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1. Introduction

In this project I am focused on the problem
of using depth information in the absence of
labeled depth training data for the task of object
detection in RGBz images. This task is important
for computers to fully utilize both the breadth of
image training data that does not include depth
sensors while allowing depth-enabled systems to
utilize the valuable added information provided
by a depth sensor.

The vision of this project is to enable an RGBz
system to use currently existing data sets that
have only visual images for initial training and
refine the object classifiers augmented with depth
information that is gathered as the machine
operates in a testing environment. The general
principle is that a a classifier can initially be
learned over the RGB images, then we can use
detections in the test data (based only on RGB) to
create a classification system that includes depth
features by extracting the depth features from
high certainty detections.

2. Problem Statement

The specific problem I am tackling is to im-
prove object detection scores in general RGBz
images given only labeled RGB images as train-
ing data. The datasets I am using are the RGB-
D Objects and RGB-D Scenes Dataets from the

University of Washington[3]. The Objects dataset
will be used for training as it has segmented im-
ages of 300 objects from multiple angles and
includes depth data so that I can compare my
method to performance of a method using depth
data in training. The Scenes dataset will be used
to evaluate final performance and object detection
scores as it contains 8 natural scenes with multi-
ple non-localized objects.

3. Technical Approach

My system for object detection is a four step
process:

1. Learn RGB Object Detector

2. Detect Objects using RGB Detector in Test
Data

3. Create Depth-Based Object Detection Model

4. Detect Objects using RGB-Z Detection in
Test Data

The specific process using for learning of the
RGB detector and detection using our RGB
model are not central to this project, as the
addition of depth features should work with any
type of RGB model. For this project, I used
Histogram of Oriented Gradients (HOG) for my
RGB features and performed classification of
bounding boxes using a Support Vector Machine.
These were selected because HOG with SVM is a
frequently deployed approach to object detection
and is the backbone of many detection systems,
is relatively easy to implement, does not require
the intensive feature matching of SIFT based
systems, and has been demonstrated to work well



in practice.[1]

For augmentation with depth data, I am initially
using HOG features computed from the depth
images and plan to move to the state-of-the-art
Spin-Images depth information representation.
HOG features should function reasonably well
as HOG normalizes the image such that different
object depths will not be an issue and focuses
on finding transition areas in the image such as
strong edges, which is some of the most impor-
tant information that low-noise depth information
can give us. I plan to transition to Spin images
because they are specifically designed for depth-
based similarity matching and have been shown
to achieve good results on this data.[2]

I am pursuing multiple approaches to relearning
of the object detection system. The simplest
method I am using is to simply retrain our SVM
model with the detected objects and use their
depth masks; however, this should not improve
performance significantly as the labeling given
by our SVM must be separable using our Kernel,
so we should not expect classification to change.
A potential improvement that I am working on
is to identify high confidence classifications and
use those to retrain the SVM (omitting “difficult”
examples that may have been mislabeled) with
depth features included.

Identification of “high confidence” classifica-
tions is somewhat difficult as margin distance
of our examples does not translate to a true
probability of correct classification in an SVM
as it does in statistical classification methods
such as logistic regression. That said, distance
to the margin can be used as a first heuristic. I
plan to augment this by using clustering in the
depth space to identify outliers that may have
been incorrectly classified based on the RGB data
alone.

4. Intermediate/Preliminary Results

As a preliminary analysis, I focused only
on the classification task, ignoring the problem
of scanning images for detection, to reduce
computational load for my early results. In this
task, I use only training data (for training and
evaluation, I’ve not yet moved into the testing
phase) with HOG features extracted from the
RGB image and the corresponding depth image
(128 each for 256 total features). In terms of data,
to reduce the need for large amounts of space,
I focus on classification of only one object (the
“coffee mug”) and randomly sampled from all
other objects to obtain negative examples. I have
approximately 4000 positive and 4000 negative
examples.

4.1. Baselines

As a first test, I looked at the classification ac-
curacies of the model after fully supervised train-
ing with only RGB data and then also with RGBD
data. The results can be seen here:

data RGB RGB-Z
Accuracy 95% .9881
F1-Score .9592 .9899
Precision .9323 .9822

Recall .9877 .997

The results show that on the training data, RGB
classification performs quite well, and adding
depth information can give some increase in per-
formance. However, it is important to note that
adding depth information doubles the size of the
feature vector, so there is the potential that this
increase is the result of overfitting, not actual im-
provement given that we are only evaluating on
training data.

4.2. Semi-supervised Depth Model Learning

The next preliminary experiment performed
was to learn the RGB model, then relearn an
SVM in which we used the labels given by
classifying with the RGB model and use both
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Figure 1. ROC

RGB and depth features. This approach gave the
following results:

data RGB Semi-sup RGB-Z
Accuracy 95% .9881
F1-Score .9592 .965
Precision .9323 .9376

Recall .9877 .9940

We can see that the accuracy and F1 score are
better than the RGB model and the ROC curve
also shows that the performance of the model over
RGB and depth data that is learned in a semi-
supervised fashion is superior to an RGB model.
This result surprises me somewhat, as I would ex-
pect that SVM to perform the exact same classi-
fication; however, I guess the additional features
in a radial kernel space have changed the sepa-
rability of our data points and clustered the true
positives more distinctly from the negatives.

4.3. Improvement with Noise

As a final preliminary test, I note that our initial
RGB model has quite high accuracy and seems to
be an easy task, so I consider the difficulty associ-
ated with augmenting the model with depth data
when we have varying levels of incorrect detec-
tions. You can see the change in accuracy (posi-

tive for improvement) from training an RGB-only
model as the false positive rate ranges from 0 to
90% on the training data (corrupting our posi-
tive examples). Note that the table only shows
up to 40% as both rgb and rgbz images were
overwhelmed by the inaccuracy of training at that
point and failed to build successful models.

False Positive Rate RGB F1 RGB-Z F1
0% .959 .9899

10% .9511 .9852
20% .9377 .9785
30% .9156 .9610
40% .8471 .9188
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