Joint Optimization of Segmentation and Appearance Models

David Mandle, Sameep Tandon

April 29, 2013
Overview

1. Recap: Image Segmentation
2. Optimization Strategy
3. Experimental
Recap: Image Segmentation Problem

Segment an image into foreground and background

Figure: Left: Input image. Middle: Segmentation by EM (GrabCut). Right: Segmentation by the method covered today
Recall Grid Structured Markov Random Field:

\[x_i \in \{0, 1\} \text{ corresponding to foreground/background} \]

Observations \(z_i \). Take to be RGB pixel values

Edge potentials \(\Phi(x_i, z_i) \), \(\Psi(x_i, x_j) \)

Latent variables \(x_i \in \{0, 1\} \) corresponding to foreground/background

Observations \(z_i \). Take to be RGB pixel values

Edge potentials \(\Phi(x_i, z_i) \), \(\Psi(x_i, x_j) \)
Recap: Image Segmentation as Energy Optimization

The Graphical Model encodes the following (unnormalized) probability distribution:

\[P(x, z) = \prod_{i} \Phi(x_i, z_i) \prod_{i,j} \Psi(x_i, x_j) \]
Recap: Image Segmentation as Energy Optimization

Goal: find x to maximize $P(x, z)$ (z is observed)

Taking logs:

$$E(x, z) = \sum_i \phi(x_i, z_i) + \sum_{i, j} \psi(x_i, x_j)$$

 Unary potential $\phi(x_i, z_i)$ encodes how likely it is for a pixel or patch y_i to belong to segmentation x_i.

Pairwise potential $\psi(x_i, x_j)$ encodes neighborhood info about pixel/patch segmentation labels.
Recap: Image Segmentation as Energy Optimization

Goal: find x to maximize $P(x, z)$ (z is observed)

- Taking logs:

$$E(x, z) = \sum_i \phi(x_i, z_i) + \sum_{i,j} \psi(x_i, x_j)$$

Unary potential $\phi(x_i, z_i)$ encodes how likely it is for a pixel or patch y_i to belong to segmentation x_i.

Pairwise potential $\psi(x_i, x_j)$ encodes neighborhood info about pixel/patch segmentation labels.
Recap: Image Segmentation as Energy Optimization

Goal: find x to maximize $P(x, z)$ (z is observed)

- Taking logs:

$$E(x, z) = \sum_i \phi(x_i, z_i) + \sum_{i,j} \psi(x_i, x_j)$$

- Unary potential $\phi(x_i, z_i)$ encodes how likely it is for a pixel or patch y_i to belong to segmentation x_i.

David Mandle, Sameep Tandon (Stanford)
Recap: Image Segmentation as Energy Optimization

Goal: find x to maximize $P(x, z)$ (z is observed)

- Taking logs:

$$E(x, z) = \sum_i \phi(x_i, z_i) + \sum_{i,j} \psi(x_i, x_j)$$

- Unary potential $\phi(x_i, z_i)$ encodes how likely it is for a pixel or patch y_i to belong to segmentation x_i.

- Pairwise potential $\psi(x_i, x_j)$ encodes neighborhood info about pixel/patch segmentation labels.
Recap: GrabCut Model

- **Unary Potentials:** log of Gaussian Mixture Model
 - But to deal with tractability, we assign each x_i to component k_i
 \[
 \phi(x_i, k_i, \theta | z_i) = -\log \pi(x_i, k_i) + \log \mathcal{N}(z_i; \mu(k_i), \Sigma(k_i))
 \]
Recap: GrabCut Model

- **Unary Potentials:** log of Gaussian Mixture Model
 - But to deal with tractability, we assign each x_i to component k_i
 \[\phi(x_i, k_i, \theta | z_i) = -\log \pi(x_i, k_i) + \log N(z_i; \mu(k_i), \Sigma(k_i)) \]

- **Pairwise Potentials:**
 \[\psi(x_i, x_j | z_i, z_j) = [x_i \neq x_j] \exp(-\beta^{-1}\|z_i - z_j\|^2) \]
 where $\beta = 2 \cdot \text{avg}(\|z_i - z_j\|^2)$
Recap: GrabCut Optimization Strategy

GrabCut EM Algorithm

1. Initialize Mixture Models
Recap: GrabCut Optimization Strategy

GrabCut EM Algorithm

1. Initialize Mixture Models
2. Assign GMM components:

\[k_i = \arg \min_k \phi(x_i, k, \theta | z_i) \]
Recap: GrabCut Optimization Strategy

GrabCut EM Algorithm

1. Initialize Mixture Models

2. Assign GMM components:

 \[k_i = \arg \min_k \phi(x_i, k_i, \theta|z_i) \]

3. Get GMM parameters:

 \[\theta = \arg \min_\theta \sum_i \phi(x_i, k_i, \theta|z_i) \]
Recap: GrabCut Optimization Strategy

GrabCut EM Algorithm

1. Initialize Mixture Models
2. Assign GMM components:

\[k_i = \arg \min_k \phi(x_i, k_i, \theta|z_i) \]

3. Get GMM parameters:

\[\theta = \arg \min_{\theta} \sum_i \phi(x_i, k_i, \theta|z_i) \]

4. Perform segmentation using reduction to min-cut:

\[x = \arg \min_x E(x, z; k, \theta) \]
Recap: GrabCut Optimization Strategy

GrabCut EM Algorithm

1. Initialize Mixture Models
2. Assign GMM components:

 \[k_i = \arg \min_k \phi(x_i, k_i, \theta | z_i) \]

3. Get GMM parameters:

 \[\theta = \arg \min_{\theta} \sum_i \phi(x_i, k_i, \theta | z_i) \]

4. Perform segmentation using reduction to min-cut:

 \[x = \arg \min_x E(x, z; k, \theta) \]

5. Iterate from step 2 until converged
New Model

Let’s consider a simpler model. This will be useful soon

- Unary terms: Histograms
New Model

Let’s consider a simpler model. This will be useful soon

- **Unary terms: Histograms**
 - K bins, b_i is bin of pixel z_i
Let’s consider a simpler model. This will be useful soon

- **Unary terms: Histograms**
 - \(K \) bins, \(b_i \) is bin of pixel \(z_i \)
 - \(\theta^0, \theta^1 \in [0,1]^K \) represent color models (distributions) over foreground/background
Let’s consider a simpler model. This will be useful soon

- **Unary terms: Histograms**
 - \(K \) bins, \(b_i \) is bin of pixel \(z_i \)
 - \(\theta^0, \theta^1 \in [0, 1]^K \) represent color models (distributions) over foreground/background
 -
 \[
 \phi(x_i, b_i, \theta) = - \log \theta^{x_i}_{b_i}
 \]
New Model

Let’s consider a simpler model. This will be useful soon

- **Unary terms: Histograms**
 - K bins, b_i is bin of pixel z_i
 - $\theta^0, \theta^1 \in [0,1]^K$ represent color models (distributions) over foreground/background

 $$\phi(x_i, b_i, \theta) = -\log \theta_{b_i}^{x_i}$$

- **Pairwise Potentials**

 $$\psi(x_i, x_j) = w_{ij}|x_i - x_j|$$

 We will define w_{ij} later; for now, consider pairwise equal to Grabcut
Let’s consider a simpler model. This will be useful soon

- **Unary terms: Histograms**
 - K bins, b_i is bin of pixel z_i
 - $\theta^0, \theta^1 \in [0, 1]^K$ represent color models (distributions) over foreground/background

 $$\phi(x_i, b_i, \theta) = -\log \theta^x_{b_i}$$

- **Pairwise Potentials**

 $$\psi(x_i, x_j) = w_{ij}|x_i - x_j|$$

 We will define w_{ij} later; for now, consider pairwise equal to Grabcut

- **Total Energy:**

 $$E(x, \theta^0, \theta^1) = \sum_{p \in V} -\log P(z_p|\theta^{x_p}) + \sum_{(p,q) \in N} w_{pq}|x_p - x_q|$$

 $$P(z_p|\theta^{x_p}) = \theta^{x_p}_{b_p}$$
EM under new model

1. Initialize histograms θ^0, θ^1.
EM under new model

1. Initialize histograms θ^0, θ^1.
2. Fix θ. Perform segmentation using reduction to min-cut:
 \[x = \arg \min_x E(x, \theta^0, \theta^1) \]
EM under new model

1. Initialize histograms θ^0, θ^1.
2. Fix θ. Perform segmentation using reduction to min-cut:
 \[
 x = \underset{x}{\operatorname{arg\,min}} E(x, \theta^0, \theta^1)
 \]
3. Fix x. Compute θ^0, θ^1 (via standard parameter fitting).
EM under new model

1. Initialize histograms θ^0, θ^1.
2. Fix θ. Perform segmentation using reduction to min-cut:
 \[x = \arg \min_x E(x, \theta^0, \theta^1) \]
3. Fix x. Compute θ^0, θ^1 (via standard parameter fitting).
4. Iterate from step 2 until converged
Optimization

Goal: Minimize Energy

\[\min_x E(x) \]

\[E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q) \in N} w_{pq} |x_p - x_q| + h(n^1) \]

where \(n^1_k = \sum_{p \in V_k} x_p \) and \(n_1 = \sum_{p \in V} x_p \)

This is hard!

But efficient strategies for optimizing \(E^1(x) \) and \(E^2(x) \) separately

David Mandle, Sameep Tandon (Stanford)
Goal: Minimize Energy

\[\min_x E(x) \]

\[E(x) = \sum_k h_k(n_k^1) + \sum_{(p,q) \in N} w_{pq}|x_p - x_q| + h(n_1^1) \]

\[n_k^1 = \sum_{p \in V_k} x_p \quad \text{and} \quad n_1 = \sum_{p \in V} x_p \]

- This is hard!
Goal: Minimize Energy

$$\min_x E(x)$$

$$E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q)\in N} w_{pq}|x_p - x_q| + h(n^1)$$

where $n^1_k = \sum_{p\in V_k} x_p$ and $n_1 = \sum_{p\in V} x_p$

- This is hard!
- But efficient strategies for optimizing $E^1(x)$ and $E^2(x)$ separately
Consider an optimization of the form

$$\min_x f_1(x) + f_2(x)$$
Consider an optimization of the form

$$\min_x f_1(x) + f_2(x)$$

where optimizing $f(x) = f_1(x) + f_2(x)$ is hard.
Consider an optimization of the form

$$\min_x f_1(x) + f_2(x)$$

where optimizing $f(x) = f_1(x) + f_2(x)$ is hard

But $\min_x f_1(x)$ and $\min_x f_2(x)$ are easy problems
Consider an optimization of the form

$$\min_x f_1(x) + f_2(x)$$

where optimizing $f(x) = f_1(x) + f_2(x)$ is hard.

But $\min_x f_1(x)$ and $\min_x f_2(x)$ are easy problems.

Dual Decomposition idea: Optimize $f_1(x)$ and $f_2(x)$ separately and combine in a principled way.
Optimization via Dual Decomposition

- Original Problem:

\[\min_x f_1(x) + f_2(x) \]
Optimization via Dual Decomposition

- **Original Problem:**
 \[\min_x f_1(x) + f_2(x) \]

- **Introduce local variables:**
 \[\min_{x_1, x_2} f_1(x_1) + f_2(x_2) \]
 \[\text{s.t} \ x_1 = x_2 \]
Optimization via Dual Decomposition

Original Problem:

\[\min_x f_1(x) + f_2(x) \]

Introduce local variables:

\[\min_{x_1,x_2} f_1(x_1) + f_2(x_2) \]

\[\text{s.t } x_1 = x_2 \]

Equivalent Problem:

\[\min_{x_1,x_2} f_1(x_1) + f_2(x_2) \]

\[\text{s.t } x_2 - x_1 = 0 \]
Optimization via Dual Decomposition

- Primal Problem:

\[
\begin{align*}
\min_{x_1, x_2} & \quad f_1(x_1) + f_2(x_2) \\
\text{s.t} & \quad x_2 - x_1 = 0
\end{align*}
\]
Optimization via Dual Decomposition

- **Primal Problem:**

 \[
 \min_{x_1, x_2} f_1(x_1) + f_2(x_2) \\
 \text{s.t.} \quad x_2 - x_1 = 0
 \]

- **Lagrangian Dual:**

 \[
 g(y) = \min_{x_1, x_2} f_1(x_1) + f_2(x_2) + y^T(x_2 - x_1)
 \]
Optimization via Dual Decomposition

- Primal Problem:
 \[
 \min_{x_1, x_2} f_1(x_1) + f_2(x_2) \\
 \text{s.t} \quad x_2 - x_1 = 0
 \]

- Lagrangian Dual:
 \[
 g(y) = \min_{x_1, x_2} f_1(x_1) + f_2(x_2) + y^T(x_2 - x_1)
 \]

- Decompose Lagrangian Dual:
 \[
 g(y) = (\min_{x_1} f_1(x_1) - y^T x_1) + (\min_{x_2} f_2(x_2) + y^T x_2)
 \]
Optimization via Dual Decomposition

\[
g(y) = (\min_{x_1} f_1(x_1) - y^T x_1) + (\min_{x_2} f_2(x_2) + y^T x_2)
\]

- For all \(y \), \(g(y) \) is a lower bound on optimal of the primal problem.
Optimization via Dual Decomposition

\[g(y) = (\min_{x_1} f_1(x_1) - y^T x_1) + (\min_{x_2} f_2(x_2) + y^T x_2) \]

\[g_1(y) \]
\[g_2(y) \]

- For all \(y \), \(g(y) \) is a lower bound on optimal of the primal problem.
- Maximize \(g(y) \) w.r.t. \(y \) to get the tightest bound
Optimization via Dual Decomposition

\[g(y) = \left(\min_{x_1} f_1(x_1) - y^T x_1 \right) + \left(\min_{x_2} f_2(x_2) + y^T x_2 \right) \]

For all \(y \), \(g(y) \) is a lower bound on optimal of the primal problem.

Maximize \(g(y) \) w.r.t. \(y \) to get the tightest bound

Further, \(g(y) \) is concave in \(y \). Many techniques for concave maximization (subgradient ascent, etc).
Optimization via Dual Decomposition

\[
g(y) = \left(\min_{x_1} f_1(x_1) - y^T x_1 \right) + \left(\min_{x_2} f_2(x_2) + y^T x_2 \right)
\]

- For all \(y \), \(g(y) \) is a lower bound on optimal of the primal problem.
- Maximize \(g(y) \) w.r.t. \(y \) to get the tightest bound.
- Further, \(g(y) \) is concave in \(y \). Many techniques for concave maximization (subgradient ascent, etc).
- Ideally have fast optimization strategies for \(g_1(y) \) and \(g_2(y) \).
Back to our Segmentation problem

- Energy

\[E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q) \in N} w_{pq}|x_p - x_q| + h(n^1) \]

where \(n^1_k = \sum_{p \in V_k} x_p \) and \(n_1 = \sum_{p \in V} x_p \)
Back to our Segmentation problem

- **Energy**

\[
E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q) \in N} w_{pq}|x_p - x_q| + h(n^1)
\]

where \(n^1_k = \sum_{p \in V_k} x_p \) and \(n^1 = \sum_{p \in V} x_p \)

- **Group terms**

\[
E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q) \in N} w_{pq}|x_p - x_q| + h(n^1)
\]

\(E_1(x) \)

\(E_2(x) \)
Back to our Segmentation problem

- Energy

\[E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q)\in N} w_{pq}|x_p - x_q| + h(n^1) \]

where \(n^1_k = \sum_{p\in V_k} x_p \) and \(n^1 = \sum_{p\in V} x_p \)

- Group terms

\[E(x) = \sum_k h_k(n^1_k) + \sum_{(p,q)\in N} w_{pq}|x_p - x_q| + h(n^1) \]

\[E_1(x) = \underbrace{E_1(x)}_{E_1(x)} + \underbrace{E_2(x)}_{E_2(x)} \]

- \(E(x) = E_1(x) + E_2(x) \)
Optimization via Dual Decomposition

- Dual Decomposition on $E(x) = E^1(x) + E^2(x)$

$$
\Phi(y) = \min_{x_1} (E^1(x_1) - y^T x_1) + \min_{x_2} (E^2(x_2) + y^T x_2)
$$

$\Phi^1(y)$
$\Phi^2(y)$
Optimization via Dual Decomposition

- Dual Decomposition on $E(x) = E^1(x) + E^2(x)$

 $\Phi(y) = \min_{x_1} (E^1(x_1) - y^T x_1) + \min_{x_2} (E^2(x_2) + y^T x_2)$

 $\Phi^1(y)$ \hspace{2cm} $\Phi^2(y)$

- Maximize $\Phi(y)$ w.r.t. y to get the tightest lower bound.
Dual Decomposition on $E(x) = E^1(x) + E^2(x)$

$$\Phi(y) = \min_{x_1}(E^1(x_1) - y^T x_1) + \min_{x_2}(E^2(x_2) + y^T x_2)$$

- Maximize $\Phi(y)$ w.r.t. y to get the tightest lower bound.
- $\Phi^1(y)$ can be computed efficiently via reduction to min s-t cut.
Optimization via Dual Decomposition

- Dual Decomposition on $E(x) = E^1(x) + E^2(x)$

$$
\Phi(y) = \min_{x_1} (E^1(x_1) - y^T x_1) + \min_{x_2} (E^2(x_2) + y^T x_2)
$$

- $\Phi^1(y)$ can be computed efficiently via reduction to min s-t cut.
- $\Phi^2(y)$ via convex minimization (several strategies)

Maximize $\Phi(y)$ w.r.t. y to get the tightest lower bound.
Optimization via Dual Decomposition

- Dual Decomposition on $E(x) = E^1(x) + E^2(x)$
 $$
 \Phi(y) = \min_{x_1} (E^1(x_1) - y^T x_1) + \min_{x_2} (E^2(x_2) + y^T x_2)
 $$
 $\Phi^1(y)$ and $\Phi^2(y)$

- Maximize $\Phi(y)$ w.r.t. y to get the tightest lower bound.
- $\Phi^1(y)$ can be computed efficiently via reduction to min s-t cut.
- $\Phi^2(y)$ via convex minimization (several strategies)
- You could now use your favorite concave maximization strategy for $\Phi(y)$
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.

Sketch:

▶ Theorem: Given $\Phi_1(y)$ and $\Phi_2(y)$ as described, optimal y has form $y = s_1$

▶ Implication: maximize $\Phi(s_1)$ over all possible s_1

$\Phi_1(s_1)$ is piecewise-linear concave $\star |V|$ breakpoints computed by parametric max-flow $\star |V|$ breakpoints can be enumerated from $h(\cdot)$

$\Phi(s_1)$ is piecewise-linear concave with $2|V|$ breakpoints, so finding max over $\Phi(s_1)$ is easy – it's one of the breakpoints.

▶ Given the breakpoint, return the segmentation x with minimum energy from set given by PMF.
Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.

Sketch:

- Theorem: Given $\Phi_1(y)$ and $\Phi_2(y)$ as described, optimal y has form $y = s_1$
- Implication: maximize $\Phi(s_1)$ over all possible s
- $\Phi_1(s_1)$ is piecewise-linear concave $\forall |V|$ breakpoints computed by parametric max-flow
- Parametric max-flow also returns between 2 and $|V| + 1$ solutions segmentations x per breakpoint
- $\Phi_2(s_1)$ is piecewise-linear concave $\forall |V|$ breakpoints can be enumerated from $h(\cdot)$
- $\Phi(s_1)$ is piecewise-linear concave with 2 $|V|$ breakpoints, so finding max over $\Phi(s_1)$ is easy – it's one of the breakpoints.
- Given the breakpoint, return the segmentation x with minimum energy from set given by PMF.
Optimization via Dual Decomposition

- Turns out can maximize \(\Phi(y) \) over \(y \) in polynomial time using a parametric max-flow technique.

Sketch:

- Theorem: Given \(\Phi^1(y) \) and \(\Phi^2(y) \) as described, optimal \(y \) has form \(y = s1 \)
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.

Sketch:
- Theorem: Given $\Phi^1(y)$ and $\Phi^2(y)$ as described, optimal y has form $y = s1$
- Implication: maximize $\Phi(s1)$ over all possible s

$\Phi^1(y)$ is piecewise-linear concave
- $|V|$ breakpoints computed by parametric max-flow
- Parametric max-flow also returns between 2 and $|V|+1$ solutions segmentations

$\Phi^2(y)$ is piecewise-linear concave
- $|V|$ breakpoints can be enumerated from $h(\cdot)$

$\Phi(s1)$ is piecewise-linear concave with $2|V|$ breakpoints, so finding max over $\Phi(s1)$ is easy – it's one of the breakpoints.
- Given the breakpoint, return the segmentation x with minimum energy from set given by PMF.
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.
- Sketch:
 - Theorem: Given $\Phi^1(y)$ and $\Phi^2(y)$ as described, optimal y has form $y = s1$
 - Implication: maximize $\Phi(s1)$ over all possible s
 - $\Phi_1(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints computed by parametric max-flow
 - Parametric max-flow also returns between 2 and $|V| + 1$ solutions segmentations x per breakpoint
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.

Sketch:
- Theorem: Given $\Phi^1(y)$ and $\Phi^2(y)$ as described, optimal y has form $y = s1$
- Implication: maximize $\Phi(s1)$ over all possible s
- $\Phi_1(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints computed by parametric max-flow
 - Parametric max-flow also returns between 2 and $|V| + 1$ solutions segmentations x per breakpoint
- $\Phi_2(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints can be enumerated from $h(\cdot)$
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.

Sketch:

- **Theorem:** Given $\Phi^1(y)$ and $\Phi^2(y)$ as described, optimal y has form $y = s1$

- **Implication:** maximize $\Phi(s1)$ over all possible s

- $\Phi_1(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints computed by parametric max-flow
 - Parametric max-flow also returns between 2 and $|V| + 1$ solutions segmentations x per breakpoint

- $\Phi_2(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints can be enumerated from $h(\cdot)$

- $\Phi(s1)$ is piecewise-linear concave with $2|V|$ breakpoints, so finding max over $\Phi(1s)$ is easy – it’s one of the breakpoints.
Optimization via Dual Decomposition

- Turns out can maximize $\Phi(y)$ over y in polynomial time using a parametric max-flow technique.
- Sketch:
 - Theorem: Given $\Phi^1(y)$ and $\Phi^2(y)$ as described, optimal y has form $y = s1$
 - Implication: maximize $\Phi(s1)$ over all possible s
 - $\Phi_1(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints computed by parametric max-flow
 - Parametric max-flow also returns between 2 and $|V| + 1$ solutions segmentations x per breakpoint
 - $\Phi_2(s1)$ is piecewise-linear concave
 - $|V|$ breakpoints can be enumerated from $h(\cdot)$
 - $\Phi(s1)$ is piecewise-linear concave with $2|V|$ breakpoints, so finding max over $\Phi(1s)$ is easy – it’s one of the breakpoints.
 - Given the breakpoint, return the segmentation x with minimum energy from set given by PMF.
References

MRF Review Slides:

Dual Decomposition Slides: Petter Strandmark and Fredrik Kahl. Parallel and Distributed Graph Cuts by Dual Decomposition.
http://www.robots.ox.ac.uk/~vgg/rg/slides/parallelgraphcuts.pdf