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1. Introduction

At the moment, I know nothing Schopen-
hauer’s philosophy. Nor, as far as I can tell, do
any of my friends. In a world without written lan-
guage, we’d be at an impasse. If I were serious
about learning it, I’d need to go to the Philosophy
department, schedule a meeting with a professor,
and ask for an explanation. Fortunately, we don’t
live in that world. I can pick up a copy of The
World as Will and Representation and get a rough
idea of the concepts. No one spoke: the writing
silently communicated everything.

Music, like speech, can be written. But to
many of us--particularly amateurs--written notes
don’t directly convey music in the same way that
written words convey ideas. Instead, we need to
first sit in front of our instrument of choice and
play it note by note, mechanically, listening as we
play. Eventually, after some awkward stumbling,
there’s a moment where the individual notes be-
come a melody and everything clicks. Once the
click happens, each note becomes a necessary part
of a logical whole, and the learning process snow-
balls.

Hearing Sheet Music is a project which tries to
provide that click. Rather than sitting at a piano
bench and hacking away note by note, you take
out your iPhone and point it at the music. A cursor
appears at the start of the staff . You hit PLAY

and the music starts, highlighting notes in your
camera feed as theyre being played in real time.
Listen to the whole song a few times through. If a
particular measure is giving you trouble, highlight
it, cut the tempo in half, and re-play.

2. Problem Statement

The above was a high-level description of an
end result, which I expect will take a far more pol-
ished User Interface than a few weeks will permit.
In the short term, I will limit myself to a particular
subtask: single image score comprehension. As
input, the algorithm will be given an image con-
taining sheet music. As output, the song (if the
entire width of the score is visible) will be played
– otherwise, multiple parts will be detected, and
a user is given the option of selecting which por-
tion to hear. As this is meant to be run on a phone,
it must be computationally inexpensive—if at all
possible, I wish to avoid any server-side process-
ing.

2.1. Input

I assume that a score consists of printed black
characters on a white background, with poten-
tial markup on the surrounding page but minimal
noise on the staff itself. I make no assumption
that the exact typeface of each note is the same,
nor that there must be a single melody line. There
may be multiple clefs, as well as non-standard key
signatures.

In the input image, the score must be reason-
ably visible—qualitatively, this means the lines of
the staff must be visible to a human observer, as



are the note types and locations. I further assume
that, while perspective effects will be present,
the sheet itself is well approximated by a rigid
plane: the paper will not be significantly de-
formed, and the assumption that the lines of the
staff are straight will be (roughly) kept. The im-
age will not, however, be particularly high resolu-
tion: as this is built to work on a camera phone, it
must be able to handle the resolution of a standard
iPhone camera.

2.2. Output

While the music will be (quite trivially) con-
verted to audio, the information output will be a
time signature T , set of n measures (M) and a
connectivity graph C ∈ {0, 1}n×n where Ci,j =
1 indicates that measure j follows directly after
measure i. A measure consists of a set of notes,
which have a pitch (taking sharps, flats, and the
key signature into consideration), start time (in
units of beats), and duration (also in units of
beats). As many instruments allow for multiple
notes at a time, these times may overlap.

2.3. Training

The training data consists of labeled images
of the form described above. The lines of the
staff have been labeled, and bounding boxes for
each note, rest, modifier (flat, sharp, natural), and
key/time signature are given.

3. Technical Approach

This problem can be broken into a number of
parts: detecting the staff, inferring the perspective
transform, classifying individual symbols, and
finding a measure which is as consistent as pos-
sible with these classifications.

3.1. Staff Detection

A local contrast normalization step is first ap-
plied to the image, to compensate for lighting ef-
fects (which often vary in intensity greater than
the lines of the staff themselves). The image is
then thresholded by intensity, to infer foreground
vs background. The horizontal lines of the staff

Figure 1. Playing with filters, edge detectors, hough

and vertical measure bars are found via a proba-
bilistic Hough Transform.

3.2. Perspective

Once the staff has been located, the perspec-
tive can be inferred by assuming each horizontal
line of the staff is strictly horizontal in the ob-
ject frame (likewise for vertical measure bars) and
minimizing the reconstruction error. (Note, this
may or may not be used: depending on feature
invariances, rectifying the image may not be nec-
essary)

3.3. Symbol Detection

I have not fully settled on the approach. Due
to the difference in size of various symbols, I will
likely train one-against-all SVMs separately for
each class. While certain things (rests, key and
time signatures, flats, sharps, etc) are extremely
consistent and should be very simple to detect,
notes post an interesting problem since they may
vary greatly in perceived size. Consider, for ex-
ample, 4 consecutive sixteenth notes. Each indi-
vidual “note” is identical to a quarter or eighth
note: their type is inferred by looking at the stem
which connects them. It will likely be simplest,
then, to train an SVM to detect only “Quarter or
less” vs “Half” note bulbs (the rounded, lower
portion). Once these have been detected, the stem
can be traced, and the distinction between Quar-
ter, Eight, Sixteenth, etc found by the number of



Figure 2. Interactive note labeller (Python/HighGUI), bounding
box editor, with file IO

edges.

3.4. Measure Computation

Given a set of symbols and their rough loca-
tion, the final step is to pool them together into a
consistent measure. This means determining their
relative pitch (by which staff line they intersect),
absolute pitch (applying modifiers and key signa-
ture directions), and correcting their duration (if,
for example, the dot of a dotted eight note was
not initially detected). This can be turned into a
fairly nice optimization problem, where it is re-
quired that the sum of all beats in a given measure
equals the number of beats per measure given in
the time signature.

4. Intermediate Results

4.1. Data Collection

To help gather data and get a variety in type-
faces which sheet music found on Google didn’t
seem to have, I made a website at
http://hearingsheetmusic.

wordpress.com

posting it on a few social networks and inviting
others to submit images (see Fig. 4.1). Submis-
sions are rolling in, and I’ve done the necessary
scripting to label symbol bounding boxes in the
image.

Figure 3. Website for data collection

4.2. Image Processing

I’ve played with a number of different ways to
preprocess the image to account for the effect of
shadows: so far local contrast normalization has
worked best for finding hough lines. Other ap-
proaches (Difference of Gaussians, doing no pre-
processing but running Canny and feeding the re-
sultant edge image into the Hough score detector)
have worked reasonably as well. In the interest
of running this on a phone which may not con-
tain OpenCV though, I am hoping to limit this to
simple filters and simple hand-coded algorithms.

I have not yet trained note detectors, partic-
ularly because there were a lot of subtleties I
had not considered when only looking at my
own, single-melody-line sheet music. Having
others submit their own made me reconsider
my approach, as certain features of the note
(such as the bulb) are critical, while variations in
size/stacking/grouping may make my initial “de-
tect every possible note individually” require far
too much variety in input data.

4.3. Measure Computation / Audio

I’ve build the infrastructure and worked out the
math to go from an ordered collection of notes
(which only know their own type and staff loca-
tion) to a measure which takes key- and timing-
signatures into account. This is then converted to
an absolute frequency representation, and output
by MIDI.


