
Arrowsmith: Automatic Archery Scorer
Chanh Nguyen and Irving Lin

Department of Computer Science, Stanford University

ABSTRACT

We present a method for automatically determining the score

of a round of arrows lodged in an archery target face. That is,

given an image consisting of a complete target face, and

given a set of arrows that have struck within the target face,

we generate a score for each arrow with regard to which two

circles it’s between. To do this, we present a multi-step

process to determine the location and shape of the set of

concentric and evenly distributed circles (that may be

distorted by perspective) representing the target face, locate

and orient the each arrow, and find the pinpoint location of

where the arrowheads pierce the target face. Our partially

implemented method currently produces results that

demonstrate its capability to detect circles and accurately find

points of arrowhead intersection.

Categories and Subject Descriptors

I.4.8 [Image Processing]: Scene Analysis – Object Recognition

General Terms

Mobile Computer Vision, Object Recognition, Detection

Keywords

Archery, Scoring, Arrows, Targets, Arrowhead

1. INTRODUCTION

Archery is a growing sport around the world, with

competitors from the junior level to the collegiate and

Olympic levels. During a competition, archers line up at a

measured distance from a target and attempt to fire arrows

into the target center. The target consists of 10 nested

concentric circles, with the innermost one worth 10 points

and the outermost one worth 1 point. One of the most time

consuming tasks of archery training and competition is

manually determining a score for each arrow on a target. In a

typical competition, archers shoot for only 4 minutes before

having to walk to the target and determine the score - a

process that takes up to 5 minutes, meaning the scoring time

can consume more than half the competition! Since

competitions usually last 2 to 4 days, a computer-assisted

scoring mechanism can save quite a significant amount of

time. Finally, many archers don’t keep score during training

because it is too much of a hassle, although keeping score is

one of the best ways to track progress.

2. PRIOR WORK

[N/A as of yet]

3. DATA AND MODEL

Our project uses images taken of standard 10 concentric

circle archery targets without a restriction of the number of

protruding arrows. The algorithm should be relatively noise,

exposure, and perspective invariant. In particular, the

method should handle cases where the image of the target is

captured from any reasonable angle. However, for our

milestone, we make a few critical assumptions about the

image: 1) the target circle scoring zones are perfect circles

without distortion, perspective shifts, occlusions other than

the arrows, and fully included in the image 2) the arrows are

well-defined, spread out, and do not obscure or interfere

with one another in any way, 3) the arrows have no shadows,

and 4) the image does not contain motion blur or camera

shake (that is, it’s sharp). In particular, we did most of our

testing on the image in Figure 1. We fabricated this image in

order to test our implementation on a simple case. In order

to handle cases where the target is not conveniently head-on,

we will detect the target’s ellipse, apply a rotation to make

the major axis vertical, and apply then a horizontal scale to

complete the conversion into a circle.

Figure 1: Initial Test Image

4. PROCESS

Our current algorithm utilizes a multi-step process to

determine an accurate scoring mechanism. We split up our

task into processing the image and then tackling two separate

components (detecting circles and arrowhead intersection).

We then combine the results to obtain our score.

4.1 Image Processing

The images we analyze will most likely be taken from mobile

devices, and thus, the quality is always a concern. Images will

be of varying exposure, contain noise, have distortion and

perspective shifts, and contain differing sized target faces

that are not necessarily centered. Also, one of the first things

we noticed was that for our purposes, pixel color values and

textures were more likely to be detrimental than useful to the

detection problem, and that all we really needed were the

edges. Thus, we tried several variations of the Canny edge

detector method seen in Figure1 a, b, and c, and found that

Canny with a simple Gaussian blur worked best, as we’ll

show later on in Section 4.3 on Arrowhead detection.

4.2 Circle Detection

We started by detecting circles using a basic Hough

transform. However, OpenCV’s HoughCircles library

discards concentric circles, perhaps to avoid false positives

on the same object, and gives us the strongest circle it can

detect (Figure 3a). Rather than finding ways to detect all the

circles, we exploit the fact that the circles on a target are

evenly spaced and instead try to detect the outermost circle,

from which all the inner circles can be more precisely

calculated. Since OpenCV allows a radius range to be

specified, we performed binary search on the range of radii

in order to arrive at the largest circle (Figure 3b). As a final

step, we applied a Gaussian blur to the image before

applying the Hough transform for additional precision

(Figure 3c).

When we calculated the inner rings, we immediately saw how

the error of the outermost circle had a much more noticeable

effect on the smaller circles (Figure 3d). In order to calculate

a more precise location for our outermost circle (green in

Figure 3e), we used the Hough circle (blue in both figures) as

an initial approximation for a more precise template

matching process, in which we tested at scales of .7 to 1.3 in

a 50 by 50 range (our image is 800x800) using a pyramid

sliding window approach. Since the Hough circle helps us

narrow down the search domain of the template matching,

we can be very precise without being too expensive. This will

be critical since the algorithm is intended to be used on

mobile phones.

4.3 Arrowhead Intersection

Arrowhead intersection was a particularly difficult task, and

one we had to make a lot of assumptions for initially. We

tried many solutions in our attempt to solve the problem, but

in the end, the simplest turned out to be the most elegant.

Figure 2: (a) Canny without blurring, (b) Canny with DOG, and (c) Canny with Gaussian

Our first attempt was to use template matching to find

sections of the photograph that were similar to the what an

intersection of an arrow with a target face looked like.

However, this was a massive failure as template matching is

rotationally invariant, in addition to the complexity of

varying backgrounds that take up most of the matching

template (the arrowhead is really small and narrow).

We also tried Harris corner detection, with the hopes that

the intersection would appear as a corner that we could

distinguish. However, as you can see in Figures 4a and 4b,

Harris corner detection fell way short of its potential, and

because of the aliased edges of the circle that no amount of

blurring could solve (Figure 4b uses a Difference of

Gaussian with Canny and with a particularly low threshold),

it ended up returning more circle edges than anything else.

In the end, the simplest method of using a Hough transform

Figure 3 (a) Hough Circles (b) Hough Circles with binary search for largest circle (c) With Gaussian preprocessing

(d) Rings estimated using Hough Circles (e) Rings estimated using template matching

Figure 4: (a) Harris Corner with Gaussian+Canny, (b) Harris Corner with Gaussian+Canny, (c) Harris Corner with COG+Canny,

(d) Hough Lines with no blurring+Canny, (e) Hough Lines with COG+Canny, and (f) Hough Lines with Gaussian+Canny

to find the lines with the right amount of parameter

adjustment resulted in the best possible outcome (Figure 4c).

In addition, we chose to use the simple Canny with Gaussian

blur for the base image to run the Hough transform on as

that allowed for the most arrow definition relative to noise.

One of the issues we faced was finding a fine balance of the

arrow shaft between hyperextension as a result of too much

noise and hyperflexion as a result of too much blur non-

definition.

The main issue to the Hough transforms is that now, each

arrow may have multiple lines, and we’ll need to determine

the best one relative to each arrow, described in the next

section.

4.4 Arrow Fletching Detection

In order to reduce the chances of double-counting an arrow

or leaving out an arrow, we want to detect the number of

arrows based on the most distinguishable part of the arrow:

the fletching (vanes). In the sport of archery, there are

several varieties of fletching, from sleek shaped to shield

shaped and even curvy ones as shown in Figure 5. Aside

from variety, fletching can also be of any color combination

and can be any rotation around the arrow. The fletching will

also be skewed depending on the angle of the arrow with

respect to the camera. Thus, we need to perform object

detection that can pick out arrows with any type of fletching,

entering the target at any location and angle, and spun in

every way possible.

To start, we have detected keypoints and extracted features

using SIFT and SURF methods. We are currently in the

process of building a training set of fletchings, but Figure 5c

and 5d demonstrate how SIFT and SURF compare when it

comes to matching with one training example.

4.5 Putting It Together

Once we have have an idea of how many arrows are on the

target and where they may be, as well as where the rings are,

we can calculate the score by taking the point of the arrow

closest to the target.

5. CONCLUSION

Figure 6: Combined efforts

Figure 5: (a) SIFT Keypoints (b) SURF Keypoints (c) SIFT matches (d) SURF matches

Our current milestone update has provided promising

results, and by trying out and physically seeing the results of

many of the algorithms we learned in class, we have gained a

lot of intuition on what might work and what likely won’t for

our project. We hope to build on the success by making the

overall solution more robust and accurate. In particular, we

plan on having the final project implement these goals:

- Instead of detecting circles, we should assume that

the target will be captured at an angle. Thus, we

should instead detect for ellipses and transform the

ellipses back into the original intended concentric

circles.

- Determining which of the multiple detected lines

per arrow correspond to which arrow. This is a

simple problem if you can guarantee that the arrows

are a set distance apart, but depending on the

perspective of the camera as well as the accuracy of

the shots, this does not have to be the case, and

thus, becomes a nontrivial problem.

- Distinguishing and handling arrow shadows.

- Implement on mobile device (considering there’s

already a ported OpenCV library for Android) for

real time point calculation.

- Dealing with lots of random holes from previous

arrowhead piercings.

- Testing on real and more challenging scenarios.

6. REFERENCES

[N/A as of yet]

