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Image Segmentation

Goal: identify groups of pixels that go together
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Success Story
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Gestalt Theory

Gestalt: whole or group
I The whole is greater than the sum of its parts
I Relationships between parts can yield new

properties/features

Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

Max Wertheimer (1880-1943)

I stand at the window and see a house, trees, sky.
Theoretically I might say there were 327 brightnesses and
nuances of color. Do I have ”327”? No. I have sky, house,
and trees.

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/

forms.htm
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Gestalt Theory

These factors make intuitive sense, but are very difficult to translate
into algorithms.
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Segmentation as clustering
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Pixels are points in a high dimensional space
I color: 3d
I color+location:5d

Cluster pixels into segment
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K-Means clustering
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1 Randomly initialize K cluster centers, c1, . . . , ck

2 Given cluster centers, determine points in each cluster
I For each point p, find the closest ci . Put p into cluster i .

3 Given points in each cluster, solve for ci

I Set ci to be the mean of points in cluster i

4 If ci have changed, repeat Step 2
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Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 7 / 63



K-Means clustering

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 Randomly initialize K cluster centers, c1, . . . , ck

2 Given cluster centers, determine points in each cluster
I For each point p, find the closest ci . Put p into cluster i .

3 Given points in each cluster, solve for ci

I Set ci to be the mean of points in cluster i

4 If ci have changed, repeat Step 2
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K-Means clustering
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Expectation Maximization (EM)

Goal
I Find blob parameters θ that maximize the likelihood function:

P(data|θ) =
∏

x

P(x |θ)

Approach:
1 E-step: given current guess of blobs, compute ownership of each point
2 M-step: given ownership probabilities, update blobs to maximize

likelihood function
3 Repeat until convergence
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Expectation Maximization (EM)
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Mean-Shift Algorithm

Iterative Mode search

1 Initialize random seed, and window W

2 Calculate center of gravity (the “mean”) of W :
∑

x∈W xH(x)

3 Shift the search window to the mean

4 Repeat Step 2 until convergence
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Mean-Shift Segmentation

Iterative Mode search

Find features (color, gradients, texture, etc)

Initialize windows at individual pixel locations

Perform mean shift for each window until convergence

Merge windows that end up near the same “peak” or mode
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Expectation Maximization (EM)
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Back to Image Segmentation

Goal: identify groups of pixels that go together

Up to now, we have focused on ways to group pixels into image
segments based on their appearance...

I Segmentation as clustering.

We also want to enforce region constraints.
I Spatial consistency
I Smooth borders
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Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 14 / 63



What we will learn today?

Graph theoretic segmentation
I Normalized Cuts
I Using texture features

Segmentation as Energy Minimization
I Markov Random Fields (MRF) / Conditional Random Fields (CRF)
I Graph cuts for image segmentation
I Applications
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Images as Graphs

Lecture 8 -Fei-Fei Li

Images as Graphs

• Fully‐connected graph
– Node (vertex) for every pixel
– Link between every pair of pixels, (p,q)
– Affinity weight wpq for each link (edge)

• wpq measures similarity
• Similarity is inversely proportional to difference 

(in color and position…)

q

p

wpq

w

Slide credit: Steve Seitz

19‐Apr‐1113

(Fully-Connected) Graph
I Node (vertex) for every pixel
I Link between (every) pair of pixels, (p,q)
I Affinity weight wpq for each link (edge)

F wpq measures similarity
F Inverse proportional to distance (difference in color and position)

Slide Credit: Steve Seitz
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Segmentation by Graph Cuts

Lecture 8 -Fei-Fei Li

Segmentation by Graph Cuts

• Break Graph into Segments
– Delete links that cross between segments
– Easiest to break links that have low similarity (low weight)

• Similar pixels should be in the same segments
• Dissimilar pixels should be in different segments

w

A B C

Slide credit: Steve Seitz

19‐Apr‐1114

Break Graph into Segments (cliques)
I Delete links that cross between segments
I Easiest to break links that low similarity (low affinity weight)

F Similar pixels should be in the same segment
F Dissimilar pixels should be if different segments

Slide Credit: Steve Seitz
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Measuring Affinity

Distance

exp(− 1

2σ2
‖x − y‖2)

Intensity

exp(− 1

2σ2
‖I (x)− I (y)‖2)

Color

exp(− 1

2σ2
dist(c(x), c(y))2︸ ︷︷ ︸
suitable color distance

)

Texture

exp(− 1

2σ2
‖ f (x)− f (y)︸ ︷︷ ︸

Filter output

‖2)

Source:Forsyth & Ponce
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Scale Affects Affinity

Small σ: group only nearby points
Large σ: group far-away points
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Slide Credit: Svetlana Lazebnik
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Graph Cut: Using Eigenvalues

Affinity matrix W

Extract a single good cluster (vn)
I vn(i): probability of point i belonging to the cluster
I Elements have high affinity with each other

v>
n Wvn

I Constraint v>
n vn = 1

F Prevents vn → ∞

Constraint objective

v>n Wvn − λ(1− v>n vn)

Reduces to Eigenvalue problem

v>n W = λvn

A
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Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 20 / 63



Graph Cut: Using Eigenvalues

Affinity matrix W

Extract a single good cluster (vn)
I vn(i): probability of point i belonging to the cluster
I Elements have high affinity with each other

v>
n Wvn

I Constraint v>
n vn = 1

F Prevents vn → ∞

Constraint objective

v>n Wvn − λ(1− v>n vn)

Reduces to Eigenvalue problem

v>n W = λvn

A
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Graph Cut: Using Eigenvalues
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Clustering by Graph Eigenvectors

1 Construct an affinity matrix

2 Compute the eigenvalues and eigenvectors of the affinity matrix
3 Until there are sufficient clusters

I Take the eigenvector corresponding to the largest unprocessed eigenvalue
I zero all components corresponding to elements that have already been

clustered
I threshold the remaining components to determine which element belongs to

this cluster,

F choose a threshold by clustering the components, or using a threshold
fixed in advance.

I If all elements have been accounted for, there are sufficient clusters: end
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Graph Cut: Using Eigenvalues

Effects of the scaling
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Graph Cut

Lecture 8 -Fei-Fei Li

Graph Cut

• Set of edges whose removal makes a graph 
disconnected

• Cost of a cut 
– Sum of weights of cut edges:

• A graph cut gives us a segmentation
– What is a “good” graph cut and how do we find one?

Slide credit: Steve Seitz

A B

∑
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=
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qpwBAcut
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19‐Apr‐1122

Find set of edges whose removal makes graph disconnected

Cost of a cut
I Sum of weights of cut edges: cut(A,B) =

∑
p∈A,q∈B wpq

Graph cut gives us a segmentation
I What is a “good” graph cut and how do we find one?

Slide Credit: Steve Seitz
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Graph Cut

Lecture 8 -Fei-Fei Li

Graph Cut

Image Source: Forsyth & Ponce

Here, the cut is nicely
defined by the block-diagonal
structure of the affinity matrix.

⇒ How can this be generalized?

19‐Apr‐1123

Image Source:Forsyth & Ponce
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Minimum Cut

We can do segmentation by finding the minimum cut in a graph
I a minimum cut of a graph is a cut whose cutset has the smallest

affinity.
I Efficient algorithms exist for doing this (max-flow)

Drawback
I Weight of cut proportional to number of edges in the cut
I Minimum cut tends to cut off very small, isolated components

Lecture 8 -Fei-Fei Li

Minimum Cut
• We can do segmentation by finding the minimum cut in a graph

– a minimum cut of a graph is a cut whose cutset has the smallest number 
of elements (unweighted case) or smallest sum of weights possible.

– Efficient algorithms exist for doing this

• Drawback: 
– Weight of cut proportional to number of edges in the cut

– Minimum cut tends to cut off very small, isolated components

Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut
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19‐Apr‐1124
Slide Credit:Khurram Hassan-Shafique

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 26 / 63



Normalized Cut (NCut)

A minimum cut penalizes large segments

This can be fixed by normalizing for size of segments

The normalized cut cost is:

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

= cut(A,B)

[
1∑

p∈A,q wp,q
+

1∑
q∈B,p wp,q

]

assoc(A,V ) = sum of weights of all edges in V that touch A

The exact solution is NP-hard but an approximation can be computed
by solving a generalized eigenvalue problem.

J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 27 / 63



Interpretation as a Dynamical System

Lecture 8 -Fei-Fei Li

Interpretation as a Dynamical System

• Treat the links as springs and shake the system
– Elasticity proportional to cost
– Vibration “modes” correspond to segments

• Can compute these by solving a generalized eigenvector problem
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Treat the links as springs and shake the system
I Elasticity proportional to cost
I Vibration “modes” correspond to segments

F Can compute these by solving a generalized eigenvector problem

Slide Credit: Steve Seitz

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 28 / 63



NCuts as a Generalized Eigenvalue Problem

Definitions
I W : the affinity matrix
I D: diagonal matrix, Dii =

∑
j Wij

I x : a vector in {−1, 1}N ,

Rewriting the Normalized Cut in matrix form

Ncut(A,B) =
cut(A,B)

assoc(A,V )
+

cut(A,B)

assoc(B,V )

= . . .

Lecture 8 -Fei-Fei Li

NCuts as a Generalized Eigenvector Problem

• Definitions

• Rewriting Normalized Cut in matrix form:

,: ( , ) ;

: ( , ) ( , );

: {1, 1} , ( ) 1 .

the affinity matrix, 

the diag. matrix, 

a vector in 

i j

j

N

W W i j w

D D i i W i j

x x i i A

=

=

− = ⇔ ∈

∑

Slide credit: Jitendra Malik

0

(A,B) (A,B)(A,B)
(A,V) (B,V)

( , )(1 ) ( )(1 ) (1 ) ( )(1 )                   ;   
1 1 (1 )1 1 ( , )

                   ...

i

T T
x

T T
i

cut cutNCut
assoc assoc

D i ix D W x x D W x k
k D k D D i i

>

= +

+ − + − − −
= + =

−

=

∑
∑

19‐Apr‐1127

Slide Credit: Jitentra Malik
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Some more math...
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Some More Math…
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Slide Credit: Jitentra Malik
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NCuts as a Generalized Eigenvalue Problem

After simplifications, we get

Ncut(A,B) =
y>(D −W )y

y>Dy

with yi ∈ {−1, b} and y>D1 = 0

This is the Rayleigh Quotient
I Solution given by the generalized eigenvalue

problem
(D −W )y = λDy

Subtleties
I Optimal solution is second smallest eigenvector
I Gives continuous result—must convert into

discrete values of y

Hard as a discrete
problem

⇓

Continuous
approximation

Slide Credit: Jitentra Malik
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NCuts Example

Lecture 8 -Fei-Fei Li

NCuts Example

Smallest eigenvectors

Image source: Shi & MalikNCuts segments

19‐Apr‐1130
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NCuts Example

Problem: eigenvectors take on continuous values
I How to choose the splitting point to binarize the image?

Lecture 8 -Fei-Fei Li

Discretization
• Problem: eigenvectors take on continuous values

– How to choose the splitting point to binarize the image?

• Possible procedures 
a) Pick a constant value (0, or 0.5).
b) Pick the median value as splitting point.
c) Look for the splitting point that has the minimum NCut value:

1. Choose n possible splitting points.
2. Compute NCut value.
3. Pick minimum.

Image Eigenvector NCut scores

19‐Apr‐1131

Possible procedures
I Pick a constant value (0, or 0.5).
I Pick the median value as splitting point.
I Look for the splitting point that has the minimum NCut value:

1 Choose n possible splitting points.
2 Compute NCut value.
3 Pick minimum.
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NCuts: Overall Procedure

1 Construct a weighted graph G = (V ,E ) from an image.

2 Connect each pair of pixels, and assign graph edge weights
Wij = Prob. that i and j belong to the same region.

3 Solve (D −W )y = λDy for the smallest few eigenvectors. This yields
a continuous solution.

4 Threshold eigenvectors to get a discrete cut
I This is where the approximation is made (we’re not solving NP).

5 Recursively subdivide if NCut value is below a pre-specified value.

NCuts Matlab code available at
http://www.cis.upenn.edu/~jshi/software/

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 34 / 63
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NCuts Results
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Color Image Segmentation with NCuts

Im
ag

e 
So

ur
ce

: 
Sh

i &
 M

al
ik

19‐Apr‐1133
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Using Texture Features for Segmentation

Texture descriptor is vector of filter bank outputs

Lecture 8 -Fei-Fei Li

Using Texture Features for Segmentation

• Texture descriptor is vector of filter bank outputs

J. Malik, S. Belongie, T. Leung and J. Shi. "Contour and Texture Analysis for Image Segmentation". 
IJCV 43(1),7‐27,2001. 
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J. Malik, S. Belongie, T. Leung and J. Shi.

“Contour and Texture Analysis for Image Segmentation”. IJCV 43(1),7-27,2001
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Using Texture Features for Segmentation

Texture descriptor is vector of filter
bank outputs.

Textons are found by clustering.
I Bag of words
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Using Texture Features for Segmentation

• Texture descriptor is 
vector of filter bank 
outputs.

• Textons are found by 
clustering.

Slide credit: Svetlana Lazebnik

19‐Apr‐1135
Slide Credit: Svetlana Lazebnik
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Using Texture Features for Segmentation

Texture descriptor is vector of filter
bank outputs.

Textons are found by clustering.
I Bag of words

Affinities are given by similarities of
texton histograms over windows
given by the “local scale” of the
texture.
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Using Texture Features for Segmentation

• Texture descriptor is 
vector of filter bank 
outputs.

• Textons are found by 
clustering.

• Affinities are given by 
similarities of texton
histograms over 
windows given by the 
“local scale” of the 
texture .

Slide credit: Svetlana Lazebnik
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Slide Credit: Svetlana Lazebnik
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Results with Color and Texture
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Results with Color & Texture
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Summary: Normalized Cuts

Pros:
I Generic framework, flexible to choice of function

that computes weights (“affinities”) between nodes
I Does not require any model of the data

distribution

Cons:
I Time and memory complexity can be high

F Dense, highly connected graphs → many affinity
computations

F Solving eigenvalue problem for each cut

I Preference for balanced partitions
F If a region is uniform, NCuts will find the modes

of vibration of the image dimensions

Lecture 8 -Fei-Fei Li

Summary: Normalized Cuts
• Pros:

– Generic framework, flexible to choice of function that 
computes weights (“affinities”) between nodes

– Does not require any model of the data distribution

• Cons:
– Time and memory complexity can be high

• Dense, highly connected graphs ⇒many affinity computations
• Solving eigenvalue problem for each cut

– Preference for balanced partitions
• If a region is uniform, NCuts will find the
modes of vibration of the image dimensions

Slide credit: Kristen Grauman

19‐Apr‐1138

Slide Credit:Kristen Grauman
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What we will learn today?

Graph theoretic segmentation
I Normalized Cuts
I Using texture features

Segmentation as Energy Minimization
I Markov Random Fields (MRF) / Conditional Random Fields (CRF)
I Graph cuts for image segmentation
I Applications
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Markov Random Fields

Allow rich probabilistic models for images

But built in a local, modular way
I Learn/model local effects, get global effects out

Lecture 8 -Fei-Fei Li

Markov Random Fields
• Allow rich probabilistic models for images

• But built in a local, modular way
– Learn local effects, get global effects out
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Neighborhood relations
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Slide Credit:William Freeman
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MRF Nodes as Pixels
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MRF Nodes as Pixels

Reconstruction
from MRF modeling
pixel neighborhood 

statistics

Degraded imageOriginal image
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Slide Credit:Bastian Leibe
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MRF Nodes as Patches
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MRF Nodes as Patches

Image

Scene

Image patches

Scene patches

( , )i ix yΦ

( , )i jx xΨ
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Slide Credit:William Freeman
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Network Joint Probability
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Network Joint Probability

,

( , ) ( , ) ( , )i i i j
i i j

P x y x y x x= Φ Ψ∏ ∏
Scene

Image

Image-scene
compatibility 

function

Scene-scene
compatibility 

function

Neighboring
scene nodes

Local
observations
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Slide Credit:William Freeman
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Energy Formulation

Joint probability

P(x , y) =
1

Z

∏
i

Φ(xi , yi )
∏

ij

Ψ(xi , xj )

Taking the log turns this into an Energy optimization

E (x , y) =
∑

i

ϕ(xi , yi ) +
∑

ij

ψ(xi , xj )

This is similar to free-energy problems in statistical mechanics (spin
glass theory). We therefore draw the analogy and call E an energy
function.

ϕ and ψ are called potentials.

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 46 / 63



Energy Formulation

Energy function

E (x , y) =
∑

i

ϕ(xi , yi )︸ ︷︷ ︸
unary term

+
∑

ij

ψ(xi , xj )︸ ︷︷ ︸
pairwise term

Unary potential ϕ
I Encode local information about the given pixel/patch
I How likely is a pixel/patch to belong to a certain class

(e.g. foreground/background)?

Pairwise potential ψ
I Encode neighborhood information
I How different is a pixel/patch’s label from that of its

neighbor? (e.g. based on intensity/color/texture
difference, edges)

Lecture 8 -Fei-Fei Li

Energy Formulation

• Energy function

• Single‐node potentials ϕ
– Encode local information about the given pixel/patch
– How likely is a pixel/patch to belong to a certain class

(e.g. foreground/background)?

• Pairwise potentials ψ
– Encode neighborhood information
– How different is a pixel/patch’s label from that of its neighbor? (e.g. 

based on intensity/color/texture difference, edges)

Pairwise
potentials

Single-node
potentials

( , )i ix yϕ

( , )i jx xψ
,

( , ) ( , ) ( , )i i i j
i i j

E x y x y x xϕ ψ= +∑ ∑     
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Slide Credit:Bastian Leibe
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Segmentation using MRFs/CRFs

Boykov and Jolly (2001)

E (x , y) =
∑

i

ϕ(xi , yi ) +
∑

ij

ψ(xi , xj )

Variables
I xi : Binary variable

F foreground/background

I yi : Annotation
F foreground/background/empty

Unary term
I ϕ(xi , yi ) = K [xi 6= yi ]
I Pay a penalty for disregarding the

annotation

Pairwise term
I ψ(xi , xj ) = [xi 6= xj ]wij

I Encourage smooth annotations
I wij affinity between pixels i and j
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Efficient solutions

Grid structured random fields
I Efficient solution using

Maxflow/Mincut
I Optimal solution for binary labeling
I Boykov & Kolmogorov, “An

Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision”, PAMI
26(9): 1124-1137 (2004)

Fully connected models
I Efficient solution using convolution

mean-field
I Krähenbühl and Koltun, “Efficient

Inference in Fully-Connected CRFs
with Gaussian edge potentials”, NIPS
2011
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GrabCut: Interactive Foreground Extraction
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Slides credit: 
Carsten Rother

GrabCut: Interactive Foreground 
Extraction
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What GrabCut Does

Lecture 8 -Fei-Fei Li

User 
Input

Result

Magic Wand
(Adobe, 2002)

Intelligent Scissors
Mortensen and Barrett (1995)

GrabCut

Regions Boundary Regions & Boundary

19‐Apr‐1148

What GrabCut Does
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GrabCut

Energy function

E (x, k,θ|I) =
∑

i

ϕ(xi , ki ,θ|zi ) +
∑

ij

ψ(xi , xj |zi , zj )

Variables
I xi ∈ {0, 1}: Foreground/background label
I ki ∈ {0, . . . ,K}: Gaussian mixture component
I θ: Model parameters (GMM parameters)
I I = {z1, . . . , zN}: RGB Image

Unary term ϕ(xi , ki ,θ|zi )
I Gaussian mixture model (log of a GMM)

Pairwise term

ψ(xi , xj |zi , zj ) = [xi 6= xj ] exp(−β‖zi − zj‖2)
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GrabCut
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GrabCut
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GrabCut - Unary term

Gaussian Mixture Model

P(zi |xi ,θ) =
∑

k

π(xi , k)p(zk |k ,θ)

I Hard to optimize (
∑

k )

Tractable solution
I Assign each variable xi a single mixture component ki

P(zi |xi , ki ,θ) = π(xi , ki )p(zk |ki ,θ)

I Optimize over ki

Unary term

ϕ(xi , ki ,θ|zi ) =− log π(xi , ki )− log p(zk |ki ,θ)

=− log π(xi , ki ) +
1

2
log |Σ(ki )|

+
1

2
(zi − µ(ki ))>Σ(ki )

−1(zi − µ(ki ))

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 54 / 63



GrabCut - Unary term

Unary term

ϕ(xi , ki ,θ|zi ) =− log π(xi , ki ) +
1

2
log |Σ(ki )|

+
1

2
(zi − µ(ki ))>Σ(ki )

−1(zi − µ(ki ))

Model parameters

θ = { π(xi , ki )︸ ︷︷ ︸
mixture weight

, µ(ki ),Σ(ki )︸ ︷︷ ︸
mean and variance

}
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GrabCut - Iterative optimization

1 Initialize Mixture Models

2 Assign GMM components

ki = arg min
k
ϕ(xi , ki ,θ|zi )

3 Learn GMM parameters

θ = arg min
∑

i

ϕ(xi , ki ,θ|zi )

4 Estimate segmentation using mincut

x = arg minE (x, k,θ|I)

5 Repeat from 2 until convergence

Lecture 8 -Fei-Fei Li

Gaussian Mixture Model for 
Colour Distributions

?
GrabCut – Iterative Optimization

19‐Apr‐1152

Foreground & 
Background

Background

Initialization

,
, arg min ( , , , )U=

θ k
θ k α k θ z

( , , , ) ( , , , ) ( , )E U V= +α k θ z α k θ z α z α: Results; θ: Model; z: Image pixels.

• Update k: GMM component assignment;

• Update θ: Gaussian parameter estimation.
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Gaussian Mixture Model for 
Colour Distributions

?
GrabCut – Iterative Optimization
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Foreground & 
Background

Background

Initialization

,
, arg min ( , , , )U=

θ k
θ k α k θ z

( , , , ) ( , , , ) ( , )E U V= +α k θ z α k θ z α z α: Results; θ: Model; z: Image pixels.

• Update k: GMM component assignment;

• Update θ: Gaussian parameter estimation.
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GrabCut - Iterative optimization

1 Initialize Mixture Models

2 Assign GMM components

ki = arg min
k
ϕ(xi , ki ,θ|zi )

3 Learn GMM parameters

θ = arg min
∑

i

ϕ(xi , ki ,θ|zi )

4 Estimate segmentation using mincut

x = arg minE (x, k,θ|I)

5 Repeat from 2 until convergence
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Gaussian Mixture Model for 
Colour Distributions

Graph cuts to infer 
the segmentation

?
GrabCut – Iterative Optimization
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Foreground & 
Background

Background

Foreground

Background

Initialization

arg min ( , , , )E=
α

α α k θ z

( , , , ) ( , , , ) ( , )E U V= +α k θ z α k θ z α z α: Results; θ: Model; z: Image pixels.

• Only update the pixels that are not intialized.

• Max‐flow/min‐cut optimization
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5 Repeat from 2 until convergence

Lecture 8 -Fei-Fei Li

Gaussian Mixture Model for 
Colour Distributions

?
GrabCut – Iterative Optimization

19‐Apr‐1152

Foreground & 
Background

Background

Initialization

,
, arg min ( , , , )U=

θ k
θ k α k θ z

( , , , ) ( , , , ) ( , )E U V= +α k θ z α k θ z α z α: Results; θ: Model; z: Image pixels.

• Update k: GMM component assignment;

• Update θ: Gaussian parameter estimation.
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GrabCut - Iterative optimization

Lecture 8 -Fei-Fei Li

1 2 3 4

Energy after each IterationResult

19‐Apr‐1154

GrabCut – Iterative Optimization
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GrabCut - Further editing

Lecture 8 -Fei-Fei Li 19‐Apr‐1155

Further Editing

Automatic

Segmentation

Automatic

Segmentation

Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 58 / 63



GrabCut - More results

Lecture 8 -Fei-Fei Li

… GrabCut completes automatically
19‐Apr‐1156

More Results
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GrabCut - Live demo

Included in MS Office 2010
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Improving Efficiency of Segmentation

Problem: Images contain many pixels
I Even with efficient graph cuts, an MRF formulation

has too many nodes for interactive results.

Efficiency trick: Superpixels
I Group together similar-looking pixels for efficiency of

further processing.
I Cheap, local oversegmentation
I Important to ensure that superpixels do not cross

boundaries

Several different approaches possible
I Superpixel code available here
I http:

//www.cs.sfu.ca/~mori/research/superpixels/
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Summary: Graph Cuts Segmentation

Pros
I Powerful technique, based on probabilistic model (MRF).
I Applicable for a wide range of problems.
I Very efficient algorithms available for vision problems.
I Becoming a de-facto standard for many segmentation tasks.

Cons/Issues
I Graph cuts can only solve a limited class of models

F Submodular energy functions
F Can capture only part of the expressiveness of MRFs

I Only approximate algorithms available for multi-label case
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What we will learn today?

Graph theoretic segmentation
I Normalized Cuts
I Using texture features

Segmentation as Energy Minimization
I Markov Random Fields (MRF) / Conditional Random Fields (CRF)
I Graph cuts for image segmentation
I Applications
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