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1 Abstract

Image segmentation is a fundamental preprocessing step to other vision tasks
such as object recognition. Our project focusses on using depth information
from a Kinect depth sensor as an additional feature to aid in segmenting an
image. In this report we describe the work we have done so far in the project.

2 Introduction

With the availability of commercial depth sensors such as the Kinect, there is
a body of work using the depth information provided by the Kinect to segment
images of scenes [1][6]. In this project we try to segment cluttered scenes by
augmenting color information in images with depth cues from the Kinect data.
In this milestone, our major focus was to study the literature in the RGB-
Z domain, implement code to replicate the method in [4], and try different
modifications in order to make the method perform better.

3 Related Work

In previous work [6] a top down approach to segmentation is used, by using
a combination of a Canny detector, a Delawney Triangulations and modified
Normalized Cut [5]. Other work [1] focusses on segmenting planes in real time
using the kinect depth sensor. The method presented here is a bottom-up
approach to constructing meaningful segments of pixels.

4 Approach

We obtained our Kinect dataset from the Bekeley 3DO project [2]. These consist
of a set of images of both RGB as well as depth maps obtained from the Kinect.
The 3DO project provides both raw depth map images as well as depth images
that have been calibrated so as to map each pixel of the depth image to each
pixel in the RGB image. The raw depth image is also smoothed to reduce the
jitter that is observed as described in [2]. We thus use the smoothed version of
the depth images to obtain depth values for the pixel locations. An example of
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the depth image can be seen in figure 5. While choosing images from the data
set we choose ones that have a depth variance as well as occlusion effects.

Our main task for this milestone was to replicate the method in [4], and
produce similar behaviour given different scenes. As the first step, like in [4],
we create 200 super-pixels using the N-cut method [5] using publicly available
code. This is done using only the color information in the original image. In
the second step we incorporate depth information for segmentation.

To incorporate depth information, we consider the super-pixels obtained
from the first step as a graph instead of the pixels themselves. Each super-pixel
si is a node in the graph and there is an edge εij connecting any pair of adjacent
super-pixels si and sj . As postulated in [4], each edge represented as such, has
an associated weight, which for a pair of super-pixels si and sj is given by:

wij =
1

εij .|(ci − cj)Tni|.|(ci − cj)Tnj |

Where ci, cj ∈ R3, are the centroids of the respective super-pixels , ni, nj ∈
R3, are the normals of the respective planes in which all points of the super-pixel
lie, and eij represents the error of the points fitting the plane in the combined
cluster.

To obtain ci, we first obtain the x, y, z coordinates of the image point in
the world coordinates. ci is obtained as the centroid of all the points in the
super-pixel. To obtain ni, we formulate the problem as a linear equation
[x, y, z, 1; ....]∗[a, b, c, d]T = 0 to find the parameters of the plane ax+by+cz+d =
0 representing the least squares fit of the points in the cluster. The solution to
this is the last column of V in the SVD of [x, y, z, 1; ....]. This represents the
eigenvector with the least eigenvalue.

Instead of using a priority queue as in [4], we use a matrix of size (initial
number of clusters x initial number of clusters) to store the weights between
super-pixels. We then perform an iterative procedure to merge super-pixels
greedily. We cache all the normals and the centers that are computed for effi-
ciency.

To implement greedy merging, in each iteration, we choose two super-pixels
which have maximum weight and merge them. The process is simply a lookup
for the maximum element in the matrix that stores the weight values. To merge
the 2 super-pixels we assign the super-pixel number of the super-pixel with the
lower number to all the elements in both the super-pixels. We then update the
ni and ci values for the merged super pixel and also update the weights for only
those entries which change in the weight matrix, i.e. for all the adjacent nodes
of the merged super-pixel and itself.

5 Experiments

We perform 2 types of evaluations on our implementation as well as the modi-
fications we made to the method. One measure is qualitative, by looking at the
clusters and commenting on the clustering errors. Another way to measure clus-
tering performance is quantitative. For a quantitative measure, we implemented
the entropy measure proposed in [4].

The entropy measure is defined as:
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Figure 1: Smoothed Depth image

Figure 2: Using metric 1. Left image, 150 clusters (70 iters). Center: 50 clusters
(170 iters), Right: 220 clusters (original after superpixelation)

Figure 3: Using metric 2. Left image, 160 clusters. Center: 100 clusters, Right:
50 clusters
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Figure 4: Ground Truth Image

I = − 1

N
∗

∑
i∈Sgt

∑
j∈Li

Pij lnPij

Where Pij is the percentage of Label j in segment i. Sgt is all the ground
truth segments. We manually labeled a ground truth image as shown in figure
5. Th initial entropy values that we got from super-cluster segmentation and
merging were clustered around values of -5 (which was a marginal decrease from
the entropy of the super-clustering that use as the input for our greedy-merge
algorithm).

We also experimented with different weight metrics for the greedy merging.
One problem with the previous weight metric is that it might allow for merging
of perpendicular surfaces. Since we are merging between segments that are
adjacent in each step, we do not need to keep track of weights beyond a radius
of 1 from a node. This we can ignore the ci terms, since for adjacent nodes they
will be similar. Thus we define this new metric as:

wij =
1

eij ∗ ‖ni − nj‖
We call this weight metric 2 and the previous one as weight metric 1.

The output we obtain from this metric is shown in figure 3.
Results from running the method using metric 1 and metric 2 are shown in

figure 2 and figure 3 respectively. We observe the results obtained by merging
the segments together. We observe that as suspected, the weight metric 1 merges
the back wall with the laptop on the table in figure 2, however with our modified
metric 2, for the same number of clusters, the perpendicular planes do not get
merged. Otherwise the resulting clusters from the 2 metrics are similar and do
not show much difference.

6 Future Work

As work for the final submission we would like to try different ideas to incor-
porate depth information such as describing each cluster with a feature vector
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so as to make it easier to apply machine learning to cluster merging as in [3],
instead of using heuristic metrics.
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