
 

 

 
Abstract 

 
We implement a method of automating the creation of 

cinemagraphs for an input video using stabilization, object 
tracking, image blending and video texturing. Currently, 
artists must carefully setup and edit the video to create a 
cinemagraph. This process is both tedious and 
time-consuming. Our method streamlines the pipeline to 
reduce the amount of work the user have to perform to 
create a cinemagraph. The only user input our method 
requires is a selection of four points for stabilization and 
tracking.  

Using the fact that the frames are highly similar, we 
adopted an affine model for stabilization for computation 
efficiency. Next, we use SIFT to track the object’s bounding 
box between frames. Then, an efficient two-band blending 
is used to blend across frames. Lastly, we adopted video 
texturing to find a good seamless loop for the GIF images. 
Our method will enable users to create cinemagraphs 
easily using videos captured from any devices, including 
their smart phones.  

Future Distribution Permission  
The author(s) of this report give permission for this 
document to be distributed to Stanford-affiliated students 
taking future courses. 

1. Introduction 
Cinemagraphs are short, repeating animated images of a 

mainly static scene with slight motions, usually in GIF 
format. It was first introduced by a professional 
photographer, on his blog in Tumblr [1]. As mentioned 
earlier, it is extremely difficult for a common user to create 
cinemagraph as it takes time, skills and equipment to create 
one. An artist must carefully set up a scene to create a 
cinemagraph, as any motion shake increases the complexity 
of creating cinemagraphs. Moreover, artists must manually 
select masks for the area in motion, and blend frames onto 
one another.  

Our novel system enables users to automate the creation 
process. The user can feed in a video recorded casually, 
removing the need to carefully set up the scene. We can 

thus assume that the frames will be highly similar, since the 
video is assumed to be taken from the same scene with 
roughly the same field of view.  

1.1. Method 

An overview of our system is as follows. Firstly, based 
on the review of stabilization techniques by Rawat and 
Singhi[2], we found out that the software stabilization 
technique proposed by Farid and Woodward[3] was best 
suited for our application. The algorithm is computationally 
efficient and its affine model captures sufficiently rich 
range of motion such as translation, rotation and scaling. 
The user’s input will serve as the region of interest for 
video stabilization. Since as mentioned before, the video is 
assumed to be taken from the same scene, this method is 
well-suited for our needs.  

We then use a SIFT descriptor to find the bounding box 
of the tracked object through the scene. In this step, we 
require the user to select the bounding box for tracking. The 
user can choose to skip this step if the change in the object’s 
position is lower than a threshold.  

After tracking the bounding box, we blend the bounding 
boxes of subsequent frames onto the first frame using the 
two-band blending algorithm proposed by Lowe[4]. This 
method fast and provides a good result for highly similar 
frames.  

Lastly, we implemented techniques for transforming 
normal videos into video textures [5] to create a seamless 
endless loop for our video. These techniques include 
methods of calculating transition cost and probability, 
optimizing loops for minimum cost, and sequencing a list 
of transitions into a loop for GIF format. Due to a lack of a 
video texture format, we settled on producing an animated 
GIF format image file. Although this loses the randomness 
of true video textures, this is coherent with how 
cinemagraphs are generated. 

1.2. Data Set 

We intend to record video using a digital camcorder. Our 
sample size should be at least five videos of different scenes. 
Sample data will include approximately five-second clips 
of mostly static scenery. For each video, we manually 
select an object moving in the scene. Due to the expected 
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limitations of image segmentation and tracking, scenes 
must be generally static with only a few dynamic objects. 
To exclude video stabilization, at least one of the videos 
should be shot from a stable orientation, such as a tripod, to 
eliminate shaking in the image. 

1.3. Evaluation 

Evaluation of a piece of art is usually taken qualitatively. 
We will visually evaluate the final animated image and 
grade it based on smoothness of frame transitions, and the 
smoothness of blending with background image. However, 
some quantitative measurements can be employed to 
evaluate the results. 

Intermediate results are produced by each subsystem, 
and evaluated individually. First, the video stabilization 
system can be evaluated by considering the complete video 
excluding the region of interest of the subject. The average 
standard deviation in pixel intensities can be used to 
compare the difference between the original video and the 
stabilized video. 

Second, the object tracking and pyramid blending 
systems can be hard to quantify. But we can overlay a 
highlighting color over the tracked region of interest, and 
generate an animation over all the frames. A human user 
can evaluate all frames and count the number of frames 
with a correct and complete highlighting overlay. 

Third, the two-band image blending step is also difficult 
to quantify. On the one hand, sharp edges due to image 
boundaries are unwanted. On the other hand, we do not 
want to blend away important subject features. Image 
overlay boundaries can be detected using edge detection. 
The presence of edges as an outline around the object 
signifies a non-optimal blending scheme. Faded features 
sometimes may be necessary to reduce sharp jumps in loop 
transitions, and thus unavoidable. 

Finally, video textures can be evaluated based on total 
loop length, total cost of transitions in final animation (in 
comparison with other possible transitions not used), and 
the loop performance, which is an aggregate metric defined 
as length divided by cost. 

2. Related Work 
 Previous related works to automate the process use video 
texturing to continuously loop through a video at selected 
regions [6]. However, their method does not track objects 
in motion, but instead consider regions containing dynamic 
objects. This loses the context of the scene as the regions 
are considered independent of each other. 
 In this paper, we aim to overcome this by using object 
tracking. Instead of creating the blending area based just on 
using changes between frames, we use tracking to 
determine the blending area across frames. This accounts 
for translational movement, and thus is more robust than 
the pipeline proposed by James et al.  

 We also referred closely to the works and tutorials by 
artists [7-9], to understand how cinemagraphs are 
traditionally created.  

3. Technical Approach 

3.1. Video Stabilization 

To stabilize the video, we modelled the camera 
movement between two frames using a 2x2 affine matrix, 
and a 2x1 translational vector, as described by Farid and 
Woodward [3] via the equation:  
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The variables m1, m2, m3, m4 form the 2 × 2 affine matrix A 
and m5 and m6 the translation vector T. 

We solve for these 6 unknown variables by minimizing 
the quadratic error between the two frames.  
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The ROI is the region of interest. Using the Taylor expansion, 
and discarding high order terms, we can solve the 
minimization function efficiently.  

	��� =   � !�!�"
���

#
$


 � !�%
���

# 
	��� = [	
 … 	�]" !�" = ���� ��� ��� ��� �� ��� % = �' + ��� + ��� 

The terms fx, fy,, and ft are partial differentials of f(x, y, t). 
As long as the user selects a reasonably big region of 

interest, this minimization function is solvable.  
A coarse-to-fine scheme is adopted in order to compute 

coarse movements efficiently. We use a 3-level Gaussian 
Pyramid to give us better estimation for larger movements. 
We chose to use 3-levels because we know that the frames 
will be from the same scene, and a 3-level Gaussian 
Pyramid should be sufficient to capture the camera shakes. 

3.2. Object Tracking 

In setting up our project, we have worked on all the other 
parts of the code, but haven’t started on object tracking yet, 
so our information is not yet complete. The goal of object 
tracking is to produce a tight sub-image containing only the 
dynamic subject of interest. While the subject might move 
throughout all the frames, the selected region can grow to 
incorporate the moving subject. Also, the movement of the 
selected region can be used to augment detection of loop 
transition points in the video texture step. 
 The user has control over what the animated subject 
should be in the final cinemagraph, so some fashion of user 
input is allowed. The user first draws a bounding box 
around, or generously highlights a certain portion of the 



 

 

image in a single frame, typically the first frame. This 
frame will be the base background frame. Sub-images in 
subsequent frames will be overlaid on top of this image. 
 The system samples the selected sub-image, and select 
keypoints of interesting features (i.e. corners). If not 
enough keypoints are found, we could supplement with 
uniformly sampled keypoints. Using SIFT [Lowe], we 
generate a set of descriptors. Then on each successive 
frame (or every N frames), a set of keypoints is generated 
and their descriptors are calculated. The area with the most 
keypoint matches is our dynamic region of interest. And we 
can even calculate how the object is being rotated or shifted 
with respect to the previous frame. 

3.3. Two-Band Blending 

We implemented a modified version of the two-band 
blending algorithm proposed by Lowe et al. [4]. In the 
paper, blending was only done for overlapping regions 
between two panorama images. Our modification enables 
the user to blend bounding boxes onto a common frame.  
 To blend the two frames, we first divide the frames into 
its high frequency component and its low frequency 
component. This is achieved using a simple two level 
Gaussian Pyramid. We combined the low frequency 
components using linear interpolation over a size that is 
specified by the user. The low frequency component of the 
blended image is thus the two dimensional liner 
interpolation of the overlapping region. As described in the 
paper, the high frequency component is not interpolated 
because we want to keep the details of the objects. We 
simply used the high frequency of bounding box because it 
contains the details we want to preserve.  
 The overall blended frame will then be the combination 
of the low frequency component and high frequency 
component.  

3.4. Video Texturing 

Given a series of frames, the objective now is to generate 
an infinite loop of frames with minimal discontinuities 
between frames. The video textures work by Arno Schodl, 
et al. can be applied to find the optimal transitions between 
non-continuous frames [5]. Since we are only concerned 
with a subsample of each frame, video texturing is given 
only a subsample of the whole video. 
 First, we compute the cost of a transition as L2-norm 
distances between the ith and  jth frame for all the frames. 
This is saved as an n-by-n square matrix (Dij). Dynamics 
preservation and future costs are also incorporated by, 
respectively, iteratively computing and solving the 
following set of equations. (),* = +,) − ,*+� 
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The matrices I i and I j  are the images at frame i and j, 
which can be used to calculate the cost matrix (D). The 
vector w is a set of weights for computing the cost matrix 
after considering preserving dynamics (D’ ). Finally, the 
cost matrix that also considers future costs is calculated as 
D” . The probability of each transition is modelled 
exponentially, and normalized such that each row sums to 
one. 
 This results in the 3D plots for probability of each 
transition shown in figure. This matrix is then filtered for 
local maxima, which will become our list of possible 
transitions. To make things interesting, we would like to 
weight the probabilities by distance of each transition (in 
indices from source to destination). This allows us to prefer 
multiple large jumps to many small transitions which could 
produce jittery motions in the animation. This is an issue 
because we must make deterministic rather than 
probabilistic decisions on transitions. 

Following analysis of transitions, we consider only the 
top 20 (or however many) transitions. These are then used 
to find the optimal loop for up to a certain number of frames, 
with the lowest cost. This is optimized by dynamic 
programming. With the optimal set of transitions, we then 
sequence them using the steps outlined in section 4.3 of 
Schodl’s paper [5] to generate the final sequence of frames, 
which is written to an animated GIF file. 

4. Results 
Because our results are in animated GIF format, please 

go to the following links to view the intermediate results. 
The original input GIF, taken by our smart phone and 
imported into Matlab, can be found here: 
http://imgur.com/8dgzV 

4.1. Video Stabilization 

The stabilized video can be found here: 
http://imgur.com/QivLt  
 There are still some movements in the non-subject areas 
of the image. However, this is a limitation of affine 
transformations. A shaky camera still experiences slight 
perspective changes, which cannot be fixed with an affine 
transform. 



 

 

4.2. Two – Band Blending 

 
Figure 1: Unblended image (left) and blended image (right) 
 The images shown in figure 1 are the results of image 
blending an orange with an apple. The original image 
samples are taken from Lowe’s paper. 

4.3. Video Texturing 

The following charts depict some of the intermediate 
variables and data used by video textures to determine the 
optimal transitions. Each local maximum is considered 
good transitions to take. This is necessary because many 
local maxima are far lower in probability than the peaks in 
the center, but we still want to take distant transitions, and 
not a lot of small steps.  

 
Figure 2: Probability of transition, modeled exponentially on the 
cost matrix, after considering dynamics preservation and future 
costs. 
 We define a new metric in order to measure the 
“performance” of a transition. A high performing transition 
would take a longer jump, but still have very low cost. The 
transition performance (TP) is defined as: 
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 This effectively weights the farther transition as “better” 
than very tiny transitions that only move back by a few 
frames. 

 
Figure 3: Transition performance is defined as the length of the 
loop created by the transition divided by the cost of that transition. 
 

The result after creating a seamlessly looping animated 
GIF image using video textures can be found here: 
http://imgur.com/DcJ1r 
 

5. Conclusion 
In conclusion, we have made progress in creating a 

program for automating the production of cinemagraphs, 
partially animated photographs depicting subtle motions. 
We have made progress in integrating a video stabilization 
system based on affine image transformations, a function 
for blending the subject in each frame onto a static 
background image, and a method of creating a loop through 
a series of frames via video textures.  

Further work is still necessary for a system to track the 
subject in every frame of the video. We also need to tweak 
and optimize each step of the process to be usable in a 
variety of scenarios through extensive testing. 
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