Histogram of Oriented Gradients (HOG) for Object Detection

Navneet DALAL

Joint work with Bill TRIGGS and Cordelia SCHMID

Goal & Challenges

Goal: Detect and localise people in images and videos

- Wide variety of articulated poses
- Variable appearance and clothing
- Complex backgrounds
- Unconstrained illumination
- Occlusions, different scales
- Videos sequences involves motion of the subject, the camera and the objects in the background

Main assumption: upright fully visible people

Chronology

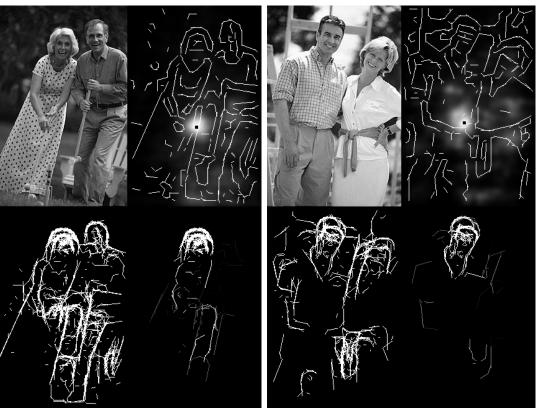
Haar Wavelets as features + AdaBoost for learning

- Viola & Jones, ICCV 2001
- De-facto standard for detecting faces in images
- Another approach: Haar wavelets + SVM:
 - Papageorgiou & Poggio, 2000; Mohan et al 2000

Chronology

- Edge templates from Gavrila et al
- Based on Information bottleneck principle of Tishby et al
- Maximize MI between edge fragments & detection task
- Supports irregular shapes
 & partial occlusions
- Window free framework
- Sensitive to edge detection
 & edge threshold
- Not resistant to local illumination changes
- Needs segmented positive images

At par with then s-o-a



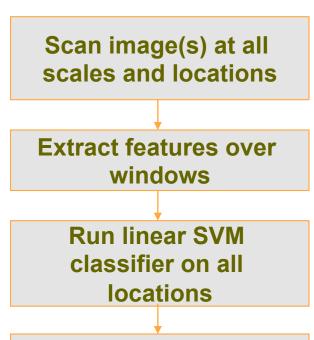
Chronology

- Key point detectors repeat on backgrounds
- Key point detectors do not repeat on people, even when looking at two consecutive frames of a video
- Leibe et al, 2005; Mikolajczyk et al, 2004

Needed a different approach

Overview of Methodology

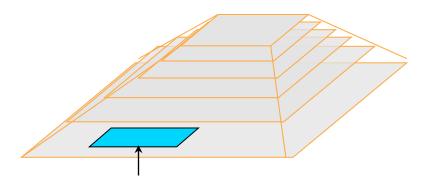
Detection Phase



Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Scale-space pyramid

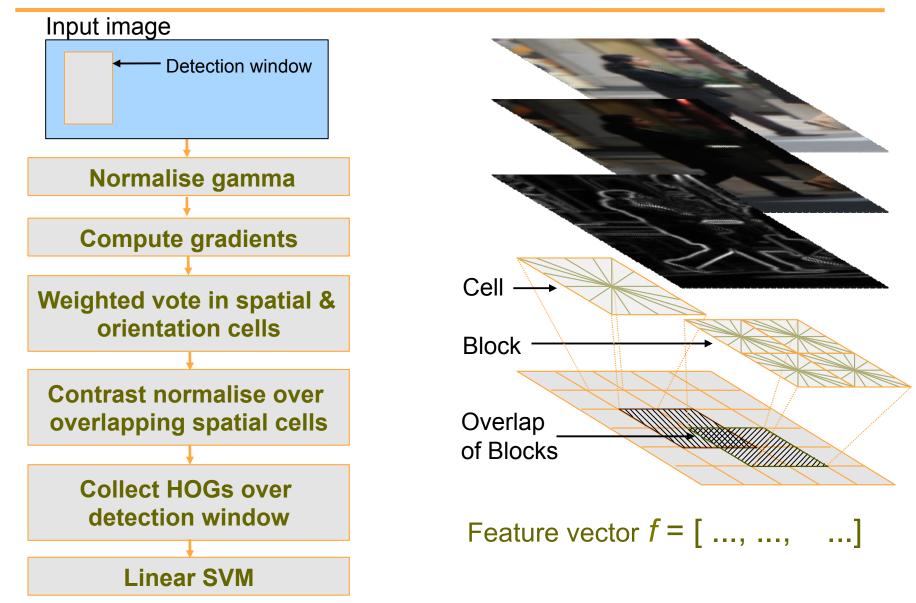


Detection window

Focus on building robust feature sets (static & motion)

HOG for Finding People in Images

Static Feature Extraction



N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR, 2005

Overview of Learning Phase

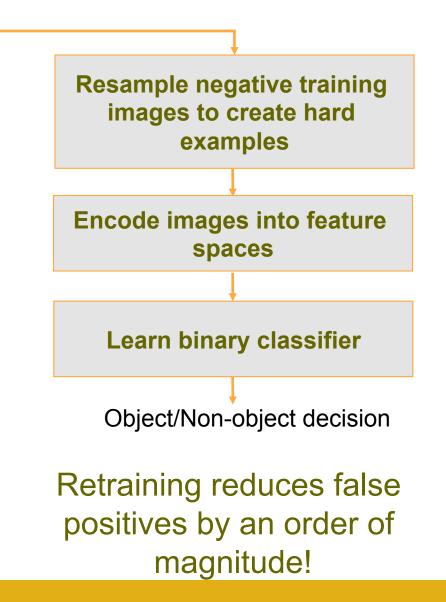
Learning phase

Input: Annotations on training images

Create fixed-resolution normalised training image data set

Encode images into feature spaces

Learn binary classifier



HOG Descriptors

Parameters

- Gradient scale
- Orientation bins
- Percentage of block overlap

Schemes

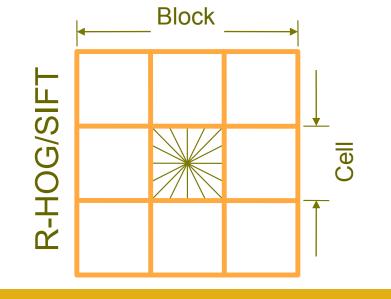
- RGB or Lab, colour/gray-space
- Block normalisation
 L2-norm,

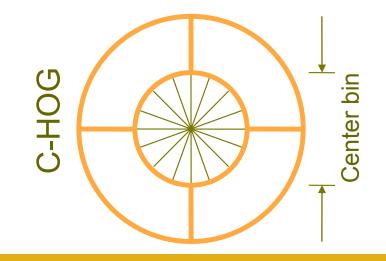
or

 $v \leftarrow v / \sqrt{\left\|v\right\|_{2}^{2}} + \varepsilon$

L1-norm,

 $v \leftarrow \sqrt{v/(\|v\|_1 + \varepsilon)}$





Evaluation Data Sets

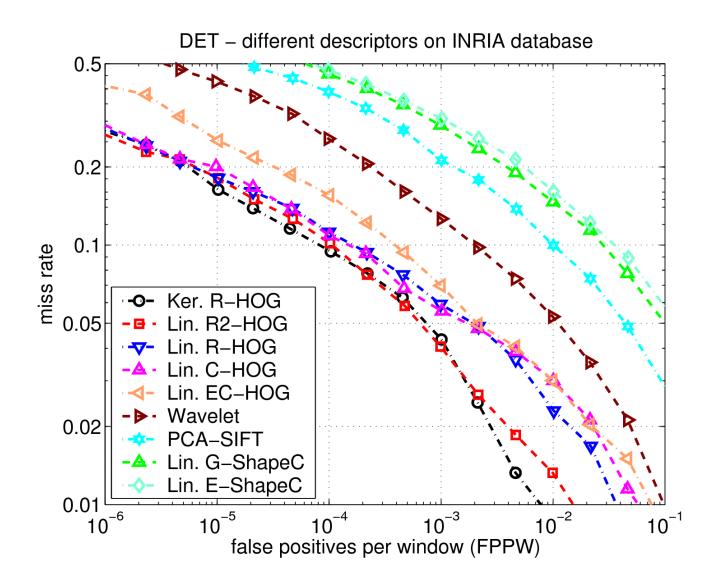
MIT pedestrian database	INRIA person database
507 positive windows	1208 positive windows
Negative data unavailable	1218 negative images
200 positive windows	566 positive windows
Negative data unavailable	453 negative images
Overall 709 annotations+	Overall 1774 annotations+
reflections	reflections

Overall Performance

MIT pedestrian database **INRIA** person database DET - different descriptors on MIT database DET - different descriptors on INRIA database 0.2 -O- Lin. R-HOG -∎ - Lin. C–HOG -v- Lin. EC-HOG Wavelet 0.2 PCA-SIFT -▶· Lin. G–ShaceC Lin. E-ShaceC -A - MIT best (part) 0.1 miss rate miss rate **MIT** baseline 0.1 -O- Ker. R–HOG 0.05 Lin. R2-HOG Lin. R–HOG Lin. C-HOG Lin. EC-HOG 0.05 Wavelet 0.02 PCA-SIFT 0.02 💁 🛛 Lin. G–ShapeC 0.01 Lin. E-ShapeC 0.01 10^{-4} 10⁻³ 10⁻⁵ 10^{-2} 10 10^{-1} 10 10 10 false positives per window (FPPW) false positives per window (FPPW)

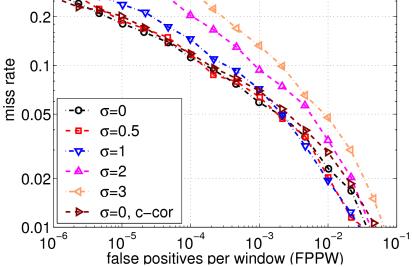
- R/C-HOG give near perfect separation on MIT database
- Have 1-2 order lower false positives than other descriptors

Performance on INRIA Database



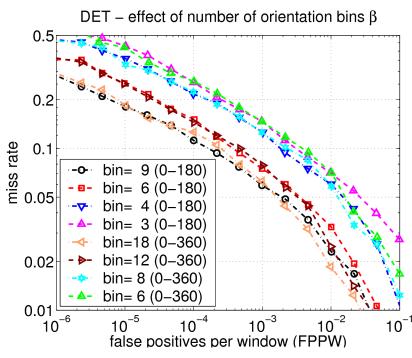
Effect of Parameters

Gradient smoothing, σ DET – effect of gradient scale σ 0.5



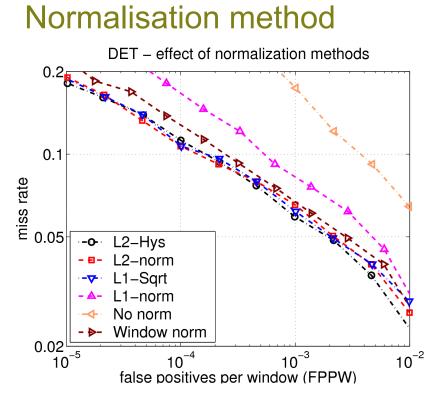
 Reducing gradient scale from 3 to 0 decreases false positives by 10 times

Orientation bins, β



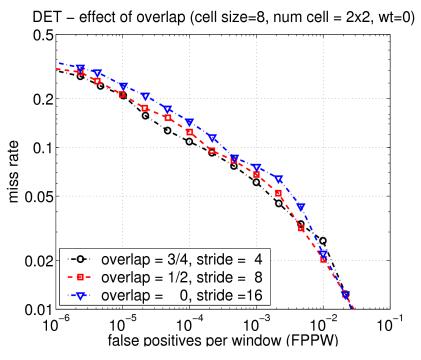
 Increasing orientation bins from 4 to 9 decreases false positives by 10 times

Normalisation Method & Block Overlap



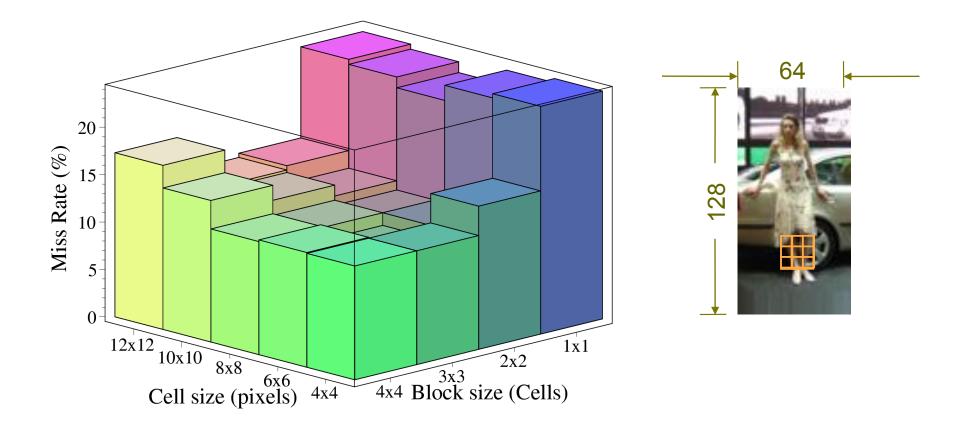
 Strong local normalisation is essential

Block overlap



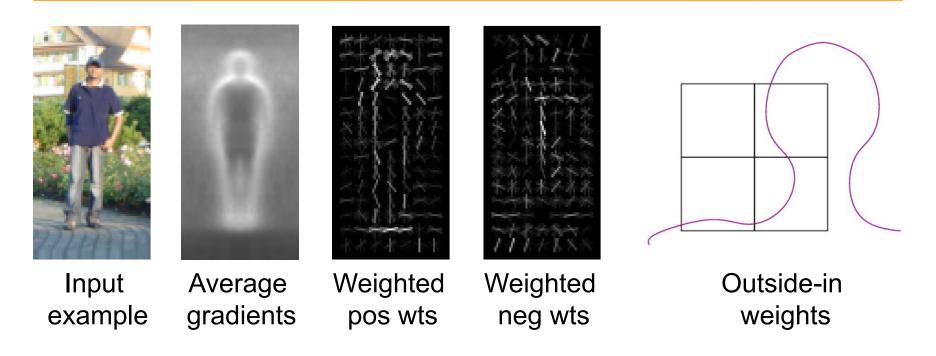
 Overlapping blocks improve performance, but descriptor size increases

Effect of Block and Cell Size



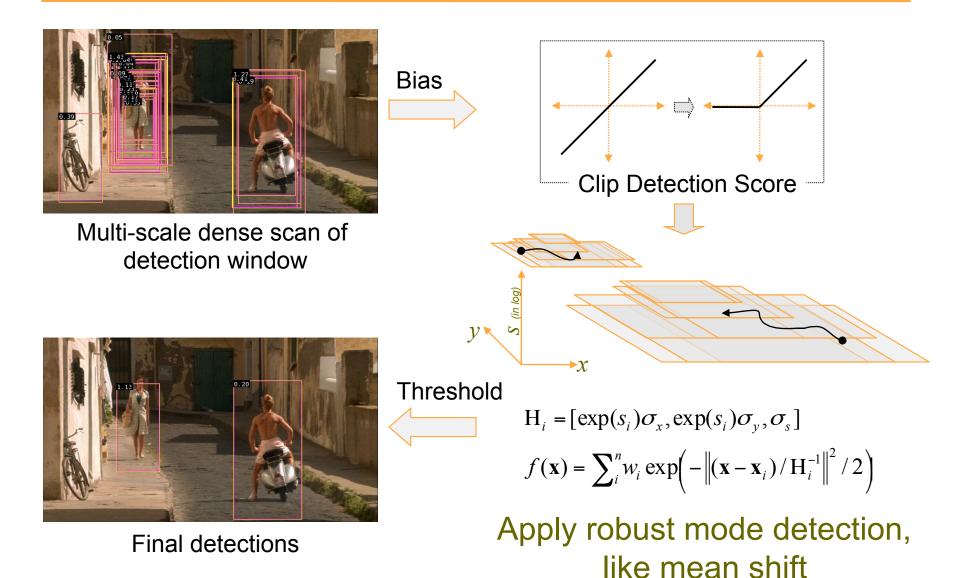
Trade off between need for local spatial invariance and need for finer spatial resolution

Descriptor Cues

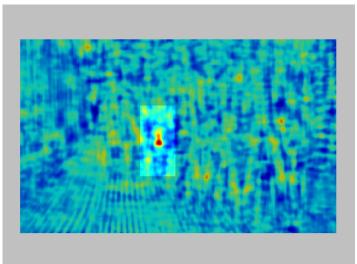


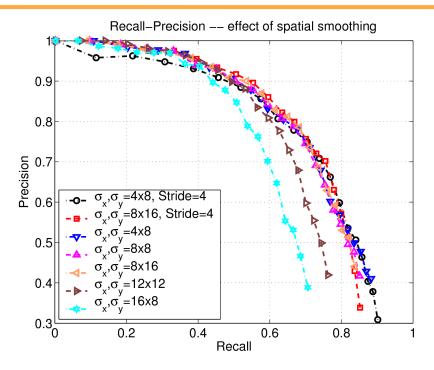
- Most important cues are head, shoulder, leg silhouettes
- Vertical gradients inside a person are counted as negative
- Overlapping blocks just outside the contour are most important

Multi-Scale Object Localisation



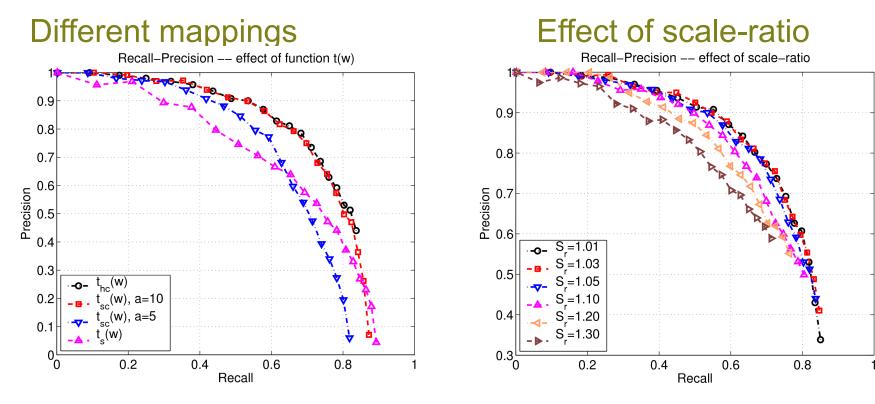
Effect of Spatial Smoothing





- Spatial smoothing aspect ratio as per window shape, smallest sigma approx. equal to stride/cell size
- Relatively independent of scale smoothing, sigma equal to 0.4 to 0.7 octaves gives good results

Effect of Other Parameters

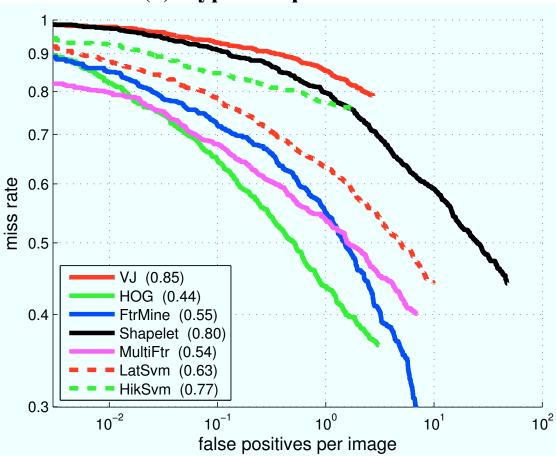


- Hard clipping of SVM scores
 gives the best results than simple probabilistic mapping of these scores
- Fine scale sampling helps improve recall

HOGs vs approaches till date...

HOG still among the best detector in terms of FPPI

 See Dollar et al, CVPR 2009
 "Pedestrian
 Detection: A
 Benchmark"



(b) **Typical aspect ratios**

Results Using Static HOG

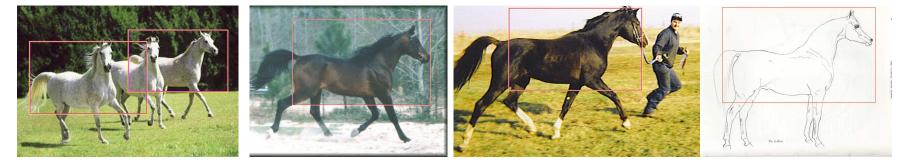
Conclusions for Static Case

Fine grained features improve performance

- Rectify fine gradients then pool spatially
 - No gradient smoothing, [1 0 -1] derivative mask
 - Orientation voting into fine bins
 - Spatial voting into coarser bins
- Use gradient magnitude (no thresholding)
- Strong local normalization
- Use overlapping blocks
- Robust non-maximum suppression
 - Fine scale sampling, hard clipping & anisotropic kernel

Human detection rate of 90% at 10⁻⁴ false positives per window
 Slower than integral images of Viola & Jones, 2001

Applications to Other Classes



M. Everingham et al. The 2005 PASCAL Visual Object Classes Challenge. Proceedings of the PASCAL Challenge Workshop, 2006. 24

Motion HOG for Finding People in Videos

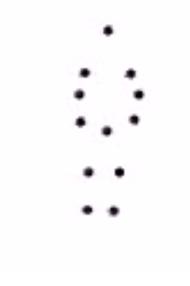
Finding People in Videos

Motivation

- Human motion is very characteristic
- Requirements
 - Must work for moving camera and background
 - Robust coding of relative motion of human parts

Previous works

- Viola et al, 2003
- Gavrila et al, 2004
- Efros et al, 2003

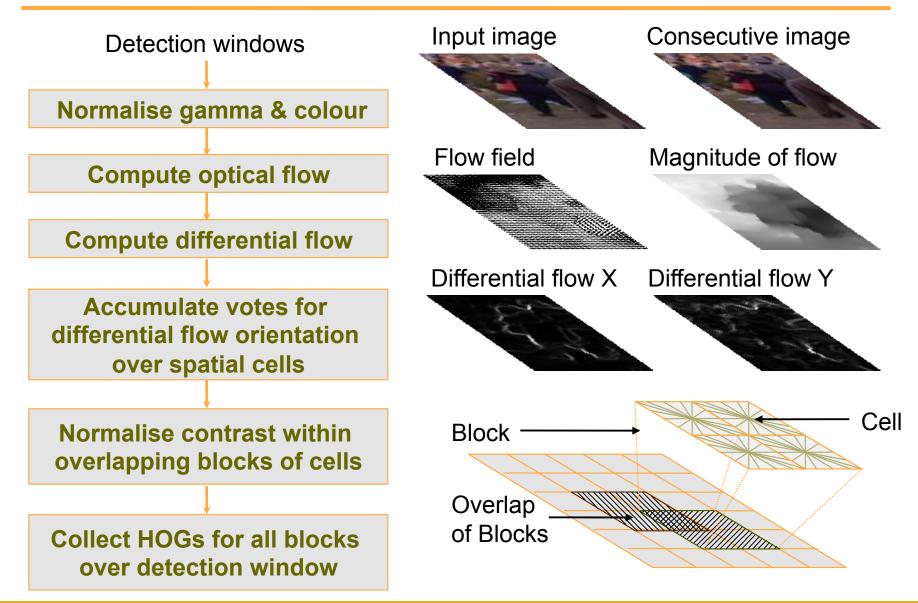


Courtesy: R. Blake Vanderbilt Univ .

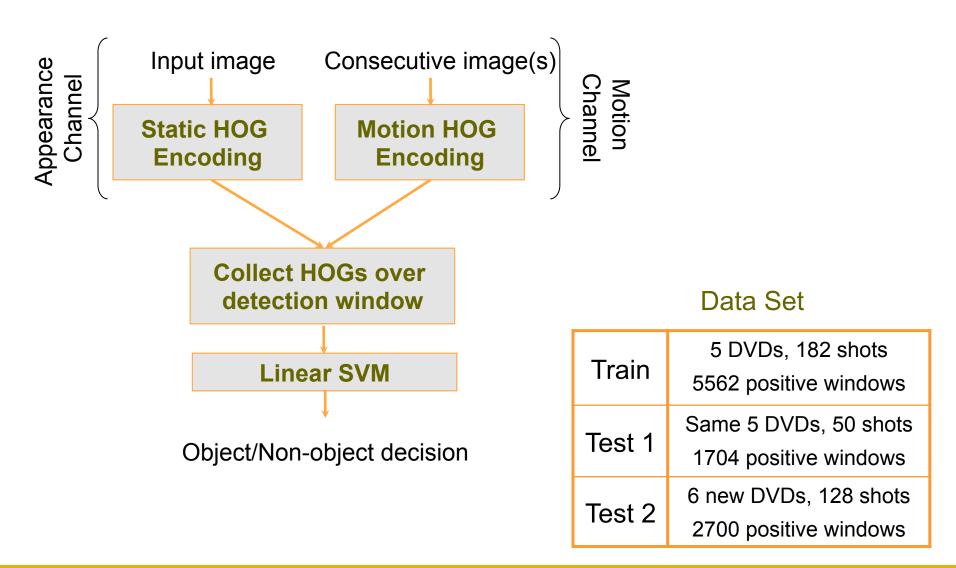
Handling Camera Motion

- Camera motion characterisation
 - Pan and tilt is locally translational
 - Rest is depth induced motion parallax
- Use local differential of flow
 - Cancels out effects of camera rotation
 - Highlights 3D depth boundaries
 - Highlights motion boundaries
- Robust encoding into oriented histograms
 - Some focus on capturing motion boundaries
 - Other focus on capturing internal motion or relative dynamics of different limbs

Motion HOG Processing Chain



Overview of Feature Extraction



Coding Motion Boundaries

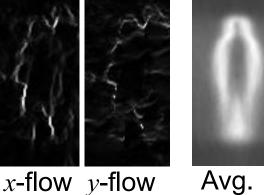
- Treat x, y-flow components as independent images
- Take their local gradients separately, and compute HOGs as in static images

First Second frame

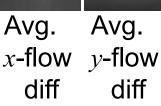
diff

Estd. Flow flow mag.

Motion Boundary Histograms (MBH) encode depth and motion boundaries

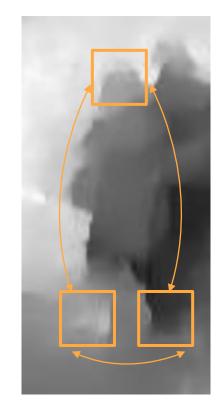


diff



Coding Internal Dynamics

- Ideally compute relative displacements of different limbs
 - Requires reliable part detectors
- Parts are relatively localised in our detection windows
- Allows different coding schemes based on fixed spatial differences

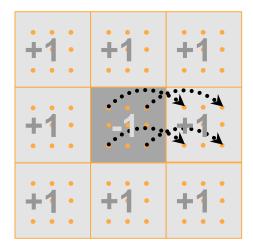


Internal Motion Histograms (IMH) encode relative dynamics of different regions

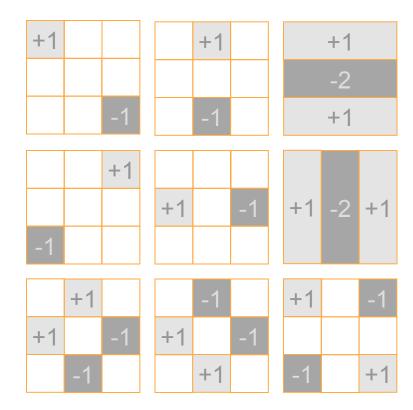
...IMH Continued

Simple difference

- Take x, y differentials of flow vector images [I_x, I_y]
- Variants may use larger spatial displacements while differencing, e.g. [1 0 0 0 -1]
- Center cell difference



 Wavelet-style cell differences



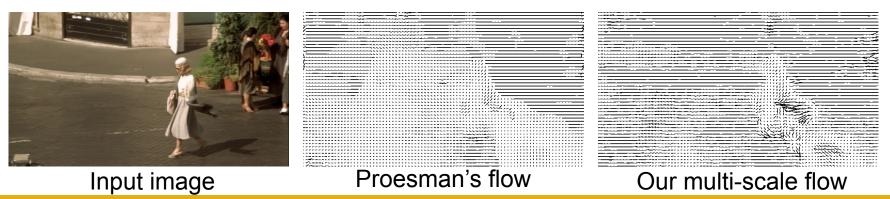
Flow Methods

Proesman's flow [Proesmans et al. ECCV 1994]

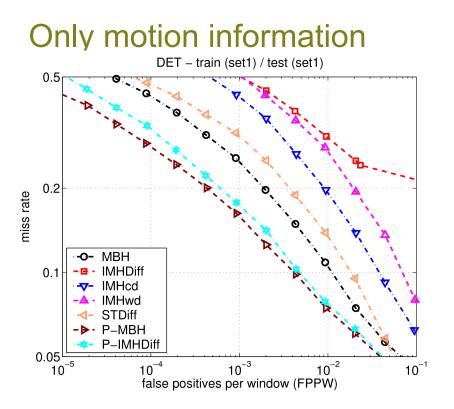
- 15 seconds per frame
- Our flow method
 - Multi-scale pyramid based method, no regularization
 - Brightness constancy based damped least squares solution $[x, y]^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \beta \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$ on 5X5 window
 - 1 second per frame

MPEG-4 based block matching

Runs in real-time

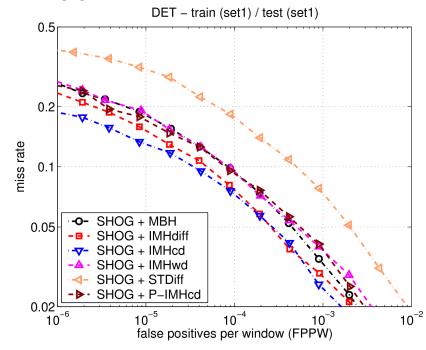


Performance Comparison



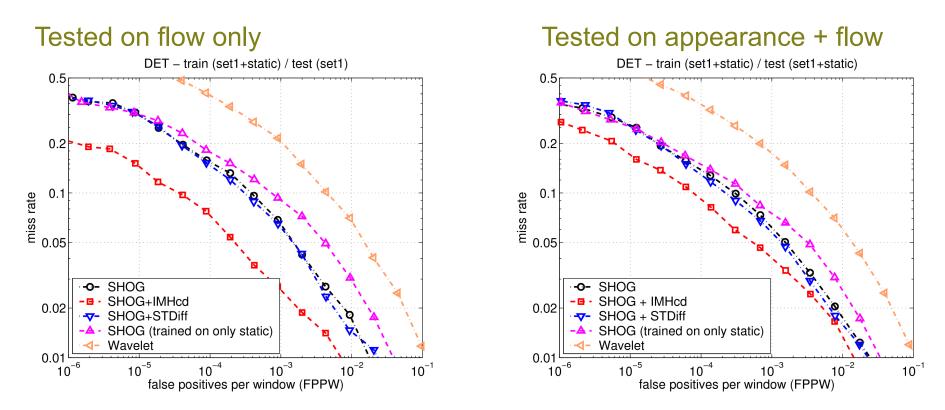
 With motion only, MBH scheme on Proesmans' flow works best

Appearance + motion



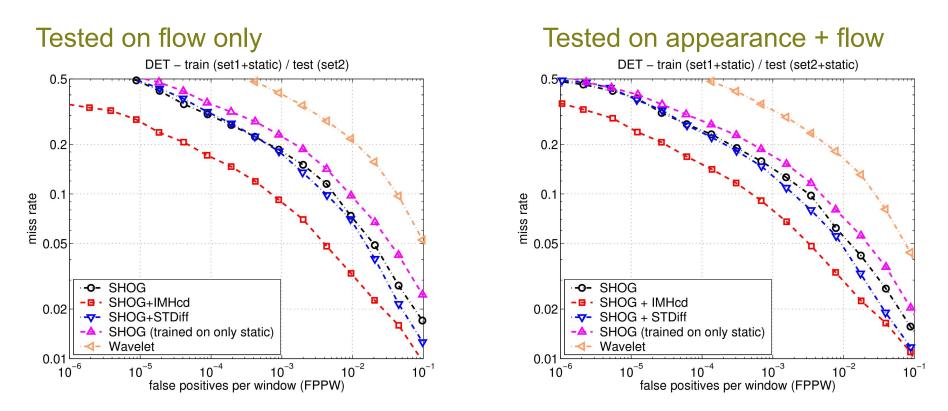
 Combined with appearance, centre difference IMH performs best

Trained on Static & Flow



- Adding static images during test reduces performance margin
- No deterioration in performance on static images

Trained on Static & Flow

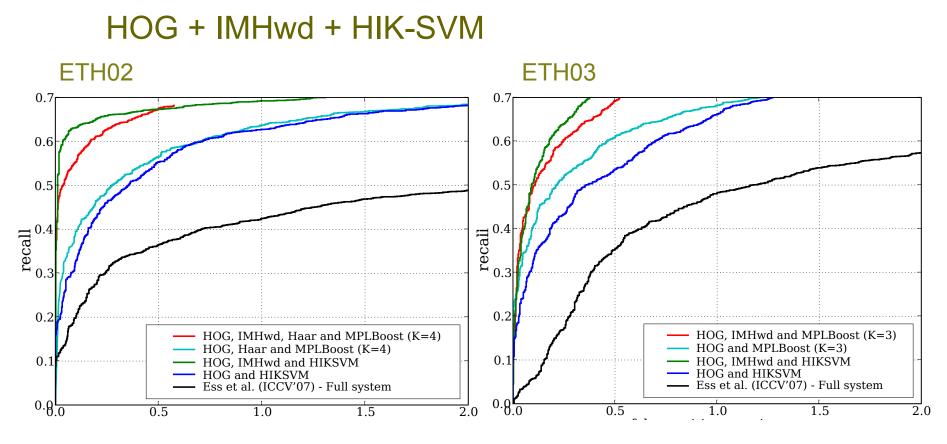


- Adding static images during test reduces performance margin
- No deterioration in performance on static images

Motion HOG Video

No temporal smoothing, each pair of frames treated independently

Recall-Precision for Motion HOG



- Wojek et al, CVPR 09
- Robust regularized flow + max in non-max suppression

Conclusions for Motion HOG

Summary

- When combined with appearance, IMH outperforms MBH
- Regularization in flow estimates reduces performance
- MPEG4 block matching looks good but motion estimates not good for detection
- Larger spatial difference masks help
- Strong local normalization is very important
- Relatively insensitive to number of orientation bins

- © Window classifier reduces false positives by 10 times
- Slow compared to static HOG (probably not any more FlowLib from GPU4Vision)

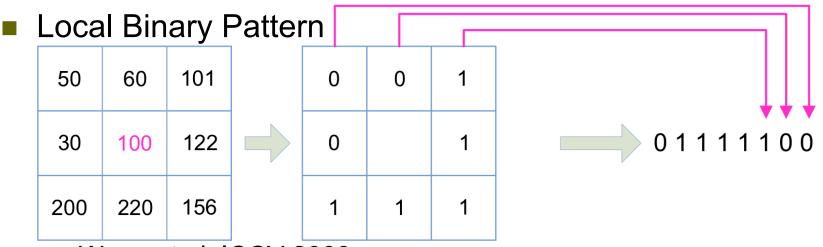
Summary

- Bottom-up approach to object detection
- Robust feature encoding for person detection
- Gives state-of-the-art results for person detection
- Also works well for other object classes
- Proposed differential motion features vectors for feature extraction from videos

Extensions

- Real time feature computation (Wojek et al, DAGM 08; Wang et al, ICCV 09)
- AdaBoost rejection cascade algorithms (Zhu et al, CVPR 06; Laptev, BMVC 06)
- Part based detector for partial occlusions (Felzenszwalb et al, PAMI 09; Wang et al, ICCV 09)
- Motion HOG extended (Wojek et al, CVPR 09; Laptev et al, CVPR 08)
- Histogram intersection kernel (Maji et al, CVPR 2008, CVPR 2009, ICCV 2009)
- Higher level image analysis (Hoiem IJCV 08)

Features for Object Detection



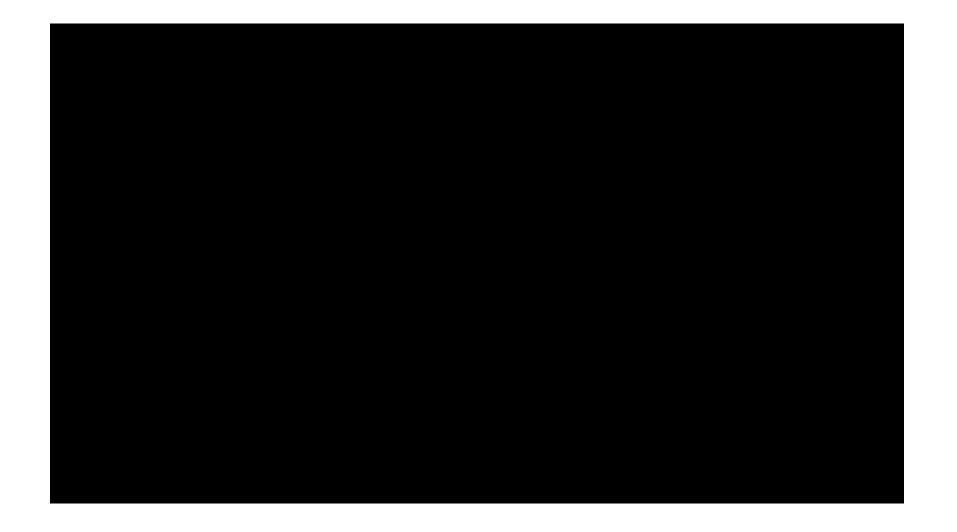
Wang et al, ICCV 2009

- Co-occurrence Matrices + HOG + PLS
 - Schwartz et al ICCV 2009
- Color HOG (Discriminative segmentation of fg/bg regions)
 - Ott & Everingham, ICCV 2009

Founder & CEO

Gesture Detection Using Webcams

Complete Lean Back Experience



Beta Launch in July 2011

State of art work in research & engineering

- Candidates for usability studies
- Summer internships

Contact: dalal@botsquare.com http://botsquare.com

Thank You

Contact: dalal@botsquare.com