
Arrowsmith: Automatic Archery Scorer
Chanh Nguyen and Irving Lin

Department of Computer Science, Stanford University

ABSTRACT

We present a method for automatically determining the score

of a round of arrows lodged in an archery target face. That is,

given an image consisting of a complete target face, and

given a set of arrows that have struck within the target face,

we generate a score for each arrow with regard to the two

circles it is between. To do this, we present a multi-step

process to determine the location and shape of the set of

concentric and evenly distributed circles (that may be

distorted by perspective) representing the target face, locate

and orient the each arrow, and find the pinpoint location of

where the arrowheads pierce the target face. We are able to

handle images of a target face at arbitrary angles by

automatically rectifying the image so that the target becomes

circular. We test the performance of our system on a set of

real images taken from mobile phones and find that it

performs reasonably well.

Categories and Subject Descriptors

I.4.8 [Image Processing]: Scene Analysis – Object Recognition

General Terms

Planar Rectification, Object Recognition, Detection

Keywords

Archery, Scoring, Arrows, Targets, Arrowhead

1. INTRODUCTION

Archery is a growing sport around the world, with

competitors from the junior level to the collegiate and

Olympic levels. During a competition, archers line up at a

measured distance from a target and attempt to fire arrows

into the target center. The target consists of 10 nested

concentric circles, with the innermost one worth 10 points

and the outermost one worth 1 point. One of the most time

consuming tasks of archery training and competition is

manually determining a score for each arrow on a target. In a

typical competition, archers shoot for only 4 minutes before

having to walk to the target and determine the score - a

process that takes up to 5 minutes, meaning the scoring time

can consume more than half the competition! Since

competitions usually last 2 to 4 days, a computer-assisted

scoring mechanism can save quite a significant amount of

time. Finally, many archers don’t keep score during training

because it is too much of a hassle, although keeping score is

one of the best ways to track progress.

2. DATA AND MODEL

Our project uses 147 images taken of standard 10 concentric

circle archery targets without a restriction of the number of

protruding arrows, and taken without concern for scale,

perspective, or rotation.

The algorithm should be relatively noise, exposure, and

perspective invariant. In particular, the method should

handle cases where the image of the target is captured from

any reasonable angle. However, we began developing our

system under some simplifying assumptions: 1) the target

circle scoring zones are perfect circles without distortion,

perspective shifts, and occlusions (other than the arrows),

and are fully included in the image; 2) the arrows are well-

defined and have no shadows, and 3) the image does not

contain motion blur or camera shake (that is, it’s sharp).

In the early stages, we did most of our testing on the top

image in Figure 1. We fabricated this image in order to

provide a controlled and simple test bed for our

implementation ideas and to determine which were most

effective. After gaining domain specific knowledge with the

simple case, we proceeded to further enhance and develop

our algorithm on the real world images (Figure 2).

Figure 1: Contrived Image

Figure 2: Real-world image

3. PROCESS

Our current algorithm has two distinct stages, the second of

which relies heavily upon the first. The first task is rectifying

the target face and finding the circles. We then analyze the

arrows afterwards. The entire process is shown in Figure 3.

3.1 Image Processing

The images we analyze will most likely be taken from mobile

devices, and thus, the quality is always a concern. Images will

be of varying exposure, contain noise, have distortion and

perspective shifts, and contain differing sized target faces

that are not necessarily centered. Also, one of the first things

we noticed was that for our purposes, pixel color values and

textures were more likely to be detrimental than useful to the

detection problem, and that all we really needed were the

edges. Thus, we tried several variations of the Canny edge

detector method seen in Figure 4 a, b, and c, and found that

Canny with a simple Gaussian blur worked best, as we’ll

show later on in Section 4.3 on Arrowhead detection.

3.2 Rectification

Rather than detecting ellipses for planar rectification, we take

advantage of the fact that target faces are printed on a square

sheet of paper. We detect the four corners of the sheet of

paper to calculate a homography matrix which is used to

rectify the image.

We use a Harris corner detector, which is able to detect the

corners of the paper given a low threshold, but that also

means it detects many other unrelated corners in the image

(Figure 5b). In order to single-out the corners of the paper,

we rely on medium-to-long lines in the image, found using a

Hough transform. Since there are many lines present in any

image, we pick out a set of 4 lines that roughly intersect at 4

or more Harris corners.

However, since the arrows themselves create long lines, they

Figure 3: The entire process of scoring arrows, described in Section 3.

could be misconstrued as a paper border. Thus, we restrict

the 4 lines such that the longest line is not much larger than

the shortest line, forcing the shape to be somewhat of a

skewed square. We also require that none of the line

segments are part of the same line.

Our final tuning has optimized the threshold for line

detection and Harris corners such that we are able to detect

the piece of paper on 22/23 Medium difficulty samples, and

24/50 Hard samples. We did not use rectification for the

Easy set because those images were already shot at near-

direct angles, meaning rectification would not greatly

improve the accuracy and incurs a risk of mis-transforming

the whole image.

The main challenge presented by the Hard samples was the

extreme angle of the paper and the fact that one or more

corners of the paper were sometimes outside of the image.

This is one of the limitations of our algorithm. The

algorithm was also confused when the edges of the paper

were not completely flat, causing the edges of the paper to

not intersect at its corners.

Although using 4 points is enough to calculate a usable

perspective transformation, it can sometimes result in the

center of the scoring rings to be transformed to an incorrect

location. To fix this, we would need to detect a 5th point for

the homography equations which would ideally be the center

of the rings.

3.3 Circle Detection

We started by detecting circles using a basic Hough

transform. However, OpenCV’s HoughCircles library

discards concentric circles, perhaps to avoid false positives

on the same object, and gives us the strongest circle it can

detect (Figure 6). Rather than finding ways to detect all the

circles, we exploit the fact that the circles on a target are

evenly spaced and instead try to detect the outermost circle,

from which all the inner circles can be more precisely

calculated. Since OpenCV allows a radius range to be

Figure 4: (a) Canny without blurring, (b) Canny with DOG, and (c) Canny with Gaussian

Figure 5: (a) Original image, (b) Harris corners, (c) Detected corners of target (d) Rectified image

specified, we performed binary search on the range of radii

in order to arrive at the largest circle (Figure 6d). As a final

step, we applied a Gaussian blur to the image before

applying the Hough transform for additional precision.

When we calculated the inner rings, we immediately saw how

the error of the outermost circle had a much more noticeable

effect on the smaller circles (Figure 6d). In order to calculate

a more precise location for our outermost circle (green in

Figure 6e), we used the Hough circle (blue in both figures) as

an initial approximation for a more precise template

matching process, in which we tested at scales of .7 to 1.3 in

a 50 by 50 range (our image is 800x800) using a pyramid

sliding window approach. Since the Hough circle helps us

narrow down the search domain of the template matching,

we can be very precise without being too expensive. This will

be critical since the algorithm is intended to be used on

mobile phones.

3.4 Gap Detection

One of the problems with detecting arrows comes from a

lack of contrast between the arrow and its background. Since

part of the target consists of two black rings and the arrows

are usually black, they can sometimes blend in with the black

rings and cause a large gap in the edge-detected form of the

arrow. However, human eyes can easily perceive the arrow

because we can see where it occludes the lines of the target.

We can give a computer the same information: instead of

looking for where there is an arrow, we look for where part

of the target is missing.

Figure 7: Gap Detection

We rely on the image of the target being correctly rectified

and the rings of the target precisely detected. In order to

detect gaps in each ring, we walk along the ring in a Canny

edge detected image and mark areas where the edge is

missing. We can ignore very small gaps and very large gaps,

Figure 6: (a) Hough Circles (b) Hough Circles with binary search for largest circle (c) With Gaussian preprocessing
(d) Rings estimated using Hough Circles (e) Rings estimated using template matching

which are a result of blurring in the pre-processing step, and

focus on gaps that are likely to be caused by arrows.

Since arrows can cause our circular walks to deviate, we

force the walks to stay within some distance of where we

think the ring is actually located. Thus if the location of our

rings are not precise, we will have many false-positive gaps

(Figure 7).

3.5 Arrow Detection

Arrowhead intersection was a particularly difficult task, and

one we had to make a lot of assumptions for initially. We

tried many solutions in our attempt to solve the problem, but

in the end, the simplest turned out to be the most elegant.

Our first attempt was to use template matching to find

sections of the photograph that were similar to the what an

intersection of an arrow with a target face looked like.

However, this was not successful as efficient template

matching is not rotationally invariant, in addition to the

complexity of varying backgrounds that take up most of the

matching template (the arrowhead is really small and

narrow).

We also tried Harris corner detection, with the hopes that

the intersection would appear as a corner that we could

distinguish. However, as you can see in Figures 8a and 8b,

Harris corner detection could not separate the intersection

point from any of the other corners in the image, and

because of the aliased edges of the circle that no amount of

blurring could solve (Figure 8b uses a Difference of

Gaussian with Canny and with a particularly low threshold),

it ended up returning more circle edges than anything else.

In the end, while the simplest method of using a Hough

transform to find the lines with the right amount of

parameter adjustment resulted in the best possible outcome

for our contrived image (Figure 8f), we ended up finding out

that correctly parameterizing a Difference of Gaussian for

the real world images resulted in better arrow line detection.

One of the issues we faced was finding a fine balance of the

arrow shaft between hyperextension as a result of too much

noise and hyperflexion as a result of too much blur non-

definition.

In addition, when running Hough transform on the real

world images, we end up with a significantly worse signal to

noise ratio for lines, which means we had to do a lot of

tweaking of parameters followed by post-processing and

filtering to get it down to what we wanted (Figure 9).

When examining the resulting over-detection of lines in our

images (such as Figure 9), we noticed a two critical features

we could take advantage of. The first was that there was a lot

of noise outside of the square target paper. Since we

effectively knew where the location of the center of the circle

and its radius after rectification, we roughly could estimate

the size of the bounding target paper. We then removed any

line that didn’t at least one point inside the target bounding

box. We realized that arrows may protrude outside of the

Figure 8: (a) Harris Corner with Gaussian+Canny, (b) Harris Corner with Gaussian+Canny, (c) Harris Corner with DOG+Canny,
(d) Hough Lines with no blurring+Canny, (e) Hough Lines with DOG+Canny, and (f) Hough Lines with Gaussian+Canny

bounding box, and thus felt it would be useful to keep as

much of that information as possible.

Figure 9: Noisy Hough Lines

The second feature we had to get rid of was a result of the

resolution of the circles not being sufficient enough to

prevent tangentially lines from appearing on the Hough

transform results. Clearly, these lines would affect the overall

score, and we needed to find of way of removing them.

Again, we were able to take advantage of finding and

knowing the circles. Any line less than a certain percentage

of the radius that was tangential to a point on one of the

circles and was close enough to that point on the circle was

removed.

Incorporating these two line noise reduction features, we

were able to get much more usable results (Figure 10).

Figure 10: Hough Lines Post-Filtering

However, the main issue to the Hough transforms is that

now, each arrow may have several lines of varying lengths

and angles, not all of which are connected, and we’ll need to

determine the best one relative to each arrow.

3.6 Arrow Line and Gap Clustering

Finding which lines correspond to which arrows is no trivial

task. First, the perspective of the arrow isn’t straight on, the

arrow can change width. Second, arrows may be parallel to

each other. Third, arrows may be on the same line. Fourth,

arrows may intersect. And finally, arrows may be extremely

short, and be very difficult to distinguish from other random

lines that may appear from arrow feathers.

We ended up determining that clustering the arrows would

provide for the best results. To cluster the arrows, we iterate

through the set of filtered lines, and if the given line is within

a certain score of the current set of clusters we have,

combine it with the cluster. Otherwise, create a new cluster

with that arrow. The score is calculated based on a weighted

parameterization of the angle, the distance from the

midpoint of the line to the midpoint of the cluster, and the

shortest distance from the midpoint of the line to the

averaged lines of the cluster.

Figure 11: Line Clustered Arrows

The result of the clusters turned out to be quite good (Figure

11), although occasionally there would be an arrow feather

line that was at a different enough angle to create a new

cluster (green line in Figure 11), and occasionally an arrow

that was overly long that was classified into two separate

arrows (Figure 12). These are clearly problems, as having two

separate clusters results in extra scored arrows.

To combat these two problems, we introduce two different

methods. The first method is to use the gaps we calculated

earlier to help add points to see which lines are actually

arrows, and which lines are more likely to be off-chance

occurrences of feathers. For each pair of gaps, we calculate

the score for the closest line (without considering clusters),

and then assign those pair of gaps to the cluster that contains

the line. The intuition is that you tend to have two lines for

each edge of the arrow, but even if you don’t if you have a

long enough line, you should go through multiple gaps.

Finally, since gaps most likely occur along the main arrow,

they are much more likely to be assigned to the main arrow

cluster than the feather.

Figure 12: Merged Gap and Line Clusters

To score the gap to a line, we use weighted parameterization

of the closest distance to the line segment (represents overall

separation) and closest distance to the line (represents angle).

Afterwards, we weigh each line in the cluster as 3 points to 2

points for each gap pair, and if the score for the cluster does

not exceed a threshold, we remove it (Figure 12).

Figure 13: Separated Line and Gap Clusters

However, this doesn’t fully solve the problem where two

clusters are formed from one arrow (Figure 13). To fix this

problem, we noticed that the only case where having two

clusters form is bad is if they are indeed the same line. Thus,

we calculate the best-fit line for each cluster to get the

representative line for the cluster, loop through all of the

points in the cluster to find the maximum closest ends of the

new representative line, and rerun the original clustering

algorithm until convergence (Figure 14).

Figure 14: Reclustered Line and Gap Representation

The introduction of these two solutions helped drastically

improve detection on most of the problems we encountered

when scoring. In addition, the added benefit of reducing

each cluster down to one line allows us to have a nice way of

representing the clustered arrow.

3.7 Score

Finally, once we have the lines, we can score it. Since we

don’t have an accurate way of finding the arrow feathers, we

naively assume that, given a line segment, the closer of the

two points that define the segment is the intersection of the

arrowhead (Figure 14). This isn’t necessarily the best

solution, but it is a rare case when this does not hold.

4. EVALUATION

To test the performance of our system, we have collected

images that simulate the typical use case of an archer using a

mobile phone camera to take pictures at arbitrary angles. We

have a collection of 95 images to evaluate our system. Each

image contains 1 to 6 arrows on a target. We have divided

them into 3 sets: Easy, Medium, and Hard (Figure ?). Easy

images are taken of the target at a direct angle, while Hard

images are taken from the side of the target at a more

extreme angle. Because our algorithm relies on correct

rectification, the angle of the image can make it very

challenging for our system. When viewed at an angle, the

arrows also do not seem to converge upon the center of the

target, which makes it difficult to determine the orientation

of an arrow.

Since real life situations can be arbitrarily challenging, we

have limited to scope of our problem to deal with cases

where the arrows are not too close together. All of our

training samples also use the same background and lighting

conditions.

Figure ?: Easy (top), Medium, and Hard (bottom) test examples.

The performance of our system can be measured in two

ways. First, we can see how many arrows the system was able

to score correctly. We were able to detect a majority of

arrows in Easy situations, but the more difficult situations

threw us below a majority.

 Number of
Arrows Correct

Total Percent

Easy 53 62 85.5

Medium 47 63 74.6

Hard 47 119 39.4

We then examined how many images out of the set our

system was able to score correctly, meaning that the score

was correct for all arrows on the image and did not include

false positives.

 Number of
Images Correct

Total Percent

Easy 16 22 72.7

Medium 12 23 52.1

Hard 6 50 12.0

Here, we show some results:

5. CONCLUSION

Our system can successfully detect and score arrows given an

image taken from a standard mobile phone. The chance of

success is heavily influenced by the angle at which the image

is taken. When the angle sharpens, many factors come into

play that challenge our system, such as rectification accuracy

and arrow occlusion.

While we initially relied on SIFT features for detection of

arrows, we found better performance by using line and gap

information to accurately locate arrows and eliminate false

positives.

Our system can further be improved by detecting more

points for rectification and finding ways to separate clusters

of arrows while joining together fragmented or occluded

arrows. Moreover, for the rare instance where the actual

intersection is further from the center than the closer of the

two segment points, it would be useful to identify the ends

of the arrows properly.

Finally, we’d love to port this to a mobile device and that

would be able to calculate the arrows in real time.

6. REFERENCES

[1] Dubrofsky, Elan. Homography Estimation. Master’s Essay:

The University of British Coumbia, 2009.

[2] Open CV Documentation. opencv.itseez.com. 2011.

