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ABSTRACT 

We present a method for automatically determining the score 

of a round of arrows lodged in an archery target face. That is, 

given an image consisting of a complete target face, and 

given a set of arrows that have struck within the target face, 

we generate a score for each arrow with regard to which two 

circles it’s between. To do this, we present a multi-step 

process to determine the location and shape of the set of 

concentric and evenly distributed circles (that may be 

distorted by perspective) representing the target face, locate 

and orient the each arrow, and find the pinpoint location of 

where the arrowheads pierce the target face. Our partially 

implemented method currently produces results that 

demonstrate its capability to detect circles and accurately find 

points of arrowhead intersection. 
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1. INTRODUCTION 

Archery is a growing sport around the world, with 

competitors from the junior level to the collegiate and 

Olympic levels. During a competition, archers line up at a 

measured distance from a target and attempt to fire arrows 

into the target center. The target consists of 10 nested 

concentric circles, with the innermost one worth 10 points 

and the outermost one worth 1 point. One of the most time 

consuming tasks of archery training and competition is 

manually determining a score for each arrow on a target. In a 

typical competition, archers shoot for only 4 minutes before 

having to walk to the target and determine the score - a 

process that takes up to 5 minutes, meaning the scoring time 

can consume more than half the competition! Since 

competitions usually last 2 to 4 days, a computer-assisted 

scoring mechanism can save quite a significant amount of 

time. Finally, many archers don’t keep score during training 

because it is too much of a hassle, although keeping score is 

one of the best ways to track progress. 

 

2. PRIOR WORK 

[N/A as of yet] 

3. DATA AND MODEL 

Our project uses images taken of standard 10 concentric 

circle archery targets without a restriction of the number of 

protruding arrows. The algorithm should be relatively noise, 

exposure, and perspective invariant. In particular, the 

method should handle cases where the image of the target is 

captured from any reasonable angle. However, for our 

milestone, we make a few critical assumptions about the 

image: 1) the target circle scoring zones are perfect circles 

without distortion, perspective shifts, occlusions other than 

the arrows, and fully included in the image 2) the arrows are 

well-defined, spread out, and do not obscure or interfere 

with one another in any way, 3) the arrows have no shadows, 

and 4) the image does not contain motion blur or camera 

shake (that is, it’s sharp). In particular, we did most of our 

testing on the image in Figure 1. We fabricated this image in 

order to test our implementation on a simple case. In order 

to handle cases where the target is not conveniently head-on, 

we will detect the target’s ellipse, apply a rotation to make 



the major axis vertical, and apply then a horizontal scale to 

complete the conversion into a circle. 

 
Figure 1: Initial Test Image 

4. PROCESS 

Our current algorithm utilizes a multi-step process to 

determine an accurate scoring mechanism. We split up our 

task into processing the image and then tackling two separate 

components (detecting circles and arrowhead intersection). 

We then combine the results to obtain our score. 

4.1 Image Processing 

The images we analyze will most likely be taken from mobile 

devices, and thus, the quality is always a concern. Images will 

be of varying exposure, contain noise, have distortion and 

perspective shifts, and contain differing sized target faces 

that are not necessarily centered. Also, one of the first things 

we noticed was that for our purposes, pixel color values and 

textures were more likely to be detrimental than useful to the 

detection problem, and that all we really needed were the 

edges. Thus, we tried several variations of the Canny edge 

detector method seen in Figure1 a, b, and c, and found that 

Canny with a simple Gaussian blur worked best, as we’ll 

show later on in Section 4.3 on Arrowhead detection. 

4.2 Circle Detection 

We started by detecting circles using a basic Hough 

transform. However, OpenCV’s HoughCircles library 

discards concentric circles, perhaps to avoid false positives 

on the same object, and gives us the strongest circle it can 

detect (Figure 3a). Rather than finding ways to detect all the 

circles, we exploit the fact that the circles on a target are 

evenly spaced and instead try to detect the outermost circle, 

from which all the inner circles can be more precisely 

calculated. Since OpenCV allows a radius range to be 

specified, we performed binary search on the range of radii 

in order to arrive at the largest circle (Figure 3b). As a final 

step, we applied a Gaussian blur to the image before 

applying the Hough transform for additional precision 

(Figure 3c). 

When we calculated the inner rings, we immediately saw how 

the error of the outermost circle had a much more noticeable 

effect on the smaller circles (Figure 3d). In order to calculate 

a more precise location for our outermost circle (green in 

Figure 3e), we used the Hough circle (blue in both figures) as 

an initial approximation for a more precise template 

matching process, in which we tested at scales of .7 to 1.3 in 

a 50 by 50 range (our image is 800x800) using a pyramid 

sliding window approach. Since the Hough circle helps us 

narrow down the search domain of the template matching, 

we can be very precise without being too expensive. This will 

be critical since the algorithm is intended to be used on 

mobile phones.  

4.3 Arrowhead Intersection 

Arrowhead intersection was a particularly difficult task, and 

one we had to make a lot of assumptions for initially. We 

tried many solutions in our attempt to solve the problem, but 

in the end, the simplest turned out to be the most elegant.  

 

Figure 2: (a) Canny without blurring, (b) Canny with DOG, and (c) Canny with Gaussian 

 



Our first attempt was to use template matching to find 

sections of the photograph that were similar to the what an 

intersection of an arrow with a target face looked like. 

However, this was a massive failure as template matching is 

rotationally invariant, in addition to the complexity of 

varying backgrounds that take up most of the matching 

template (the arrowhead is really small and narrow).  

We also tried Harris corner detection, with the hopes that 

the intersection would appear as a corner that we could 

distinguish. However, as you can see in Figures 4a and 4b, 

Harris corner detection fell way short of its potential, and 

because of the aliased edges of the circle that no amount of 

blurring could solve (Figure 4b uses a Difference of 

Gaussian with Canny and with a particularly low threshold), 

it ended up returning more circle edges than anything else.  

In the end, the simplest method of using a Hough transform 

 

 

Figure 3 (a) Hough Circles (b) Hough Circles with binary search for largest circle (c) With Gaussian preprocessing 

(d) Rings estimated using Hough Circles (e) Rings estimated using template matching 

 

 

 

Figure 4: (a) Harris Corner with Gaussian+Canny, (b) Harris Corner with Gaussian+Canny, (c) Harris Corner with COG+Canny,  

(d) Hough Lines with no blurring+Canny, (e) Hough Lines with COG+Canny, and (f) Hough Lines with Gaussian+Canny 

 



to find the lines with the right amount of parameter 

adjustment resulted in the best possible outcome (Figure 4c). 

In addition, we chose to use the simple Canny with Gaussian 

blur for the base image to run the Hough transform on as 

that allowed for the most arrow definition relative to noise. 

One of the issues we faced was finding a fine balance of the 

arrow shaft between hyperextension as a result of too much 

noise and hyperflexion as a result of too much blur non-

definition. 

The main issue to the Hough transforms is that now, each 

arrow may have multiple lines, and we’ll need to determine 

the best one relative to each arrow, described in the next 

section. 

4.4 Arrow Fletching Detection 

In order to reduce the chances of double-counting an arrow 

or leaving out an arrow, we want to detect the number of 

arrows based on the most distinguishable part of the arrow: 

the fletching (vanes). In the sport of archery, there are 

several varieties of fletching, from sleek shaped to shield 

shaped and even curvy ones as shown in Figure 5. Aside 

from variety, fletching can also be of any color combination 

and can be any rotation around the arrow. The fletching will 

also be skewed depending on the angle of the arrow with 

respect to the camera. Thus, we need to perform object 

detection that can pick out arrows with any type of fletching, 

entering the target at any location and angle, and spun in 

every way possible.  

To start, we have detected keypoints and extracted features 

using SIFT and SURF methods. We are currently in the 

process of building a training set of fletchings, but Figure 5c 

and 5d demonstrate how SIFT and SURF compare when it 

comes to matching with one training example. 

4.5 Putting It Together 

Once we have have an idea of how many arrows are on the 

target and where they may be, as well as where the rings are, 

we can calculate the score by taking the point of the arrow 

closest to the target. 

5. CONCLUSION 

 
Figure 6: Combined efforts 

 

 

Figure 5: (a) SIFT Keypoints (b) SURF Keypoints (c) SIFT matches (d) SURF matches  



Our current milestone update has provided promising 

results, and by trying out and physically seeing the results of 

many of the algorithms we learned in class, we have gained a 

lot of intuition on what might work and what likely won’t for 

our project. We hope to build on the success by making the 

overall solution more robust and accurate. In particular, we 

plan on having the final project implement these goals: 

- Instead of detecting circles, we should assume that 

the target will be captured at an angle. Thus, we 

should instead detect for ellipses and transform the 

ellipses back into the original intended concentric 

circles. 

- Determining which of the multiple detected lines 

per arrow correspond to which arrow. This is a 

simple problem if you can guarantee that the arrows 

are a set distance apart, but depending on the 

perspective of the camera as well as the accuracy of 

the shots, this does not have to be the case, and 

thus, becomes a nontrivial problem. 

- Distinguishing and handling arrow shadows. 

- Implement on mobile device (considering there’s 

already a ported OpenCV library for Android) for 

real time point calculation. 

- Dealing with lots of random holes from previous 

arrowhead piercings. 

- Testing on real and more challenging scenarios. 
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