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Goal & Challenges 

n  Wide variety of articulated poses 
n  Variable appearance and clothing 
n  Complex backgrounds 
n  Unconstrained illumination 
n  Occlusions, different scales 

n  Videos sequences involves motion of 
the subject, the camera and the 
objects in the background 

Main assumption: upright fully visible 
people 

Goal: Detect and localise people in images 
and videos 



Chronology 
n  Haar Wavelets as features + AdaBoost for learning 

u Viola & Jones, ICCV 2001 
u De-facto standard for detecting faces in images 

n  Another approach: Haar wavelets + SVM: 
u Papageorgiou & Poggio, 2000; Mohan et al 2000 
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114 C Other Approaches to Person Detection

C.2 Contour Fragment Based Person Detector

Given the considerable variability introduced by occlusions, pose variations, clothing, shape

and texture, etc, it seems appropriate to build detectors based on characteristic local fragments

of body contours, as only these are stable under all of these above changes.

Our initial approach to this began by performing edge detection on the image and approx-

imating the detected edges by straight line segments for efficiency. Any set of nearby (not nec-

essarily neighbouring) segments can form a “contour fragment” part. The framework tests and

selects the most characteristic contour fragments to act as crude part candidate detectors. They

are created by randomly sampling nearby segments from the set of all segments in the positive

training images. To match a reference contour fragment to an image, we perform exhaustive

search by aligning any line segment from the reference fragment to each segment in the image.

Segments are matched using a projection cost metric that computed the amount of overlap af-

ter projection of all of the image segments within some �-tube region to the reference segment.

Multiple votes onto a pixel in the reference segment are counted as one. The overall cost of

matching a contour fragment is the ratio of sum of overlap for all segments in the reference

fragment to the total length of all segments in the same fragment. The projection cost metric

uses hard matching constraints: it considers only lines within an �-tube region with � = 3 pix-

els. The matched segment can optionally be weighted by the amount of rotation the reference

fragment has undergone to be classified as a match.

Given this matching cost, a set of highly relevant contour fragments is selected using the

Information Bottleneck (IB) principle of Tishby et al. [1999]. This tries to minimise the Mutual

Information (MI) between the training images and the set of fragments (compressing the in-

formation required to express the images) while at same time maximising the MI between the

Fig. C.2. Some detection results for the contour fragment based framework. In each panel, read-
ing clockwise from top-left: the input image, the approximation of its edges by line segments
with the estimated probability mask p(Centroid|All Fragments) and the final estimated centroid
location, overlayed the set of line segments used in the detection weighted by their relevance
to the overall detection, and the set of all line segment matches that the system used while
estimating the probability mask.

n  Edge templates from Gavrila et al 
n  Based on Information bottleneck principle of Tishby et al 
n  Maximize MI between edge fragments & detection task 

J  Supports irregular shapes 
& partial occlusions 

J  Window free framework 
L  Sensitive to edge detection 

& edge threshold 
L  Not resistant to local 

illumination changes 
L  Needs segmented positive 

images 

At par with then s-o-a 
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C

Other Approaches to Person Detection

During the course of this thesis we tried a number of other feature sets and detection frame-
works, but their performance did not compare with that of the current HOG descriptors. This
appendix gives a very brief summary of these approaches and discusses our motivations in
trying them, their potential advantages and why we did not purse the work in these directions.

C.1 Key Point Based Person Detector

During the initial months of this thesis, we tried to develop key point based approaches to
human detection but we were disappointed by the poor repeatability of the features for this
task. We evaluated Harris [Harris and Stephens 1988], LoG [Lindeberg 1998], Harris-Laplace
[Mikolajczyk and Schmid 2004] feature sets. Our experiments showed that even for two close
by frames in a video sequence, these detectors did not fire consistently on the same scene ele-
ments. They were unable to cope with the sheer variation in human clothing, appearance and
articulation. Figure C.1 illustrates this. A super-pixel [Mori et al. 2004] based approach was also
evaluated but resulted in similar conclusions. This led us to try silhouette or shape fragment
based approaches as an alternative.

(a) (b)

Fig. C.1. Inconsistent behaviour of key point detectors on humans. (a) Detected key points by

the Harris-Laplace detector [Mikolajczyk and Schmid 2004] for one frame of a video sequence.

(b) Detected key points for the next frame of the sequence. Note that although the detector fires

reliably for the same points in the background, it fails to perform consistently on the similar

locations for the person.

n  Key point detectors repeat on backgrounds 
n  Key point detectors do not repeat on people, even when 

looking at two consecutive frames of a video 
n  Leibe et al, 2005; Mikolajczyk et al, 2004 

Needed a different approach 
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Overview of Methodology 

Focus on building robust 
feature sets (static & motion) 

Fuse multiple 
detections in 3-D 

position & scale space 

Extract features over 
windows 

Scan image(s) at all 
scales and locations 

Object detections with 
bounding boxes  

Detection Phase 

` 
Scale-space pyramid 

Detection window Run linear SVM 
classifier on all 

locations 
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HOG for Finding People in 
Images 

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005 
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Static Feature Extraction 

Compute gradients 

Feature vector f = [ ..., ...,    ...] 

Block 

 Normalise gamma 

Weighted vote in spatial & 
orientation cells 

Contrast normalise over 
overlapping spatial cells 

Collect HOGs over 
detection window 

Input image 
Detection window 

Linear SVM 

Overlap 
of Blocks 

Cell 

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005 
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Overview of Learning Phase 

Learn binary classifier 

Encode images into feature 
spaces 

Create fixed-resolution 
normalised training image 

data set 

Learning phase 

Object/Non-object decision 

Learn binary classifier 

Encode images into feature 
spaces 

Resample negative training 
images to create hard 

examples 

Input: Annotations on training 
images 

Retraining reduces false 
positives by an order of 

magnitude! 
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HOG Descriptors 
Parameters 
n  Gradient scale 
n  Orientation bins 
n  Percentage of block 

overlap ε+←
2

2
/ vvv

Schemes 
n  RGB or Lab, colour/gray-space 
n  Block normalisation 

L2-norm, 
or 

L1-norm, 
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Evaluation Data Sets 
MIT pedestrian database INRIA person database 

507 positive windows 
Negative data unavailable 

1208 positive windows 
1218 negative images 

200 positive windows 
Negative data unavailable 

566 positive windows 
453 negative images 

Overall 709 annotations+ 
reflections 

Overall 1774 annotations+ 
reflections 

Tr
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n 
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st 

Tr
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n 
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st 
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Overall Performance 
MIT pedestrian database INRIA person database 

n  R/C-HOG give near perfect separation on MIT database 
n  Have 1-2 order lower false positives than other descriptors 
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Performance on INRIA Database 
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Effect of Parameters 
Gradient smoothing, σ Orientation bins, β 

n  Reducing gradient scale 
from 3 to 0 decreases false 
positives by 10 times 

n  Increasing orientation bins 
from 4 to 9 decreases false 
positives by 10 times 
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Normalisation Method & Block Overlap 

Normalisation method Block overlap 

n  Strong local normalisation 
is essential 

n  Overlapping blocks improve 
performance, but descriptor 
size increases 
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Effect of Block and Cell Size 

n  Trade off between need for local spatial invariance and 
need for finer spatial resolution 

12
8 

64 
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Descriptor Cues 

Input 
example 

Weighted 
pos wts 

Weighted 
neg wts 

Outside-in 
weights 

n  Most important cues are head, shoulder, leg silhouettes 
n  Vertical gradients inside a person are counted as negative 
n  Overlapping blocks just outside the contour are most 

important 

Average 
gradients 
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Multi-Scale Object Localisation 

Apply robust mode detection, 
like mean shift 
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Clip Detection Score 

Multi-scale dense scan of 
detection window 

Final detections 

Threshold 

Bias 
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Effect of Spatial Smoothing 

n  Spatial smoothing aspect ratio as 
per window shape, smallest sigma 
approx. equal to stride/cell size 

n  Relatively independent of scale 
smoothing, sigma equal to 0.4 to 0.7 
octaves gives good results 
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Effect of Other Parameters 
Different mappings Effect of scale-ratio 

n  Hard clipping of SVM scores 
gives the best results than simple 
probabilistic mapping of these 
scores 

n  Fine scale sampling helps improve 
recall 
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(b) Typical aspect ratios
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(c) Atypical aspect ratios
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(d) Near scale
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(e) Medium scale
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(f) Far scale
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(g) No occlusion
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(h) Partial occlusion
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(i) Heavy occlusion
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Figure 9. Miss rates versus false positive per-image curves shown for various subsets of the data. Lower curves indicate better performance; miss rate
at 1 FPPI for each algorithm is shown in plot legends. (a) Overall performance on the entire dataset. (b-c) Performance w.r.t. aspect ratio (computed for
unoccluded pedestrians 50 pixels or taller). (d-f): Performance w.r.t. scale (computed for unoccluded pedestrians). (g-i): Performance under varying levels
of occlusion (computed for pedestrians 50 pixels or taller). Due to time and memory constraints, we were unable to run HikSvm on upscaled images; this
adversely affects HikSvm’s performance on many of the plots shown.

5. Discussion and Future Work

We introduced the large, richly annotated Caltech Pedes-
trian Dataset for training and evaluating pedestrian detec-
tors and benchmarked a number of promising methods. Al-
though recent literature would suggest otherwise, our anal-
ysis shows that HOG remains competitive, especially when
properly benchmarked (using per-image metrics).

For unoccluded pedestrians over 80 pixels high, HOG
achieves 60% recall at 1 FPPI on the proposed dataset (see
Fig. 9(d)). This is worse but comparable to the 80% recall
at 1 FPPI on the INRIA data on which HOG was trained.
Under these conditions performance is reasonable but still

below levels necessary for real world applications.

Under more realistic and challenging conditions, perfor-
mance degrades rapidly. Two under explored cases stand
out as being particularly frequent and relevant in the data
gathered: pedestrians at lower resolution and under partial
occlusion. Note that pedestrians in the medium/far scales
represent more than 80% of the data; furthermore, in auto-
motive tasks it is crucial to identify pedestrians early to give
ample warning to the driver. Occlusion is likewise common,
only 30% of pedestrians remain unoccluded for the entire
time they are present. Yet, as our analysis has shown, these
are precisely the tasks for which current methods fail. Fur-

n  See Dollar et al, 
CVPR 2009 
“Pedestrian 
Detection: A 
Benchmark” 

HOG still among the best detector in terms of FPPI 
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Results Using Static HOG 

No temporal smoothing of detections 
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Conclusions for Static Case 
n  Fine grained features improve performance 

u  Rectify fine gradients then pool spatially 
•  No gradient smoothing, [1 0 -1] derivative mask 
•  Orientation voting into fine bins 
•  Spatial voting into coarser bins 

u  Use gradient magnitude (no thresholding) 
u  Strong local normalization 
u  Use overlapping blocks 
u  Robust non-maximum suppression 

•  Fine scale sampling, hard clipping & anisotropic kernel 

J Human detection rate of 90% at 10-4 false positives per window 
L Slower than integral images of Viola & Jones, 2001 
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Applications to Other Classes 

M. Everingham et al. The 2005 PASCAL Visual Object Classes Challenge. Proceedings of the PASCAL Challenge Workshop, 2006. 



25 

Motion HOG for Finding People 
in Videos 

N. Dalal, B. Triggs and C. Schmid. Human Detection Using Oriented Histograms of Flow and Appearance. ECCV, 2006. 
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Finding People in Videos 
n  Motivation 

u  Human motion is very 
characteristic 

n  Requirements 
u  Must work for moving 

camera and background 
u  Robust coding of relative 

motion of human parts 

n  Previous works 
u  Viola et al, 2003 
u  Gavrila et al, 2004 
u  Efros et al, 2003 

Courtesy: R. Blake 
Vanderbilt Univ 

N. Dalal, B. Triggs and C. Schmid. Human Detection Using Oriented Histograms of Flow and Appearance. ECCV, 2006. 



27 

Handling Camera Motion 
n  Camera motion characterisation 

u  Pan and tilt is locally translational 
u  Rest is depth induced motion parallax 

n  Use local differential of flow 
u  Cancels out effects of camera rotation 
u  Highlights 3D depth boundaries 
u  Highlights motion boundaries 

n  Robust encoding into oriented histograms 
u  Some focus on capturing motion boundaries 
u  Other focus on capturing internal motion or relative dynamics of 

different limbs 



28 

Motion HOG Processing Chain 

Collect HOGs for all blocks 
over detection window 

Normalise contrast within 
overlapping blocks of cells 

Accumulate votes for 
differential flow orientation 

over spatial cells 

Compute optical flow 

 Normalise gamma & colour 

Compute differential flow 

Input image Consecutive image 

Flow field Magnitude of flow 

Differential flow X Differential flow Y 

Block 

Overlap 
of Blocks 

Cell 

Detection windows 
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Overview of Feature Extraction 

Collect HOGs over 
detection window 

Object/Non-object decision 

Linear SVM 

Static HOG 
Encoding 

Motion HOG 
Encoding 

 Input image Consecutive image(s) 

A
pp

ea
ra

nc
e 

C
ha

nn
el M

otion 
C

hannel 

Train 
5 DVDs, 182 shots 

5562 positive windows 

Test 1 
Same 5 DVDs, 50 shots 
1704 positive windows 

Test 2 
6 new DVDs, 128 shots 
2700 positive windows 

Data Set 
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Coding Motion Boundaries 

First 
frame 

Second 
frame 

Estd. 
flow 

Flow 
mag. 

y-flow  
diff 

x-flow 
diff 

Avg.   
x-flow 

diff 

Avg.   
y-flow 

diff 

n  Treat x, y-flow components 
as independent images 

n  Take their local gradients 
separately, and compute 
HOGs as in static images 

Motion Boundary Histograms 
(MBH) encode depth and motion 

boundaries 
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Coding Internal Dynamics 
n  Ideally compute relative displacements 

of different limbs 
u  Requires reliable part detectors 

n  Parts are relatively localised in our 
detection windows 

n  Allows different coding schemes based 
on fixed spatial differences 

Internal Motion Histograms (IMH) encode 
relative dynamics of different regions 
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…IMH Continued 
n  Simple difference 

u  Take x, y differentials of flow 
vector images [Ix, Iy ] 

u  Variants may use larger 
spatial displacements while 
differencing, e.g. [1 0 0 0 -1] 

n  Center cell difference 

+1 

+1 

+1 +1 

+1 

+1 +1 

-1 

+1 

n  Wavelet-style cell 
differences 

+1 

-1 

+1 

-1 
+1 -1 

+1 

-1 

+1 
-2 

+1 

-1 
+1 -1 

+1 
+1 -1 

+1 

-1 

+1 -1 

-1 

+1 

+1 -2 +1 
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Flow Methods 
n  Proesman’s flow [ Proesmans et al. ECCV 1994] 

u  15 seconds per frame 

n  Our flow method 
u  Multi-scale pyramid based method, no regularization 
u  Brightness constancy based damped least squares solution                                                                  

    on 5X5 window 
u  1 second per frame 

n  MPEG-4 based block matching 
u  Runs in real-time 

Input image Proesman’s flow Our multi-scale flow 

( ) bAIAA TTT 1],[ −
+= βyx
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Performance Comparison 
Only motion information Appearance + motion 

n  With motion only, MBH 
scheme on Proesmans’ 
flow works best 

n  Combined with appearance, 
centre difference IMH  
performs best 
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Trained on Static & Flow 
Tested on flow only Tested on appearance + flow 

n  Adding static images during test reduces performance 
margin 

n  No deterioration in performance on static images 



36 

Trained on Static & Flow 
Tested on flow only Tested on appearance + flow 

n  Adding static images during test reduces performance 
margin 

n  No deterioration in performance on static images 
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Motion HOG Video 
No temporal smoothing, each pair of frames treated 

independently 



Recall-Precision for Motion HOG 
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(h) Including motion features (ETH-03)
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(i) Comparison to [11] (ETH-03)
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(l) Comparison of NMS scoring modes
Figure 5: Results obtained with different combinations of features and classifiers. Rows (1)-(3) show results on ETH-Person [11], Row (4) details the
results on the new TUD-Brussels onboard dataset. Note that first and second column show details on static and motion features in combination with different
classifiers considering all detections larger than 48 pixels with recall and precision as metric. Column three compares our detector to the system of [11] (only
pedestrians larger than 70 pixel are regarded, evaluation in FPPI) and shows a comparison of different non-maximum suppression approaches (Fig. 5(l)).

databases to be problematic, impeding a performance im-
provement (cf. Fig. 5(a), (d), (g)). Haar wavelets computed
on color channels are not robust enough to these imaging
conditions. Note however, that MPLBoost outperforms lin-
ear SVM, HIKSVM and AdaBoost for this feature com-
bination showing its applicability for pedestrian detection.
HIKSVM consistently obtained worse results with Haar
features for static as well as for motion-enhanced detectors.
Hence, these plots are omitted for better readability.

We continue to analyze the performance when IMHwd
motion features in combination with HOG features are used
for detection. The resulting plots are depicted in the second
column of Fig. 5. For HIKSVM we observe a consistent im-
provement over the best static image detector. In detail the
improvement at a precision of 90% precision is: 3.7% on
ETH-01 (Fig. 5(b)), 16.9% on ETH-02 (Fig. 5(e)), 2.2% on
ETH-03 (Fig. 5(h)) and 14.0% on TUD-Brussels (Fig. 5(k)).
In contrast to [4] we can clearly show a significant perfor-
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(a) Static image features (ETH-01)
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(b) Including motion features (ETH-01)
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(c) Comparison to [11] (ETH-01)
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(d) Static image features (ETH-02)
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(e) Including motion features (ETH-02)
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(f) Comparison to [11] (ETH-02)
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(g) Static image features (ETH-03)
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(h) Including motion features (ETH-03)
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(i) Comparison to [11] (ETH-03)
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(j) Static image features (TUD-Brussels)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1-precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
ca

ll

HOG, IMHwd and SVM
HOG, IMHwd, Haar and SVM
HOG, IMHwd and MPLBoost (K=3)
HOG, IMHwd, Haar and MPLBoost (K=4)
HOG, IMHwd and AdaBoost
HOG, IMHwd, Haar and AdaBoost
HOG, Haar and MPLBoost (K=4)
HOG, IMHwd and HIKSVM

(k) Including motion features (TUD-Brussels)
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(l) Comparison of NMS scoring modes
Figure 5: Results obtained with different combinations of features and classifiers. Rows (1)-(3) show results on ETH-Person [11], Row (4) details the
results on the new TUD-Brussels onboard dataset. Note that first and second column show details on static and motion features in combination with different
classifiers considering all detections larger than 48 pixels with recall and precision as metric. Column three compares our detector to the system of [11] (only
pedestrians larger than 70 pixel are regarded, evaluation in FPPI) and shows a comparison of different non-maximum suppression approaches (Fig. 5(l)).

databases to be problematic, impeding a performance im-
provement (cf. Fig. 5(a), (d), (g)). Haar wavelets computed
on color channels are not robust enough to these imaging
conditions. Note however, that MPLBoost outperforms lin-
ear SVM, HIKSVM and AdaBoost for this feature com-
bination showing its applicability for pedestrian detection.
HIKSVM consistently obtained worse results with Haar
features for static as well as for motion-enhanced detectors.
Hence, these plots are omitted for better readability.

We continue to analyze the performance when IMHwd
motion features in combination with HOG features are used
for detection. The resulting plots are depicted in the second
column of Fig. 5. For HIKSVM we observe a consistent im-
provement over the best static image detector. In detail the
improvement at a precision of 90% precision is: 3.7% on
ETH-01 (Fig. 5(b)), 16.9% on ETH-02 (Fig. 5(e)), 2.2% on
ETH-03 (Fig. 5(h)) and 14.0% on TUD-Brussels (Fig. 5(k)).
In contrast to [4] we can clearly show a significant perfor-

ETH02 ETH03 

HOG + IMHwd + HIK-SVM 

n  Wojek et al, CVPR 09 
n  Robust regularized flow + max in non-max suppression 
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Conclusions for Motion HOG 
n  Summary 

u  When combined with appearance, IMH outperforms MBH 
u  Regularization in flow estimates reduces performance 
u  MPEG4 block matching looks good but motion estimates not 

good for detection 
u  Larger spatial difference masks help 
u  Strong local normalization is very important 
u  Relatively insensitive to number of orientation bins 

J  Window classifier reduces false positives by 10 times 
L  Slow compared to static HOG (probably not any more — FlowLib from 

GPU4Vision) 
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Summary 
n  Bottom-up approach to object detection 
n  Robust feature encoding for person detection 
n  Gives state-of-the-art results for person detection 
n  Also works well for other object classes 
n  Proposed differential motion features vectors for feature 

extraction from videos 
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Extensions 
n  Real time feature computation (Wojek et al, DAGM 08; 

Wang et al, ICCV 09) 
n  AdaBoost rejection cascade algorithms (Zhu et al, CVPR 

06; Laptev, BMVC 06) 
n  Part based detector for partial occlusions (Felzenszwalb 

et al, PAMI 09; Wang et al, ICCV 09) 
n  Motion HOG extended (Wojek et al, CVPR 09; Laptev et 

al, CVPR 08) 
n  Histogram intersection kernel (Maji et al, CVPR 2008, 

CVPR 2009, ICCV 2009) 
n  Higher level image analysis (Hoiem IJCV 08) 



Features for Object Detection 
n  Local Binary Pattern 

u  Wang et al, ICCV 2009 

n  Co-occurrence Matrices + HOG + PLS 
u  Schwartz et al ICCV 2009 

n  Color HOG (Discriminative segmentation of fg/bg 
regions) 
u  Ott & Everingham, ICCV 2009 
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Gesture Detection Using Webcams 

Founder & CEO 



Complete Lean Back Experience 
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Beta Launch in July 2011 
n  State of art work in research & engineering 

n  Candidates for usability studies 
n  Summer internships 

Contact: dalal@botsquare.com 
http://botsquare.com 
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Thank You 

Contact: dalal@botsquare.com 


