
CS231A Course Project Proposal
Fully automated image matting with Kinect

Karen Cheng
kycheng@gmail.com

Buu-Minh Ta
bmta@stanford.edu

Abstract

Future Distribution Permission
The author(s) of this report give permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

Digital matting is a process that extracts the
foreground from the background. Bayesian al-
gorithm is a commonly-used method that per-
forms matting by expressing each pixel value as
a function of foreground color, background color,
and the opacity of the foreground object. This
approach requires a trimap to provide an initial
guess for foreground, background, and unknown
regions. The limitation of this approach is that the
trimap is often generated manually, and would be
highly inefficient if one were to implement mat-
ting on a video stream.

This problem could be circumvented with
depth map from a 3D camera – the Kinect, for
example. In this paper, we propose different
methods that we will evaluate to compute trimaps
with the Kinect. The simplest approach applies a
threshold to the depth values in order to differenti-
ate the foreground from the background. The sec-
ond approach applies segmentation to the depth
map. The segmentation methods we consider ap-
plying are K-means and Ncuts. In this paper, we
will demonstrate that depth data could provide us
with a more robust method to automate the gener-
ation of trimap.

2. Data collection

The data will be collected using a Kinect. Our
data collection will consist of images that are easy
to interpret and images that are more complex.
An easy-to-interpret image would have a uni-
form background and a well-defined foreground,
whereas a complex image would have a sophisti-
cated background and a fuzzy foreground.

2.1. Calibrating the Kinect

Before the mapping of depth values to RGB
pixels take place, the cameras were calibrated to
obtain the intrinsic and extrinsic parameters. The
intrinsic parameters define the optical and geo-
metrical properties of both cameras. The extrin-
sic parameters are what define the relationship
between the camera coordinates. Calibration is
done based on Zhengyou Zhangs flexible cali-
bration method implemented in OpenCV, utiliz-
ing images of a checkerboard pattern at 8 differ-
ent orientations. To increase OpenCVs cvFind-
ChessboardCorners accuracy in locating the cor-
ners, the checkerboard pattern was uniformly il-
luminated by a floodlight, and the IR projector
was covered to block the speckles it projects to
the scene. The results obtained were comparable
to findings from an online source [4].

2.2. Correspondence between RGB and depth

We determine the correspondence between
depth and RGB pixels by the first transforming
2D image points from the depth camera, [u, v]T ,
to 3D depth coordinate points [Xc, Yc, Zc]

T :
The 3D depth points then undergo rotation and

translation to transform into RGB space, and are



then projected onto the RGB image plane. Fi-
nally, the depth value at [u, v]RGB are matched
with the RGB values at [u, v]RGB. Depth values
are obtained by converting the raw 11-bit dispar-
ity values to distance values in centimeters.

In a case where the foreground can be easily
separated from the background, as on figure 1, we
can see that the correspondence depth is not cor-
rect. We can see that the shape of the extracted
foreground (using k-means, as explained in next
section) is correct, but is not at the correct loca-
tion. . . This is an issue we have to inspect further.

3. Algorithms

3.1. Naive approach: simple threshold

The easiest approach is to use a threshold on
depth to separate the foreground from the back-
ground. However, scenes can be very different,
there can be a great distance between foreground
and background, or they can be close. Another
problem is what happens if the depth of the back-
ground is continuous and overlaps the depth of the
foreground. This can be the case if the picture is
taken in a angle, and the background is the two
walls of the angle. This shows that this simple
approach can’t really work, and is too simple.

3.2. Segmentation with k-means

Another approach is to segment our points into
two clusters, depending on their depth. This
solves the first issue of the threshold, because now
the threshold is apdative and depends on the data.
Figure 1 shows a result where the foreground is
easy to separate from the background, as their
depth don’t overlap. However, if that’s the case,
then we have the same problem.

What we can do is to project the clusters onto
the image space. In the problematic situation de-
scribed above, the cluster corresponding to the
foreground would be discontinuous, and sepa-
rated by the background. We can assume that the
foreground is at the center of the image, and that
it is continuous. That way, we can correctly ad-
just the foreground cluster by taking only the part
that satisfy those conditions.

Once we have 2 clusters, we have to build the
trimap, and thus define the confidence we have in
each of the clusters. K-means doesn’t really allow
us to do that, and a simple way would be to define
a border of incertitude on the border of the two
clusters. This is kind of arbitraty, and probably
not very precise.

3.3. Segmentation with N-cuts

K-means has the advantage of being simple to
implement, and fast. However, it might not be
perfect for our problem, since we can’t directly
treat clusters in image space, because basically,
the distance that matters is the distance to the cen-
ter of the clusters. N-cuts has a more local prop-
erty, as the disparity is set between neighbors.
Furthermore, N-cuts can give us the level of confi-
dence we have in the clusters, at the discretization
step. That way, we can have the unknown zone
for the trimap.

We could also combine a segmentation on the
color and a segmentation on the depth, and set the
unknown zone where they contradict each other.

4. Status

We have collected some data with the Kinect,
and calibrated it to get the intrinsics parameters.
However, the correspondence is not correct, so
we have to investigate about this. We thought the
Kinect would give us an easy and good correspon-
dence, but it doesn’t seem to be the case, so we
had to work, and keep working on this part.

The segmentation has been done on the depth
to get 2 clusters. On simple cases, where the fore-
ground is well separated from the background,
this works perfectly. We have to implement and
test the idea where they overlap.

We are investigating some n-cuts implementa-
tion to understand exactly how we can modify
them for our purpose.

We have implemented the image matting from
the trimap following the algorithm presented in
[1]. We are still facing some issues, because the
paper doesn’t present all the details, and probably
because of the initial conditions.



Figure 1. Foreground and background are easy to separate. From left to right: RGB picture, corresponding depth, foreground extracted
using depth with kmeans

References
[1] A Bayesian approach to digital matting, B. Curless, D.

Salesin, R. Szeliski

[2] Video matting from depth maps, J. Finger, O. Wang

[3] A closed-form solution to natural image matting, A. Levin, D.
Lischinski, Y. Weiss

[4] http://nicolas.burrus.name/index.php/Research/KinectCalibration

[5] http://openkinect.org/wiki/Imaging_Information


