
Robust Text Reading in Natural Scene Images

Tao Wang, David Wu
Stanford Computer Science Department

353 Serra Mall, Stanford, CA 94305
twangcat@stanford.edu, dwu4@stanford.edu

Abstract

In this paper, we consider applying multilayer, convolu-
tional neural networks to construct a complete end-to-end
text recognition system with performance comparable to the
current state-of-the-art. Such a system demonstrates the
possibility of using a single, unified architecture for both
text detection and recognition with minimal need for elabo-
rate hand-engineering of features.

1. Introduction
Extracting textual information from natural images is

a challenging problem with many practical applications.
While current state-of-the-art methods achieve nearly per-
fect performance on Object Character Recognition (OCR)
for scanned documents, the more general problem of rec-
ognizing text in unconstrained images is not quite so sim-
ple. Recognizing text in scene images is more challenging
due to the many possible variations in backgrounds, tex-
tures, fonts, and lighting. As a result of these variations,
many high-performing text detection and character recog-
nition systems combine cleverly hand-engineered features
[1, 5] or carefully-designed multi-step pipelines [7, 10].

In this paper, we approach the problem from a different
angle by using systems that can learn the underlying fea-
tures best suited for a particular problem. Like many previ-
ous text recognition systems, we postulate a multi-stage ap-
proach. We begin by training a text detector that performs a
binary classification task: determine whether a given image
patch contains text or does not contain text. Then, given
a full image, we use a sliding window approach to com-
pute bounding boxes for regions of text. Now, in the second
step, we train a character classifier that achieves high accu-
racy on identifying a character within a given patch. Here,
we use a 62-way classifier, with one class for each alphanu-
meric character (both uppercase and lowercase). Given the
bounding boxes from the text detector, we again use a slid-
ing window approach with the character classifier to iden-
tify the word in the bounding box. Unlike many previous

works on end-to-end systems that have seperate learning ar-
chitectures for the text detection stage and character classi-
fication stage, our system uses essentially the same learning
architecture for both tasks.

2. Problem Statement
In training the text detector, we have opted to define a

positive example as an example in which a single character
appears centered in the 32-by-32 window, and a negative
otherwise. In particular, windows containing partially oc-
cluded characters, part of a character, or off-centered char-
acters are considered negatives. This particular definition
will help with computing tight bounding boxes for regions
of text, which will be conducive for the character recog-
nizer. Given this criterion, we have assembled a dataset
consisting of examples taken from the ICDAR 2003 train-
ing images [9], the English subset of the Chars74k dataset
[5], and the sign-reading dataset from Weinman, et al. [12].
We further augment our dataset using synthetically gener-
ated examples. To evaluate the performance of the com-
plete end-to-end system, we intend to example word-level
precisions and recalls on the ICDAR dataset [9]. We are
also considering using the harder, but perhaps, more rele-
vant Street View Dataset [7]. We also evaluate each of the
individual components of the system. For text recognition,
we evaluate the precision and recall of the computed bound-
ing boxes of the full ICDAR dataset. For the character clas-
sifier, we can measure accuracies on individual characters,
as well as overall accuracies at the word level.

3. Learning Architecture
We now describe our architecture used to learn the fea-

ture representations and train the classifiers used for both
the detection and recognition systems. We consider a multi-
layer convolutional neural architecture similar to [2, 8, 11]
for both components of the system. In particular, we adopt a
two-layer convolutional structure, with an average-pooling
layer following each convolutional layer. The responses
from the second pooling layer are then combined in a fully

1

32×32 25×25×64 5×5×64 4×4×96 2×2×96

Convolution Average Pooling Convolution Average Pooling Classification

Figure 1. Convolution neural network used for detection and recognition. The only difference between the CNN used for detection and
recognition is the sizes of the convolutional layers.

connected classification layer, where we have one output
unit for each class (binary in the case of text detection,
62-way in the case of character recognition). We pretrain
the first convolutional layer with filters generated by a fea-
ture learning algorithm and fine-tune the overall network by
backpropagation of the classification error. Finally, we can
integrate the text detector and character recognizer to con-
struct a complete end-to-end text recognition system.

3.1. Unsupervised pretraining

We begin by using an unsupervised learning algorithm to
pretrain the filters used for both detection and recognition.
Here, we use a pipeline that resembles the architectures de-
scribed in [3, 4]. We briefly outline the key components of
this system:

1. Collect a set of m small image patches from the train-
ing set. As in [3], we use 8x8 grayscale patches. This
yields a set of m vectors of pixels x̃(i) ∈ R64, i ∈
{1, . . . ,m}.

2. Normalize each vector x̃(i) for brightness and contrast
(subtract out the mean and divide by the standard de-
viation). We then whiten the patches x̃(i) using ZCA
whitening [6] to yield a new set of vectors x(i).

3. Apply an unsupervised learning algorithm on the pre-
processed patches x(i) to build a mapping from input
patches to feature vectors z(i) = f(x(i)). In this paper,
we adhere to the variant of the K-means algorithm de-
scribed in [3] where we learn a dictionary D ∈ R64×D

of normalized basis vectors.

3.2. Convolutional layers

Our two-layer convolutional architecture is shown in
Figure 1. For the first convolutional layer, we use 8-by-
8 filters. In the case of detection, we have 64 filters. We
evaluate these filters convolutionally over the entire im-
age, yielding a 25-by-25-by-64 response map. Like [3], we
now apply a scalar nonlinearity function to these responses:

z = max{0, |x| − α} where x here denotes an element in
this response map and α is a hyperparameter to be chosen.
In this paper, we take α = 0.5. As is standard in the litera-
ture on convolutional architectures, we now apply a spatial
pooling step. This has the benefit of reducing the dimen-
sionality of the response maps, and thus, renders the net-
work easier to train. Here, we opt for average pooling, in
which we sum over the values in a 5-by-5 grid over the 25-
by-25-by-64 response map. Average pooling has the added
benefit that it allows our model a degree of translational in-
variance; since we are summing over distinct blocks of the
image, a slight translation will not lead to a completely dif-
ferent response. After the first average-pooling step, we in-
troduce one additional convolutional and average pooling
layer on top. The outputs of the second pooling layer are
then fully connected to a classification layer. In the case
of detection, we have two nodes (for binary classification)
and for recognition, we have 62 nodes (one for each class).
Note that we perform the backpropagation of the classifica-
tion error on the GPU to speed up training and validation
time.

3.3. Text detector and character classifier training

Since we are using centered characters as the definition
of text, we have compiled a dataset consisting of examples
from the ICDAR 2003 training images [9], the English sub-
set of the Chars74k dataset [5], and the sign-reading dataset
from Weinman, et al. [12], as well as as synthetically gen-
erated examples shown in Figure 2. Combined, our dataset
consists of 75,000 positive examples and 150,000 negative
examples. For the character classifier training, we use the
same dataset; however, we only use the positive character
examples in this case. We have considered a 63-class sys-
tem where we introduce a class for non-characters such as
spaces, background, and so forth. However, this does not
work very well with word level recognition and we have
opted back to a 63-class system.

Figure 2. Left: Images from the ICDAR-Character dataset. Right: Synthetic data we generate

Figure 3. From left to right, response map for a centered line of text, response map for a partial line of text, bounding boxes before
non-maximum suppression, bounding boxes after non-maximum suppression.

4. Experiments

4.1. Text detection

Given an input image with dimensions, we begin by
identifying regions of text using a sliding window approach.
At each position in the image, the detector assigns it a score
denoting the likelihood that the given window contains text.
Here, a positive response suggests that the given window
contains text and a negative response suggests the contrary.
To allow for different-sized text, we evaluate the detector re-
sponses over different scales. After this process is complete,
we have a response map that contains a score at each loca-
tion over different scales. Now, noting that text tends to be
aligned horizontally, we go through each horizontal line in
the response map and compute the window with maximum
score. We show two lines and their respective responses in
Figure 3. As we can see from Figure 3, if there is a word
centered on a line, then the sum of the responses for the
window containing the given word will have a high posi-
tive score. In lines that do not contain text, the scores will
generally be negative. By thresholding this score, we can
restrict our focus to just certain lines in the image. To go
from a horizontal window spanning the width of the image
to a bounding box for a word, we examine the detector re-
sponses across the line, and apply non-maximal suppression
(NMS). Using the locations of the peaks (generally corre-
sponding to a centered character), we extract a word-level
bounding box by taking the leftmost peak and the rightmost
peak. We now rescore each bounding box by averaging the
detector response over the length of the bounding box. At
this point, we have a set of candidate bounding boxes com-

puted over different scales. To further filter this set of boxes,
we again apply non-maximal suppression to the candidate
bounding boxes. Results from this NMS are given in the
last pair of images in Figure 3. In this particular case, we
see that the pipeline has properly identified the regions of
text in the image.

In terms of quantitative results, if we score the bound-
ing boxes on the ICDAR test set using the ICDAR criterion
[9], we obtain an F1 measure of 0.39, which is significantly
worse than current state-of-the-art systems which obtain F1

measures between 0.66 and 0.69 [1, 10] . However, we note
that this metric evaluates word-level bounding boxes while
our detector tends to output line-level bounding boxes. The
next step here will be to perform word-level segmentation,
which should lead to an improvement in word-level preci-
sions and recalls.

4.2. Character Classification

The character classification accuracy is mainly evaluated
on the ICDAR-Character dataset, which consists of cen-
tered characters that are cropped out from the ICDAR ro-
bust reading dataset. We are still in the process of running
finetuning on a large dataset and do not have concrete num-
bers yet.

References
[1] Y. W. B. Epshtein, E. Oyek. Detecting text in natural scenes

with stroke width transform. 2010. 1, 3
[2] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and

J. Schmidhuber. High performance neural networks for vi-

sual object classification. Technical Report IDSIA-01-11,
Dalle Molle Institute for Artificial Intelligence, 2011. 1

[3] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh,
T. Wang, D. J. Wu, and A. Y. Ng. Text detection and char-
acter recognition in scene images with unsupervised feature
learning. In ICDAR, 2011. 2

[4] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer
networks in unsupervised feature learning. In International
Conference on Artificial Intelligence and Statistics, 2011. 2

[5] T. E. de Campos, B. R. Babu, and M. Varma. Character
recognition in natural images. In Proceedings of the Interna-
tional Conference on Computer Vision Theory and Applica-
tions, Lisbon, Portugal, February 2009. 1, 2

[6] A. Hyvarinen and E. Oja. Independent component analysis:
algorithms and applications. Neural networks, 13(4-5):411–
430, 2000. 2

[7] S. B. K. Wang, B. Babenko. End-to-end scene text recogni-
tion. 2011. 1

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Compu-
tation, 1:541–551, 1989. 1

[9] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and
R. Young. ICDAR 2003 robust reading competitions. In-
ternational Conference on Document Analysis and Recogni-
tion, 2003. 1, 2, 3

[10] Y. Pan, X. Hou, and C. Liu. Text localization in natural scene
images based on conditional random field. In International
Conference on Document Analysis and Recognition, 2009.
1, 3

[11] Z. Saidane and C. Garcia. Automatic scene text recogni-
tion using a convolutional neural network. In Workshop on
Camera-Based Document Analysis and Recognition, 2007. 1

[12] J. Weinman, E. Learned-Miller, and A. R. Hanson. Scene
text recognition using similarity and a lexicon with sparse
belief propagation. In Transactions on Pattern Analysis and
Machine Intelligence, volume 31, 2009. 1, 2

