
CS231A Project Milestone
Sign Language Gesture Recognition with Unsupervised Feature Learning

Justin Chen
Stanford University

justinkchen@stanford.edu

Abstract

This paper focuses on applying different segmentation
approaches and unsupervised learning algorithms to create
an accurate sign language recognition model.

Future Distribution Permission
The author of this report gives permission

for this document to be distributed to Stanford-
affiliated students taking future courses.

1. Introduction

The problem I am investigating is sign lan-
guage recognition through unsupervised feature
learning. Being able to recognize sign lan-
guage is an interesting computer vision problem
while simultaneously being extremely useful for
deaf people to interact with people who don’t
know how to understand American Sign Lan-
guage (ASL). I am planning on trying out differ-
ent combinations of segmentation based on col-
ors, shapes, edges, and depth data in order to
obtain a clean, centered bounding box around
hands in image frames which will then be passed
through the unsupervised feature learning algo-
rithm to classify the hand configuration.

2. Methodology

2.1. Problem Statement

2.1.1 Dataset

The data that I plan to use will be collected off of
a Microsoft Kinect 3D depth camera. Videos will
be taken of the test subject’s hands while forming
sign language letters. The data will be categorized

as easy or difficult based on the amount of back-
ground clutter. This will be done with as many
letters as possible to form a comprehensive model
of sign language recognition. the initial dataset
consists of the following 5 letters: (a, b, d, f, l).

Figure 1: Example Image in Dataset of (Left) letter ’F’, and
(Right) letter ’L’

2.1.2 Expected Results and Evaluation

I expect to be able to segment out the hand and
perhaps even be able to segment out specific visi-
ble fingers in any given frame. Other objects, such
as faces, will be inappropriately detected by some
of the segmentation methods I proposed, however,
the depth data that we are collecting from Kinect
will help differentiate between actual hands and
other similar objects. These segmented results
will be run through the unsupervised learning and
tested on a separate held-out dataset. I believe that
this approach should achieve a relatively high-
performance classification since it is, at its core,
similar to MNIST digit classification.

The final measure of my model performance
will be based on the ratio of correct classifications
out of a prepared validation set (recognition rate).
False positives during hand-transition phases will
also need to be penalized.



2.2. Technical Approach

2.2.1 Segmentation Methods

I am trying out many different methods of image
segmentation and then combining the more suc-
cessful ones together into a final polished segmen-
tation tool.

One of the methods I am trying is using a
Canny edge detector to find relevant ”objects” in
the field of view of the camera. The edges would
then be dilated, and then all remaining holes in the
mask will be filled to create a solid, continuous
mask. Once this is done, the only the largest areas
are taken in order to remove all the background
clutter objects. This approach makes the simpli-
fying assumption that the biggest objects seen in
segmentation are typically of the most interest as
well.

Figure 2: (Left) Edge detection results, (Right) Edge detection
mask applied to image shown by black outline

I also tried out the following two approaches
for skin segmentation using only color informa-
tion. The first approach involved modeling the
skin color by a 2D Gaussian curve and then using
this fitted Gaussian to estimate the likelihood of a
given color pixel being skin. First, I collected skin
patches from 40 random images from the internet.
Each skin patch was a contiguous rectangular skin
area. I collected skin patches from people belong-
ing to different ethnicities so that our model is
able to correctly predict skin areas for a wide vari-
ation of skin color. The colors were then normal-
ized as follows : r = R

R+G+B
, b = B

R+G+B
. The

g component is ignored as it is linearly dependent
on the other two. The mean and covariance ma-
trix of the 2D Gaussian (with r, b as the axes)
is estimated as follows : Mean m = E[x], where
x = [r, b]T , Covariance C = E[(x−m)(x−m)T ].

Figure 3: (Top) Histogram of color distribution for skin patches,
(Bottom) Gaussian model fit

With this Gaussian fitted skin color model, the
likelihood of skin for any pixel of a given test im-
age can be obtained. If the pixel, has a chromatic
pair value of (r, b), then the likelihood of skin for
this pixel is given by:
Likelihood = e[−0.5(x−m)TC−1(x−m)], where

x = [r, b]T .
Finally, I thresholded the likelihood to classify

it as skin or non-skin. However, this approach did
not give significantly good results and failed to
detect dimly illuminated parts of skin.

The second approach which I used is motivated
by the paper [1], in which the authors first trans-
form the image from the RGB space to the YIQ
and YUQ color spaces. Then they compute the
parameter Θ = tan−1(V/U) and combine it with
the parameter I to define the region to which skin
pixels belong. Specifically, the authors called all
pixels with 30 < I < 100 and 105o < Θ < 150o



as skin. For my experiments, I tweaked these
thresholds a bit, and found that the results were
significantly better than our Gaussian model in
the previous approach. This might have been be-
cause of two reasons:

1. The Gaussian model was trained using data
samples of insufficient variety and hence was in-
adequate to correctly detect skin pixels of darker
shades

2. Fitting the model in the RGB space performs
poorly as RGB doesnt capture the hue and satura-
tion information of each pixel separately.

Figure 4: (Left) Skin detected using Gaussian model, (Right)
Skin detected using YIQ and YUV color spaces

In order to segment out the fingers, I am using
convex hull detections to find the fingers after the
hand has already been segmented out. The fingers
will ideally be oriented along the direction from
the convex hull point to the centroid of the hand
as seen in Figure 5.

Figure 5: (Left) Skin model segmentation, (Right) Using convex
hull detection to find potential ”fingers”

In order to further improve the hand segmen-
tation results as well as to get rid of a lot of ex-
traneous clutter in the background (including the
detected faces), I will be using the corresponding
depth data from the Kinect to further segment the
image using a simple thresholding function.

2.2.2 Feature Learning and Classification

The extracted data of hand images is fed into an
autoencoder in order to perform the actual recog-
nition part of the project. This stage implements
an unsupervised learning algorithm. We feed all
the data samples into the sparse autoencoder. The
input data from the segmentation block are im-
ages of size 48x32 pixels. A sparse autoencoder
is chosen initially with an input layer with 48x32
nodes and one hidden layer of 50 nodes. We used
L-BFGS to optimize the cost function. This was
run for about 400 iterations to obtain estimates
of the weights. Now the autoencoder has learnt
a set of features similar to edges. The next step
is to classify the 5 different letters based on the
features learnt. The output of the hidden layer
of the autoencoder is fed into a softmax classi-
fier to now classify the data into 5 categories. The
softmax classifier again learns using the L-BFGS
optimization function. This algorithm converges
after about 20 iterations. Further improvements to
these results include gathering more training sam-
ples and trying cross validation to improve predic-
tion rate.

3. Preliminary Results

Segmentation examples/results can be seen
throughout the ”Technical Approach” section.
The autoencoder and softmax classifier learning
approach achieved 95-97% accuracy on the train-
ing set. I haven’t done any actual cross-validation
yet, but we aim to get that done before the final
project deadline. I aim to improve the segmenta-
tion through use of depth data, and then adding
more letters to our dataset to make the project
more interesting and useful.

Figure 6: Depth data overlayed on top of RGB data



References
[1] X. Teng. A hand gesture recognition system based on local

linear embedding, April 2005. Journal of Visual Languages
and Computing.

4. Appendix

This project is done in combination with the
CS229 Machine Learning final project. The
CS231A Computer Vision primary component is
the hand and finger segmentation using 3D cam-
era.


