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Abstract

This project will address the problem of creating mo-
saic maps of the seafloor using remotely-operated vehicles
(ROV) or autonomous underwater vehicles (AUV) operated
by the Monterey Bay Aquarium Research Institute (MBARI).
The author believes that a number of shortcomings of the
current system could be improved upon through the use of
SIFT for image registration. Time permitting, the author
would also like to investigate the use of differential lighting
and shadow analysis to build up more detailed texture maps
of the seafloor.

1. Introduction

MBARI currently performs mosaic mapping of the
seafloor by running a remotely operated vehicle in a back-
and-forth “lawnmower” path, grabbing frames from a video
camera as it goes. The resulting images are correlated us-
ing Signum Laplacian of Gaussian (SLoG) filtering as de-
scribed by Richmond [3]. This method is not robust to scale
or orientation, and can only be done robustly with the high
frame rate provided by video input. This is acceptable for
performing registration in-line, but performs weakly when
attempting to perform side-to-side correlation between two
swaths. The current system requires offline verification of
swath overlap, which is slow, and not robust to scale, orien-
tation and illumination changes.

In this paper, the use of SIFT features ([2]) to perform the
side-to-side swath correlation is explored. By using a small
sample of robust image features to perform side-to-side cor-
relation, the author hopes to speed up the process dramati-
cally while maintaining or increasing the level of accuracy
in the correlation.

2. Proposed Improvement

2.1. SIFT-based correlation and registration

SIFT features are robust to large changes in scale and ori-
entation. Also, because each feature has a unique identifier,
correlation can be performed between photos taken further
apart in time and space. These are two instances in which
SLoG correlation performs poorly. Once feature correla-
tions are established, robust algorithms that reject outliers
such as RANSAC or Hough transform can be used to regis-
ter the images in the map. This can be seen in figures 1 and
2. Preliminary results also show drastic improvement in the
number of side-to-side correspondences detected between
swaths (figure 3).

Figure 1. Though several false matches occurred between images,
the majority of the SIFT matches show consistent frame-to-frame
correlation

2.2. Building texture models with differential light-
ing

Although they are robust to scale and orientation
changes, SIFT features are only partially robust to illumi-
nation changes. Because they use image gradient informa-
tion, they are somewhat insensitive to global illumination
changes, but much less so when faced with local illumi-
nation changes like shadows and changing light sources.
Previous attempts to address this have included controlling
lighting in a scene and the use of high dynamic range im-
ages. Rather than eliminate changes in illumination, the
author would like to explore using multiple images taken



Figure 2. The RANSAC algorithm rejected the false positive
matches, yielding a good transformation model between the two
images in figure 1.

under different, controlled lighting conditions and extract-
ing depth information about the seafloor features from the
observed shadows. In-depth analysis of this technique will
likely be beyond the scope of this course project, but the
author hopes to begin exploring the idea.

3. Data Access

The ARL has mosaic data from a number of past dive
missions that will be used for this project. The data in-
cludes imagery and odometry, as recorded by the MBARI
submersibles’ onboard IMU and Doppler Velocity Logger.
The drift rate on these sensors is generally quite low, on
the order of 1% of distance traveled, but this is still large
enough to require vision based environment-relative posi-
tion measurements.

For the differential lighting task, no data exists currently.
If the project progresses to the point where this topic may
be addressed, the author plans to manually take images us-
ing controlled lighting, trying to mimic seafloor conditions
as well as possible. Looking to the future, it is likely that
MBARI missions will be able to take this type of data.

4. Preliminary Results

4.1. Image correlation density improvements

As shown in figure 3, SLoG only produces a few side-
to-side correspondences (red links). Using SIFT match-
ing, correlations and mappings can be found between many
more frames. This greater degree of interconnectedness be-
tween frames will be beneficial when performing bundle ad-
justment after all the data has been collected.

Figure 3. Side-to-side links using SLoG (top, Richmond [3]) vs.
SIFT. SIFT has a much higher density of detections between
frames.

4.2. Model selection for parameter estimation

Choosing a camera model is an important step in build-
ing a mosaic. Thus far, five different image transformation
models have been tried: translation only, translation with
in-plane rotation, translation with scaling, similarity trans-
form, and affine.

While performing batch processing to minimize global
reprojection error is an option for offline map optimization,
it is also desirable to produce a map of reasonable accuracy
in real-time as an ROV pilot aid while acquiring data. This
consideration pushed the use of the above models. Other
methods for image stitching similar to the one proposed
use full perspective camera models, most notably the auto-
stitch algorithm used by Brown and Lowe [1] However, his
method assumes that the camera is purely rotated, mak-
ing it possible to relate the transformations between succes-
sive frames through simple matrix multiplication. The large



translations involved in mosaic mapmaking violate this as-
sumption, and necessitate another approach. Using the
transformations mentioned above, the global frame trans-
formations can be calculated simply by multiplying their
between-frame transformation matrices.

Figure 4. The most successful model so far has been the simplest,
where only two parameters, x and y translation are estimated

The preliminary results are somewhat surprising. The
most successful method is the one in which only the x and
y translation parameters are estimated. This can be seen
in figure 4. The author believes there is unmodeled pitch
and possibly yaw bias in the camera that causes apparent
looming and strafing motion in the field of view that is not
uniform throughout the image. Adding degrees of freedom
to the model allow it to try to account for this, but since the
error is not zero-mean, it compounds.

Possible solutions for this are to try to estimate these pa-
rameters and predistort each image before extracting SIFT
features and performing correlation, in effect “knocking
out” the error so it cannot propagate.

4.3. Visualization tool for real-time pilot aid

One goal of this project is to give ROV pilots a tool for
gauging how well they are achieving coverage of a given
section of sea floor in real-time. Figure 7 shows one con-
ception of such a tool. This tool will allow MBARI to create

Figure 5. When in-plane rotation ψ is also estimated, the swath
begins to drift. The author suspects that a pan-tilt camera bias is
causing this behavior.

Figure 6. The affine model also falls victim to the distortion seen
in the rotation model, though its manifestation is different. Each
successive frame suffers from a greater degree of skew, rotation,
and scaling.

maps with more confidence and autonomy from the ARL.



Figure 7. This map was generated in real time using a 2-parameter
model. Areas of overlap were highlighted by boosting the red val-
ues of the pixels by a small amount. The effect is additive, so areas
of multiple frame overlap are more red. This is intended for use by
ROV pilots to show them in real time how well they are achieving
coverage.
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