efficiency of
further processing.

» Cheap, local oversegmentation

» Important to ensure that superpixels do not cross
boundaries

@ Several different approaches possible

» Superpixel code available here
» http:
//www.cs.sfu.ca/~mori/research/superpixels/
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Summary: Graph Cuts Segmentation

@ Pros

Philipp Krahenbiihl (Stanford University) Segmentation April 24, 2013 62 / 63



Summary: Graph Cuts Segmentation

@ Pros
» Powerful technique, based on probabilistic model (MRF).

Philipp Krahenbiihl (Stanford University) Segmentation April 24, 2013 62 / 63



Summary: Graph Cuts Segmentation

@ Pros

» Powerful technique, based on probabilistic model (MRF).
» Applicable for a wide range of problems.

Philipp Krahenbiihl (Stanford University) Segmentation April 24, 2013 62 / 63



Summary: Graph Cuts Segmentation

@ Pros

» Powerful technique, based on probabilistic model (MRF).
» Applicable for a wide range of problems.
» Very efficient algorithms available for vision problems.

Philipp Krahenbiihl (Stanford University) Segmentation April 24, 2013 62 / 63



Summary: Graph Cuts Segmentation

@ Pros

Powerful technique, based on probabilistic model (MRF).
Applicable for a wide range of problems.

Very efficient algorithms available for vision problems.
Becoming a de-facto standard for many segmentation tasks.

v
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Summary: Graph Cuts Segmentation

@ Pros

» Powerful technique, based on probabilistic model (MRF).
Applicable for a wide range of problems.

Very efficient algorithms available for vision problems.
Becoming a de-facto standard for many segmentation tasks.

v vy

o Cons/Issues
» Graph cuts can only solve a limited class of models

* Submodular energy functions
* Can capture only part of the expressiveness of MRFs

» Only approximate algorithms available for multi-label case
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What we will learn today?

@ Graph theoretic segmentation
» Normalized Cuts
» Using texture features
@ Segmentation as Energy Minimization

» Markov Random Fields (MRF) / Conditional Random Fields (CRF)
» Graph cuts for image segmentation
» Applications
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