
CS231A Project Milestone: Real-Time Airbending

Mridul Aanjaneya
Stanford University

aanjneya@stanford.edu

Michael Lentine
Stanford University

mlentine@stanford.edu

Abstract

We propose to design a framework for real-time inter-
active physics-based simulation using state of the art mo-
tion sensing devices such as the Microsoft Kinect. The user
would be able to interact with the system using simple ges-
tures, where each gesture would have a predefined action
associated with it. We would like our system to recog-
nize logically similar gestures, i.e., gestures that represent
variants of the same action. This will require novel pose
descriptors and similarity metrics which would take into
account the intrinsic relationships between different body
parts rather than just the actual 3D embedding. Moreover,
the real-time interaction would require fast algorithms for
both physical simulation and gesture recognition.

1. Introduction

Real-time simulation has started gaining wide interest
because of its potential applications to video games as well
as special effects. Current state of the art algorithms for
simulation attempt to approach real-time by coarsening the
discretization of high-fidelity numerical methods. While it
is necessary to achieve visual realism through simulations,
it is also important to expand the domain of possible inputs
for better interaction. With the recent development of the
Microsoft Kinect, many researchers have started consider-
ing its possible applications to enhance the user experience.

2. Problem Statement

We wish to design a system for simulating natural phe-
nomena in real-time which interacts with the user through
gestures input using the Microsoft Kinect. We would like
the system to recognize logically similar gestures, i.e., ges-
tures that recognize variants of the same action [5]. For
real-time gesture recognition, we would store all possibly
similar gestures in an efficiently searchable data structure.

We plan on evaluating the performance of our gesture
recognition algorithm on the training data we collected us-
ing our skeleton tracking algorithm (see Section 4.1), by
dividing it into a training set and a test set. The evaluation

metric would be the percentage of gestures for which the
recognition succeeded. The performance of our interactive
physics engine can be evaluated by computing the number
of time steps taken per frame (which should ideally be 1)
as well as the computation time per frame, which should be
approximately 1/24 seconds for achieving real-time. Since
we would be parallelizing our implementation, we would
also like to compare the total speedup achieved against the
number of threads used to decompose the domain.

2.1. Gesture Recognition

Gestures are perhaps the most intuitive way of interact-
ing with a given system. While gesture recognition has been
an active area of research, most available systems are con-
strained to recognizing numerically similar gestures, i.e.,
the corresponding skeletal poses are roughly the same. This
contradicts the very definition of a gesture. For example, if
one wants to shoot a fireball to the right and to the left, the
performed action remains the same, but the user shoots in
two different directions. Current algorithms will incorrectly
interpret these actions as two different gestures. Hence, one
needs to design descriptors that can encode the semantic
meaning of an action and intrinsic relations between vari-
ous body parts, as opposed to just the extrinsic 3D embed-
ding. Moreover, one needs to learn a metric on the space
of such descriptors for accurate gesture matching and for
real-time recognition, one needs to design a compact data
structure for storing similar gestures which is efficiently
searchable [5]. If time permits, we also wish to explore the
problem of sampling gestures for encoding them compactly
while still preserving their semantic meaning [1].

2.2. Real-time Interactivity

While gesture recognition is necessary for an interactive
simulation, real-time algorithms for physically based simu-
lations also need to be developed. In order to achieve plau-
sible results, many current methods rely on fine discretiza-
tions in both space and time, making these techniques im-
practical for real-time applications [3]. To alleviate these
problems, we plan on implementing methods that reduce
the cost of individual steps in a traditional simulation algo-

rithm as well as techniques for conserving physical quanti-
ties and thus allowing for accurate coarser discretizations.

3. Technical Approach
Our method consists of two main parts, real-time gesture

recognition and real-time interactive simulation.

3.1. Gesture Recognition

There are two main approaches to gesture recognition.
The first approach treats a gesture as a temporal sequence of
poses. Hence, the problem of gesture recognition reduces to
the problem of string matching where each element of the
string is a pose descriptor [6, 4, 5]. The second approach
encodes an entire gesture which is achieved by treating a
gesture as a motion curve in a high-dimensional space and
using dimensionality reduction techniques [9, 1]. Individual
gestures are then matched using state of the art curve match-
ing algorithms [2]. We adopt the former approach and use
the framework proposed by Kovar and Gleicher [5]. If time
permits, we wish to investigate the latter approach as well.

Each pose is represented as a point cloud derived from
the skeleton created from cylinders (see Section 4.1). Dis-
tance between two poses is the weighted sum of squared
distances between corresponding points pi and p′

i in the two
point clouds:

d(P1,P2) = min
θ,x0,z0

∑
i

||pi − Tθ,x0,z0p′
i||2 (1)

The transformation Tθ,x0,z0 rotates a point p about the Y
(vertical) axis by θ degrees and then translates it by (x0, z0).
Hence, equation (1) computes the minimal weighted sum
of squared distances, given that an arbitrary rigid 2D trans-
formation may be applied to the second point cloud. This
optimization problem has a closed-form solution, as de-
scribed in [6]. For computing logically similar gestures, we
start by computing numerically similar gestures, and then
use them as new queries for finding more distant gestures.
Two gestures are numerically similar if the correspond-
ing frames have similar poses and related gesture events
are easily recognizable. The set of pose correspondences
should form a continuous, monotonically increasing, non-
degenerate mapping between frames, which is termed as
time alignment [5] (see Figure 1). An optimal time align-
ment that minimizes the total distance between matched
poses can be computed using dynamic programming [4].
For real-time recognition, we store similar gestures in a
match web [5] which is an efficient search structure.

3.2. Real-time Interactivity

Our method starts by using [3] for smoke simulation. We
then add additional performance using [8] which downsam-
ples the resolution for the expensive parts of a simulation

(a) (b) (c) (d)

Figure 1. Time alignments must be continuous, monotonic and
non-degenerate: (a) legal, (b) nonmonotonic, (c) discontinuous
and (d) degenerate.

Figure 3. (Left) output of only the thread associated with the left
side of the domain and (Right) a thread on the right side of the
domain.

while keeping a large resolution to preserve details. We
further improve upon this by adding [7] which allows for
a single time step to be taken for every frame. Because
of these techniques we can now run grid based simulations
with real-time performance. Our goal is to further improve
this performance and achieve significantly higher resolution
simulations while maintaining the real-time constraint.

We approach this problem by using two methods. First
step is to add parallelism to these simulations. We achieve
this by breaking down the underlying grid into a number of
smaller pieces. Each thread then independently simulates
it’s own piece and only communicates boundary data be-
tween the pieces when needed for simulation (as shown in
Figure 3). The second step is to increase the visual fidelity
after the simulation is done by convolving the density field
with an upsampling filter that increases visual details. To
achieve this we first break up our problem by dimension
and apply the filter g on each dimension.

g(x) =

1
2

[
f(bx

2 c) 0 f(dx
2 e)

]
: x is odd[

0 f(x
2) 0

]
: x is even.

4. Preliminary Results

Using Microsoft’s Kinect is central to our problem.
Therefore we start by connecting the Kinect to a PC and use
the openni device drivers to read data. Input data has color
and depth information. We can then use a skeleton tracker
such as that provided by NITE. This provides us with a set
of joint angles as shown in Figure 4 (Left).

Figure 2. (Left) using prior methods from [8, 7] in real time. (Center) our new method incorporates parallelism allowing for higher
resolution simulations. (Right) our new method after convolving with an upsampling filter. Note the improved visual fidelity.

Figure 4. (Left) capture of joint angles using Kinect data and
(Right) a skeleton created from cylinders.

4.1. Gesture Recognition

Once the joint angles were available, we converted them
into an appropriate skeleton which would be better suited as
input data for our gesture recognition algorithm. To com-
pute the skeleton we constructed a set of cylinders for each
bone. This was achieved by calculating the differences be-
tween positions of each joint and then using the relative
joint rotations to compute the orientation of the bones. We
use OpenGL to display the results of our skeleton tracking
algorithm (see Figure 4 (Right)). We plan to collect training
data for gesture recognition by using our skeleton tracking
algorithm and manually cropping frames for each gesture.
This data would then be used as input for our algorithm.

4.2. Real-time Interactivity

Real-time interactive simulations form the other part of
our problem. As described in Section 3.2, we have im-
plemented prior algorithms and added parallelism which
drastically improves their performance. Using 12 threads
we can improve the performance of our algorithm from a
grid of resolution 20 × 40 × 20 to a grid of resolution
50 × 100 × 50, as shown in Figure 2 (Left) and (Center).
To further increase the visual fidelity of the simulation we

applied a convolution filter that upsamples the resolution of
the simulation using first order interpolation. The results of
this filter, as compared to the results of just our real-time
simulation, are shown in Figure 2 (Center) and (Right).

References
[1] J. Assa, Y. Caspi, and D. Cohen-Or. Action synopsis:

pose selection and illustration. ACM Trans. Graph.,
24:667–676, July 2005.

[2] K. Buchin, M. Buchin, and Y. Wang. Exact algorithms
for partial curve matching via the fréchet distance. In
SODA 2009, pages 645–654.

[3] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation
of smoke. In SIGGRAPH 2001, 2001.

[4] L. Kovar and M. Gleicher. Flexible automatic motion
blending with registration curves. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, SCA ’03, pages 214–224, 2003.

[5] L. Kovar and M. Gleicher. Automated extraction and
parameterization of motions in large data sets. In SIG-
GRAPH 2004, pages 559–568, 2004.

[6] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs.
ACM Trans. Graph., 21:473–482, July 2002.

[7] M. Lentine, M. Aanjaneya, and R. Fedkiw. Mass and
momentum conservation for fluid simulation. In Pro-
ceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’11, 2011.

[8] M. Lentine, W. Zheng, and R. Fedkiw. A novel algo-
rithm for incompressible flow using only a coarse grid
projection. ACM Transactions on Graphics, July 2010.

[9] A. Safonova, J. K. Hodgins, and N. S. Pollard. Syn-
thesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. In SIGGRAPH
2004, pages 514–521, 2004.

