

Abstract

We implement a method of automating the creation of

cinemagraphs for an input video using stabilization, object
tracking, image blending and video texturing. Currently,
artists must carefully setup and edit the video to create a
cinemagraph. This process is both tedious and
time-consuming. Our method streamlines the pipeline to
reduce the amount of work the user have to perform to
create a cinemagraph. The only user input our method
requires is a selection of four points for stabilization and
tracking.

Using the fact that the frames are highly similar, we
adopted an affine model for stabilization for computation
efficiency. Next, we use SIFT to track the object’s bounding
box between frames. Then, an efficient two-band blending
is used to blend across frames. Lastly, we adopted video
texturing to find a good seamless loop for the GIF images.
Our method will enable users to create cinemagraphs
easily using videos captured from any devices, including
their smart phones.

Future Distribution Permission
The author(s) of this report give permission for this
document to be distributed to Stanford-affiliated students
taking future courses.

1. Introduction
Cinemagraphs are short, repeating animated images of a

mainly static scene with slight motions, usually in GIF
format. It was first introduced by a professional
photographer, on his blog in Tumblr [1]. As mentioned
earlier, it is extremely difficult for a common user to create
cinemagraph as it takes time, skills and equipment to create
one. An artist must carefully set up a scene to create a
cinemagraph, as any motion shake increases the complexity
of creating cinemagraphs. Moreover, artists must manually
select masks for the area in motion, and blend frames onto
one another.

Our novel system enables users to automate the creation
process. The user can feed in a video recorded casually,
removing the need to carefully set up the scene. We can

thus assume that the frames will be highly similar, since the
video is assumed to be taken from the same scene with
roughly the same field of view.

1.1. Method

An overview of our system is as follows. Firstly, based
on the review of stabilization techniques by Rawat and
Singhi[2], we found out that the software stabilization
technique proposed by Farid and Woodward[3] was best
suited for our application. The algorithm is computationally
efficient and its affine model captures sufficiently rich
range of motion such as translation, rotation and scaling.
The user’s input will serve as the region of interest for
video stabilization. Since as mentioned before, the video is
assumed to be taken from the same scene, this method is
well-suited for our needs.

We then use a SIFT descriptor to find the bounding box
of the tracked object through the scene. In this step, we
require the user to select the bounding box for tracking. The
user can choose to skip this step if the change in the object’s
position is lower than a threshold.

After tracking the bounding box, we blend the bounding
boxes of subsequent frames onto the first frame using the
two-band blending algorithm proposed by Lowe[4]. This
method fast and provides a good result for highly similar
frames.

Lastly, we implemented techniques for transforming
normal videos into video textures [5] to create a seamless
endless loop for our video. These techniques include
methods of calculating transition cost and probability,
optimizing loops for minimum cost, and sequencing a list
of transitions into a loop for GIF format. Due to a lack of a
video texture format, we settled on producing an animated
GIF format image file. Although this loses the randomness
of true video textures, this is coherent with how
cinemagraphs are generated.

1.2. Data Set

We intend to record video using a digital camcorder. Our
sample size should be at least five videos of different scenes.
Sample data will include approximately five-second clips
of mostly static scenery. For each video, we manually
select an object moving in the scene. Due to the expected

CS231A Course Project Milestone

Walter Li

Stanford University
walterli@stanford.edu

Bo Xian See
Stanford University
bsee@stanford.edu

limitations of image segmentation and tracking, scenes
must be generally static with only a few dynamic objects.
To exclude video stabilization, at least one of the videos
should be shot from a stable orientation, such as a tripod, to
eliminate shaking in the image.

1.3. Evaluation

Evaluation of a piece of art is usually taken qualitatively.
We will visually evaluate the final animated image and
grade it based on smoothness of frame transitions, and the
smoothness of blending with background image. However,
some quantitative measurements can be employed to
evaluate the results.

Intermediate results are produced by each subsystem,
and evaluated individually. First, the video stabilization
system can be evaluated by considering the complete video
excluding the region of interest of the subject. The average
standard deviation in pixel intensities can be used to
compare the difference between the original video and the
stabilized video.

Second, the object tracking and pyramid blending
systems can be hard to quantify. But we can overlay a
highlighting color over the tracked region of interest, and
generate an animation over all the frames. A human user
can evaluate all frames and count the number of frames
with a correct and complete highlighting overlay.

Third, the two-band image blending step is also difficult
to quantify. On the one hand, sharp edges due to image
boundaries are unwanted. On the other hand, we do not
want to blend away important subject features. Image
overlay boundaries can be detected using edge detection.
The presence of edges as an outline around the object
signifies a non-optimal blending scheme. Faded features
sometimes may be necessary to reduce sharp jumps in loop
transitions, and thus unavoidable.

Finally, video textures can be evaluated based on total
loop length, total cost of transitions in final animation (in
comparison with other possible transitions not used), and
the loop performance, which is an aggregate metric defined
as length divided by cost.

2. Related Work
 Previous related works to automate the process use video
texturing to continuously loop through a video at selected
regions [6]. However, their method does not track objects
in motion, but instead consider regions containing dynamic
objects. This loses the context of the scene as the regions
are considered independent of each other.
 In this paper, we aim to overcome this by using object
tracking. Instead of creating the blending area based just on
using changes between frames, we use tracking to
determine the blending area across frames. This accounts
for translational movement, and thus is more robust than
the pipeline proposed by James et al.

 We also referred closely to the works and tutorials by
artists [7-9], to understand how cinemagraphs are
traditionally created.

3. Technical Approach

3.1. Video Stabilization

To stabilize the video, we modelled the camera
movement between two frames using a 2x2 affine matrix,
and a 2x1 translational vector, as described by Farid and
Woodward [3] via the equation:

���, �, �� = ��	
� + 	�� + 	, 	�� + 	�� + 	�, � − 1�
The variables m1, m2, m3, m4 form the 2 × 2 affine matrix A
and m5 and m6 the translation vector T.

We solve for these 6 unknown variables by minimizing
the quadratic error between the two frames.

��	���� = � [���, �, �� − ��	
��,� ∈��� +	��
+ 	, 	�� + 	�� + 	�, � − 1�]�

The ROI is the region of interest. Using the Taylor expansion,
and discarding high order terms, we can solve the
minimization function efficiently.

	��� = � !�!�"
���

#
$

 � !�%
���

	��� = [
 … 	�]" !�" = ���� ��� ��� ��� �� ��� % = �' + ��� + ���

The terms fx, fy,, and ft are partial differentials of f(x, y, t).
As long as the user selects a reasonably big region of

interest, this minimization function is solvable.
A coarse-to-fine scheme is adopted in order to compute

coarse movements efficiently. We use a 3-level Gaussian
Pyramid to give us better estimation for larger movements.
We chose to use 3-levels because we know that the frames
will be from the same scene, and a 3-level Gaussian
Pyramid should be sufficient to capture the camera shakes.

3.2. Object Tracking

In setting up our project, we have worked on all the other
parts of the code, but haven’t started on object tracking yet,
so our information is not yet complete. The goal of object
tracking is to produce a tight sub-image containing only the
dynamic subject of interest. While the subject might move
throughout all the frames, the selected region can grow to
incorporate the moving subject. Also, the movement of the
selected region can be used to augment detection of loop
transition points in the video texture step.
 The user has control over what the animated subject
should be in the final cinemagraph, so some fashion of user
input is allowed. The user first draws a bounding box
around, or generously highlights a certain portion of the

image in a single frame, typically the first frame. This
frame will be the base background frame. Sub-images in
subsequent frames will be overlaid on top of this image.
 The system samples the selected sub-image, and select
keypoints of interesting features (i.e. corners). If not
enough keypoints are found, we could supplement with
uniformly sampled keypoints. Using SIFT [Lowe], we
generate a set of descriptors. Then on each successive
frame (or every N frames), a set of keypoints is generated
and their descriptors are calculated. The area with the most
keypoint matches is our dynamic region of interest. And we
can even calculate how the object is being rotated or shifted
with respect to the previous frame.

3.3. Two-Band Blending

We implemented a modified version of the two-band
blending algorithm proposed by Lowe et al. [4]. In the
paper, blending was only done for overlapping regions
between two panorama images. Our modification enables
the user to blend bounding boxes onto a common frame.
 To blend the two frames, we first divide the frames into
its high frequency component and its low frequency
component. This is achieved using a simple two level
Gaussian Pyramid. We combined the low frequency
components using linear interpolation over a size that is
specified by the user. The low frequency component of the
blended image is thus the two dimensional liner
interpolation of the overlapping region. As described in the
paper, the high frequency component is not interpolated
because we want to keep the details of the objects. We
simply used the high frequency of bounding box because it
contains the details we want to preserve.
 The overall blended frame will then be the combination
of the low frequency component and high frequency
component.

3.4. Video Texturing

Given a series of frames, the objective now is to generate
an infinite loop of frames with minimal discontinuities
between frames. The video textures work by Arno Schodl,
et al. can be applied to find the optimal transitions between
non-continuous frames [5]. Since we are only concerned
with a subsample of each frame, video texturing is given
only a subsample of the whole video.
 First, we compute the cost of a transition as L2-norm
distances between the ith and jth frame for all the frames.
This is saved as an n-by-n square matrix (Dij). Dynamics
preservation and future costs are also incorporated by,
respectively, iteratively computing and solving the
following set of equations. (),* = +,) − ,*+�

-. = /16 13 13 162

()*3 = � -.()4.,*4.
.

(),*33 = 5(),*3 67 + 8 min. (*,.33

<),*33 = = ∙ ?$@A,BCC
D

The matrices I i and I j are the images at frame i and j,
which can be used to calculate the cost matrix (D). The
vector w is a set of weights for computing the cost matrix
after considering preserving dynamics (D’). Finally, the
cost matrix that also considers future costs is calculated as
D” . The probability of each transition is modelled
exponentially, and normalized such that each row sums to
one.
 This results in the 3D plots for probability of each
transition shown in figure. This matrix is then filtered for
local maxima, which will become our list of possible
transitions. To make things interesting, we would like to
weight the probabilities by distance of each transition (in
indices from source to destination). This allows us to prefer
multiple large jumps to many small transitions which could
produce jittery motions in the animation. This is an issue
because we must make deterministic rather than
probabilistic decisions on transitions.

Following analysis of transitions, we consider only the
top 20 (or however many) transitions. These are then used
to find the optimal loop for up to a certain number of frames,
with the lowest cost. This is optimized by dynamic
programming. With the optimal set of transitions, we then
sequence them using the steps outlined in section 4.3 of
Schodl’s paper [5] to generate the final sequence of frames,
which is written to an animated GIF file.

4. Results
Because our results are in animated GIF format, please

go to the following links to view the intermediate results.
The original input GIF, taken by our smart phone and
imported into Matlab, can be found here:
http://imgur.com/8dgzV

4.1. Video Stabilization

The stabilized video can be found here:
http://imgur.com/QivLt
 There are still some movements in the non-subject areas
of the image. However, this is a limitation of affine
transformations. A shaky camera still experiences slight
perspective changes, which cannot be fixed with an affine
transform.

4.2. Two – Band Blending

Figure 1: Unblended image (left) and blended image (right)
 The images shown in figure 1 are the results of image
blending an orange with an apple. The original image
samples are taken from Lowe’s paper.

4.3. Video Texturing

The following charts depict some of the intermediate
variables and data used by video textures to determine the
optimal transitions. Each local maximum is considered
good transitions to take. This is necessary because many
local maxima are far lower in probability than the peaks in
the center, but we still want to take distant transitions, and
not a lot of small steps.

Figure 2: Probability of transition, modeled exponentially on the
cost matrix, after considering dynamics preservation and future
costs.
 We define a new metric in order to measure the
“performance” of a transition. A high performing transition
would take a longer jump, but still have very low cost. The
transition performance (TP) is defined as:

E< = (FG�HI!? �J?IK�ℎ� M� ENHIGF�FMIOMG� M� ENHIGF�FMI

 This effectively weights the farther transition as “better”
than very tiny transitions that only move back by a few
frames.

Figure 3: Transition performance is defined as the length of the
loop created by the transition divided by the cost of that transition.

The result after creating a seamlessly looping animated
GIF image using video textures can be found here:
http://imgur.com/DcJ1r

5. Conclusion
In conclusion, we have made progress in creating a

program for automating the production of cinemagraphs,
partially animated photographs depicting subtle motions.
We have made progress in integrating a video stabilization
system based on affine image transformations, a function
for blending the subject in each frame onto a static
background image, and a method of creating a loop through
a series of frames via video textures.

Further work is still necessary for a system to track the
subject in every frame of the video. We also need to tweak
and optimize each step of the process to be usable in a
variety of scenarios through extensive testing.

6. References
[1] J. Beck, K. Burg. (2011, Feb.). From Me To You – les

tendrils. [Online]. Available:
http://fromme-toyou.tumblr.com/post/3263
597796/les-tendrils-kaelen

[2] P. Rawat and J. Singhai, “Review of Motion Estimation and
Video Stabilization techniques For hand held mobile
video,” Signal & Image Processing: Int. J., vol. 2, no. 2, pp.
159–168, Jun. 2011.

[3] H. Farid, and J. B. Woodward. “Video Stabilization and
Enhancement.” Science (1997)

[4] M. Brown, and D. G. Lowe, “Recognizing
Panoramas.” International Conference on Computer Vision.
2003. 1218-1225.

[5] A. Schödl, R. Szeliski, D. H. Salesin, I. Essa, “Video
Textures.” Proceedings of the 27th annual conference on
Computer graphics and interactive techniques SIGGRAPH
00 (2000) : 489-498.

[6] J. Tompkin, F. Pece, K. Subr, J. Kautz, “Towards Moment
Images: Automatic Cinemagraphs.” Proceedings of the 8th
European Conference on Visual Media Production (CVMP
2011). Nov. 2011.

[7] F. J. Baez. (2011, Apr.). Cinemagraph Tutorial. [Online].
Available:
http://fernandojbaez.com/cinemagraph-tut
orial/

[8] L. Banks. (2011, May). How to Make a Cinemagraph with
Photoshop and After Effects. [Online]. Available:
http://lesterbanks.com/2011/05/how-to-ma
ke-a-cinemagraph-with-photoshop-and-afte
r-effects/

[9] P. Edenberg, et al. (2011, Jun.). How to Make a
Cinemagraph. [Online]. Available:
http://www.adorama.com/alc/article/How-T
o-Make-A-Cinemagraph

