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images. Some objects appear a lot of times in the testing 
images, such as monitor, desk, sink, faucet, etc. Some 
objects such as tennis appear only once or twice. There are 
also some kinds of objects which do not have 
corresponding subsets in ImageNet, such as chopping 
board. We neglect such kinds of objects during training and 
testing. 

2.2. Expected Result and Evaluation 

We expect our algorithm can achieve good results on the 
testing images. The ideal result is shown as in figure 1. Our 
algorithm might not detect every object but it should detect 
as many objects as possible. For each kinds of object, we 
can get a detection rate and false alarm rate. We can also 
calculate the overall detection rate and false alarm rate. We 
will run part based models [1] on our dataset and compare 
the result with the result of our own algorithm. 

3. Technical Approach 

3.1. Baseline Approach 

We detect each object independently using sliding 
windows at different scales. The detector we used can be 
the one using part based models [1]. 

3.2. Overall Detection via Energy Maximization 

For each kind of object, we first train a simple detector 
using HOG and logistic regression. We use a low threshold 
to propose candidates ሺ ௜ܱ, ,௜ݏ ,௜ݔ  ௜ሻ. ܱ௜ denotes the kind ofݕ
object. ݏ௜  denotes the scale. ݔ௜, ௜ݕ  denote the position. i 
denote the candidate. For two candidates, we model the 
conditional probability as following: 
ܲ൫ൣ݋௝, ,௝ݏ ,௝ݔ ,௜݋௝൧หሾݕ ,௜ݏ ,௜ݔ ௜ሿ൯ݕ

ൌ ܲ൫݋௝ห݋௜൯ܲ൫݋௝, ,௜݋௝หݏ ,௝݋௜൯ܲ൫ݏ ,௜݋௝หݔ ,௝݋௜൯ܲ൫ݔ ,௜݋௝หݕ  ௜൯ݕ
where ܲ൫݋௝ห݋௜൯  measures the relevance of two kinds of 
objects.  

ܲ൫݋௝, ,௜݋௝หݏ ௜൯ݏ ൌ  
ቀݏ௝ െ ௜ݏ െ ை೔ைೕቁߤ

ଶ

ை೔ைೕߪ
ଶ  

 

is a Gaussian distribution. ܲ൫݋௝, ,௜݋௝หݔ ௜൯ݔ  and 
ܲ൫݋௝, ,௜݋௝หݕ ௜൯ݕ  can also be modeled by Gaussian 
distribution. 

Then we can construct a graph model. Each node 
ܰሺ݅ሻ ൌ ሺ݋௜, ,௜ݏ ,௜ݔ ,௜ݕ ݀௜ሻ represent a candidate proposed by 
the simple detector. The value for each node ܰሺ݅ሻ is the 
probability from HOG and logistic regression. The value 
for each edge ܧሺ݅, ݆ሻ is the probability above, i.e. ܧሺ݅, ݆ሻ ൌ
 ܲ൫ൣ݋௝, ,௝ݏ ,௝ݔ ,௜݋௝൧หሾݕ ,௜ݏ ,௜ݔ ௜ሿ൯ݕ . Then the total energy is 
defined as: 

ሺ݂݈ܽ݃ሻݕ݃ݎ݁݊ܧ ൌ  ෍ܰሺ݅ሻ

௜

݂݈ܽ݃ሺ݅ሻ

൅෍ܧሺ݅, ݆ሻ

௜ஷ௝

݂݈ܽ݃ሺ݅ሻ݂݈ܽ݃ሺ݆ሻሽ 

It is a labeling problem. ݂݈ܽ݃  is a labeling function 
which labels whether a candidate is true (value = 1) or false 
(value = 0). 

This energy minimization approach takes relationship 
between objects into considerations.  The relationship 
includes the co-occurrence between two kinds of objects 
and the relationship between their scales and their positions. 
However, it might be difficult to implement. Therefore, it 
might be easy to implement if we limit the relationship 
between a certain highly-related kinds of objects, such as 
monitor and keyboard, desk and chair, cooker and pan, etc. 

3.3. Posterior Handle using Depth Image 

Because we do not have depth images during training 
process, we cannot incorporate the depth information 
during training. However, we can use depth images to 
remove the false alarms by a certain detection method. 

The first criterion is that the depth of an object is a 
continuous function of pixels. Therefore for each bounding 
box candidate, we compute the pixel histogram of depth. If 
there is a significant gap in the histogram, then the 
bounding box candidate should be removed. 

The second criterion is using prior information. There is 
some common sense about the layout of certain objects. For 
example, from popular view points, keyboard is always in 
front of a monitor. We can use the depth image to check this 
criterion. 

I am still thinking about how to incorporate depth image 
in the detecting process more effectively. 

4. Intermediate/Preliminary Results 
A lot of time is spent on labeling the cluttered testing 

images. I am still training the detectors using part based 
models. 
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6. Appendix 
My course project is part of a larger project in vision lab. 

 


