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Abstract

We review the performance of current state of the art
fine-grained image classification algorithms using a vari-
ety of features on three datasets. We hope to gain a bet-
ter understanding as to what features are able to capture
the fine-grained details of images and how we can best
combine these features to achieve the best performance.
Additionally, we compare the performance of traditional
features with those learned using semi-supervised feature
learning techniques to evaluate how well deep architectures
can learn highly discriminative fine-grained image details.

1. Introduction
Traditional object classification datasets have focused on

objects that are substantially different in their visual char-
acteristics. These datasets generally focus on objects that
may be of vastly different sizes, shapes, and colors (e.g.
car, plane, chair, person). This focus has led to the devel-
opment of techniques that are successful at discriminating
very different objects, but fail to discriminate similar ob-
jects or instances of objects. With the exception of facial
recognition, very little work has gone into classifying sim-
ilar objects such as different types of dogs or cars. These
classification tasks rely on very small, fine-grained differ-
ences in visual features, such as different ears or tails in
dogs. More recent datasets containing humans performing
activities and playing instruments has led to new classifica-
tion techniques, however these techniques tend to rely only
on one type of feature (e.g. SIFT or HoG).

In this project, we hope to explore a large set of features
for fine-grained image classification, and identify a subset
of features that is able to perform well on three datasets:
the PASCAL VOC 2010 action classification dataset, the
recent People-Playing-Musical-Instrument dataset, and the
Caltech-UCSD Birds 200 dataset. Initially, we will look
at some standard features used in computer vision: SIFT,
shape-based templates, contextual features, HoG, Local Bi-
nary Patterns (LBP), wavelets, LLC, and color histograms.

We intend to evaluate these features using average preci-
sion as the metric on a variety of classifiers, including SPM,
Multiple-kernel learning, SVMs, and random forests with
discriminative decision trees [2]. Our hope is that a certain
subset of these features will provide improved performance
across all datasets and classifiers, while some features may
provide little or no useful information for fine-grained im-
age classification. Furthermore, we hope to beat the state-
of-the-art in activity recognition by utilizing a combination
of features (instead of just SIFT found in [2]). Through
the analysis and review of this variety of techniques, we
hope to gain the intuition to develop a new feature set that
is able to capture fine-grained information contained in im-
ages. Time permitting, we hope to compare these hand-
designed discriminative features to semi-supervised feature
learning techniques to determine the effectiveness of semi-
supervised feature learning at capturing fine-grained dis-
criminative information [1].
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2. Appendix
This project is also my course project for CS229 as well

as my rotation project. The computer vision component
will focus on features while the machine learning compo-
nent will be focused on classification and semi-supervised
feature learning.


