
Optical Flow For Vision-Aided Navigation

Elizabeth Boroson
Stanford University

lboroson@stanford.edu

1. Introduction

A current subject of interest in navigation is the use of
vision as an aiding source. Most unmanned aerial vehi-
cles (UAVs) have a camera onboard, so a navigation sys-
tem with vision could use these existing sensors instead
of requiring that new sensors be added, which would be
an advantage when the space available for sensors is lim-
ited. Some vision-aided navigation algorithms that have
been developed recently find displacement between images
by matching SIFT or SURF features. However, this type of
algorithm is usually computation-intensive, and most UAVs
are small and have very strict weight and power limitations
for the processors that can be used. An alternative would
be to use optical flow to find displacement, which tends to
have lower requirements for the processor. Unfortunately,
the cameras available on UAVs usually have relatively low
frame rates, and there is enough displacement between im-
ages that typical optical flow algorithms are not effective.
For my project, I want to find and optimize an algorithm
that can apply optical flow techniques to the type of data
encountered in navigation.

2. Problem Statement

Several algorithms have been proposed to improve the
performance of optical flow techniques over large displace-
ments. For my project, I plan to implement several of these
techniques in MATLAB and test their performance on im-
ages similar to those that would be encountered in naviga-
tion. I will then select one of these algorithms and further
refine it by taking advantage of properties specific to navi-
gation data. By refining the algorithm, I hope to be able to
improve either its speed or its accuracy.

I will compare the algorithms to each other in both ac-
curacy and computational performance. Additionally, I will
implement a simple SIFT-matching algorithm for compar-
ison with each of these new algorithms. I expect the dis-
placement calculated by my optical flow algorithm to match
that calculated by matching SIFT features, and I expect the
computational performance to be better. I plan to compare
the algorithms’ accuracy in MATLAB. I will compare the

performance by looking at the computational complexity of
the algorithms. If I have time, I’d also like to implement
both the SIFT-matching algorithm and the optical flow al-
gorithm I develop in C to do a more accurate comparison.

I expect to be able to optimize the algorithm I select by
using specific assumptions that are true for navigation data.
In navigation, we can assume that all motion in the image
is due to the motion of the camera. This would not apply to
all situations (for instance, navigation in an urban environ-
ment), but in situations where weight and power are limited,
like on a UAV, we are likely to be far away from anything
else that is moving. However, we may encounter objects
at different distances in the image, so I will not be able to
assume that optical flow is continuous over the entire image.

I have collected four datasets, each consisting of several
images from Google Earth over a specific region. Each set
of images is recorded from an altitude that a UAV might fly
at, and there is slight motion between each image. Three
of the image sets are flat aerial images, taken from between
500 and 1000 meters. One set was recorded over Stanford,
one over MIT, and one over a fairly flat and uninhabited
region slightly northwest of Los Angeles. This region con-
tains a dirt road, some trees, and some variation in terrain,
but no man-made biuldings. These regions will provide an
interesting comparison, since I have generally found that
SIFT features can be detected and matched much more ac-
curately on manmade sturctures than on natural structures
and terrain. It will be interesting to see if this (or the oppo-
site) is true of optical flow. Three consecutive images from
the Stanford dataset are shown in Figure 1 as an example of
the images I’ll be using.

The fourth dataset was collected over downtown Los An-
geles, from an altitude of about 800 meters. Unlike the
others, these image contain 3-dimensional models of build-
ings that can be displayed in Google Earth. The roofs of
these buildings are significantly higher than the surround-
ing streets, so these images are an example of navigation
data in which different parts of the images are at different
depths and have different displacement between images. I
am very interested to see how the algorithms perform with
these non-flat images.

Figure 1. Three consecutive images from the Stanford dataset.

3. Technical Approach
I’ve selected three algorithms that have been proposed to

improve the performance of optical flow techniques in im-
ages with large displacement. I am currently implementing
each of these algorithms in MATLAB to compare their re-
sults. As a baseline for comparison, I am also extracting
SIFT features from the images and matching them. This is
the method that is commonly used in navigation to find dis-
placement between images, so it makes a good comparison.

The first optical flow algorithm that I am implementing
is a hierarchical standard optical flow calculation, similar
to the one which was discussed in lecture. In this algo-
rithm, the images are blurred and downsampled at several
different scales using a Gaussian pyramid approach. At the
largest scale, the displacement between the two images is
calculated using the optical flow equation:

Ix · u+ Iy · v + It = 0 (1)

The displacement is calculated at every pixel using a win-
dow of pixels around that point. This will enforce a smooth-
ness constraint, since it will prevent a pixel from having
a drastically different displacement than its neighbors. A
least-squares solution to the optical flow equation is used,
as shown in Shi and Tomasi [5], so the solution at each point
is: [∑

IxIx
∑
IxIy∑

IxIy
∑
IyIy

] [
u
v

]
= −

[∑
IxIt∑
IyIt

]
(2)

where the sums are over all points in the window. Once
the displacement is calculated at a particular scale, the dis-
placements of pixels in the image are interpolated to the
next smallest scale. One of the images is shifted to account
for the aready-calculated displacement, then the calculation
is performed again at this scale.

The second algorithm is based on the one in Brox et
al. [3]. It is similar to the previous algorithm, but does not

use the linearization of the optical flow equation given in
Equation 1. That linearization makes the equation much
easier to solve, but also limits it to regions where the gradi-
ent is roughly linear. Since the gradient can change rapidly,
this only occurs for very small displacements between im-
ages, less than about one pixel. With the low frame rate of
navigation images, the displacement is usually much larger
than one pixel.

This algorithm follows that same technique of calculat-
ing the displacement at different scales, but it minimizes a
more accurate expression for the image energy instead. The
expression includes terms for the brightness constancy as-
sumtion and the gradient constancy assumption:

EData(u, v) =

∫
Ω

(|I(x+w)− I(x)|2

+ γ|∇I(x+w)−∇I(x)|2)dx (3)

with γ as a weight between the two constraints and w =
(u, v, 1)T . It also includes a smoothness constraint:

ESmooth(u, v) =

∫
Ω

(|∇3u|2 + |∇3v|2)dx (4)

The total expression which is minimized is a weighted sum
between these constraints.

The third algorithm that I will be implementing is de-
scribed in Brox et al. [2]. It takes advantage of the image
structure by segmenting the image into regions and calculat-
ing the optical flow separately for each region. A descrip-
tor is calculated for each region and these descriptors are
matched. For all regions with good matches, the region in
the second image is shifted to the location of the matched
region in the first image, and the optical flow from Equation
1 is used to refine the calculated displacement.

Figure 2. SIFT features matched between two images in the MIT dataset.

4. Preliminary Results
My first step on this project was the background re-

search. I’ve completed that, and selected the three algo-
rithms that I plan to test. Next, I collected the images that
I will use for testing. I collected the images using Google
Earth, and the images that I will be using are described in
Section 2.

Next, I began to implement the algorithms. For the ref-
erence that I am using for comparison, I downloaded SIFT
feature extraction code for MATLAB from David Lowe’s
website.1 This code provides descriptors and keypoints for
features found in each image. I follow the matching tech-
nique described in Lowe [4]. I match each feature in one
image with a feature in the next image by finding the feature
in the second image whose descriptor has the smallest Eu-
clidean distance from the original feature. If this feature is
significantly closer than the next closest feature, I consider
it to be a match. Matched features between two consecutive
images in the MIT dataset are shown in Figure 2.

I have also written most of the code for the three al-
gorithms that I am testing. For the two hierarchical algo-
rithms, I’m following the algorithms as they are described
fairly closely. For the segmentation-based algorithm, I am
using the image segmentation code described in Arbelaez
et al. [1], which is available from their website.2 This is
the same segmentation technique that was used in Brox et
al. [2], so I hope to achieve similar results.

I plan to compare the algorithms by estimating the dis-

1http://www.cs.ubc.ca/ lowe/keypoints/
2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

resources.html

placement calculated by the algorithms at different points
throughout the image, and comparing each of them to the
reference SIFT-matching algorithm. For the SIFT-matching
algorithm, I will find the estimated displacement by averag-
ing the displacements of nearby matched features. For the
hierarchical approaches, the displacement will be calculated
at those pixels (after being interpolated from displacements
calculated at larger scales). For the segmentation-based ap-
proach, I am assuming that regions move together, and the
displacement of a point matches the displacement of the re-
gion containing it.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour de-

tection and hierarchical image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 33(5):898
–916, may 2011.

[2] T. Brox, C. Bregler, and J. Malik. Large displacement optical
flow. Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on, 0:41–48, 2009.

[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
In T. Pajdla and J. Matas, editors, Computer Vision - ECCV
2004, volume 3024 of Lecture Notes in Computer Science,
pages 25–36. Springer Berlin / Heidelberg, 2004.

[4] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–
110, 2004. 10.1023/B:VISI.0000029664.99615.94.

[5] J. Shi and C. Tomasi. Good features to track. In Computer Vi-
sion and Pattern Recognition, 1994. Proceedings CVPR ’94.,
1994 IEEE Computer Society Conference on, pages 593 –600,
jun 1994.

