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ABSTRACT 

We present a method for automatically determining the score 

of a round of arrows lodged in an archery target face. That is, 

given an image consisting of a complete target face, and 

given a set of arrows that have struck within the target face, 

we generate a score for each arrow with regard to the two 

circles it is between. To do this, we present a multi-step 

process to determine the location and shape of the set of 

concentric and evenly distributed circles (that may be 

distorted by perspective) representing the target face, locate 

and orient the each arrow, and find the pinpoint location of 

where the arrowheads pierce the target face. We are able to 

handle images of a target face at arbitrary angles by 

automatically rectifying the image so that the target becomes 

circular. We test the performance of our system on a set of 

real images taken from mobile phones and find that it 

performs reasonably well. 
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I.4.8 [Image Processing]: Scene Analysis – Object Recognition 
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1. INTRODUCTION 

Archery is a growing sport around the world, with 

competitors from the junior level to the collegiate and 

Olympic levels. During a competition, archers line up at a 

measured distance from a target and attempt to fire arrows 

into the target center. The target consists of 10 nested 

concentric circles, with the innermost one worth 10 points 

and the outermost one worth 1 point. One of the most time 

consuming tasks of archery training and competition is 

manually determining a score for each arrow on a target. In a 

typical competition, archers shoot for only 4 minutes before 

having to walk to the target and determine the score - a 

process that takes up to 5 minutes, meaning the scoring time 

can consume more than half the competition! Since 

competitions usually last 2 to 4 days, a computer-assisted 

scoring mechanism can save quite a significant amount of 

time. Finally, many archers don’t keep score during training 

because it is too much of a hassle, although keeping score is 

one of the best ways to track progress. 

 

2. DATA AND MODEL 

Our project uses 147 images taken of standard 10 concentric 

circle archery targets without a restriction of the number of 

protruding arrows, and taken without concern for scale, 

perspective, or rotation.  

 

The algorithm should be relatively noise, exposure, and 

perspective invariant. In particular, the method should 

handle cases where the image of the target is captured from 

any reasonable angle. However, we began developing our 

system under some simplifying assumptions: 1) the target 

circle scoring zones are perfect circles without distortion, 

perspective shifts, and occlusions (other than the arrows), 

and are fully included in the image; 2) the arrows are well-

defined and have no shadows, and 3) the image does not 

contain motion blur or camera shake (that is, it’s sharp).  

 

In the early stages, we did most of our testing on the top 

image in Figure 1. We fabricated this image in order to 

provide a controlled and simple test bed for our 

implementation ideas and to determine which were most 



effective. After gaining domain specific knowledge with the 

simple case, we proceeded to further enhance and develop 

our algorithm on the real world images (Figure 2). 

 
Figure 1: Contrived Image 

 
Figure 2: Real-world image 

3. PROCESS 

Our current algorithm has two distinct stages, the second of 

which relies heavily upon the first. The first task is rectifying 

the target face and finding the circles. We then analyze the 

arrows afterwards. The entire process is shown in Figure 3.  

3.1 Image Processing 

The images we analyze will most likely be taken from mobile 

devices, and thus, the quality is always a concern. Images will 

be of varying exposure, contain noise, have distortion and 

perspective shifts, and contain differing sized target faces 

that are not necessarily centered. Also, one of the first things 

we noticed was that for our purposes, pixel color values and 

textures were more likely to be detrimental than useful to the 

detection problem, and that all we really needed were the 

edges. Thus, we tried several variations of the Canny edge 

detector method seen in Figure 4 a, b, and c, and found that 

Canny with a simple Gaussian blur worked best, as we’ll 

show later on in Section 4.3 on Arrowhead detection.  

3.2 Rectification 

Rather than detecting ellipses for planar rectification, we take 

advantage of the fact that target faces are printed on a square 

sheet of paper. We detect the four corners of the sheet of 

paper to calculate a homography matrix which is used to 

rectify the image.  

We use a Harris corner detector, which is able to detect the 

corners of the paper given a low threshold, but that also 

means it detects many other unrelated corners in the image 

(Figure 5b). In order to single-out the corners of the paper, 

we rely on medium-to-long lines in the image, found using a 

Hough transform. Since there are many lines present in any 

image, we pick out a set of 4 lines that roughly intersect at 4 

or more Harris corners.  

However, since the arrows themselves create long lines, they 

 
Figure 3: The entire process of scoring arrows, described in Section 3. 



could be misconstrued as a paper border. Thus, we restrict 

the 4 lines such that the longest line is not much larger than 

the shortest line, forcing the shape to be somewhat of a 

skewed square. We also require that none of the line 

segments are part of the same line.  

Our final tuning has optimized the threshold for line 

detection and Harris corners such that we are able to detect 

the piece of paper on 22/23 Medium difficulty samples, and 

24/50 Hard samples. We did not use rectification for the 

Easy set because those images were already shot at near-

direct angles, meaning rectification would not greatly 

improve the accuracy and incurs a risk of mis-transforming 

the whole image. 

The main challenge presented by the Hard samples was the 

extreme angle of the paper and the fact that one or more 

corners of the paper were sometimes outside of the image. 

This is one of the limitations of our algorithm. The 

algorithm was also confused when the edges of the paper 

were not completely flat, causing the edges of the paper to 

not intersect at its corners.  

Although using 4 points is enough to calculate a usable 

perspective transformation, it can sometimes result in the 

center of the scoring rings to be transformed to an incorrect 

location. To fix this, we would need to detect a 5th point for 

the homography equations which would ideally be the center 

of the rings.  

3.3 Circle Detection  

We started by detecting circles using a basic Hough 

transform. However, OpenCV’s HoughCircles library 

discards concentric circles, perhaps to avoid false positives 

on the same object, and gives us the strongest circle it can 

detect (Figure 6). Rather than finding ways to detect all the 

circles, we exploit the fact that the circles on a target are 

evenly spaced and instead try to detect the outermost circle, 

from which all the inner circles can be more precisely 

calculated. Since OpenCV allows a radius range to be 

 

Figure 4: (a) Canny without blurring, (b) Canny with DOG, and (c) Canny with Gaussian 

 

 

 

Figure 5: (a) Original image, (b) Harris corners, (c) Detected corners of target (d) Rectified image 

 



specified, we performed binary search on the range of radii 

in order to arrive at the largest circle (Figure 6d). As a final 

step, we applied a Gaussian blur to the image before 

applying the Hough transform for additional precision.  

When we calculated the inner rings, we immediately saw how 

the error of the outermost circle had a much more noticeable 

effect on the smaller circles (Figure 6d). In order to calculate 

a more precise location for our outermost circle (green in 

Figure 6e), we used the Hough circle (blue in both figures) as 

an initial approximation for a more precise template 

matching process, in which we tested at scales of .7 to 1.3 in 

a 50 by 50 range (our image is 800x800) using a pyramid 

sliding window approach. Since the Hough circle helps us 

narrow down the search domain of the template matching, 

we can be very precise without being too expensive. This will 

be critical since the algorithm is intended to be used on 

mobile phones.  

3.4 Gap Detection 

One of the problems with detecting arrows comes from a 

lack of contrast between the arrow and its background. Since 

part of the target consists of two black rings and the arrows 

are usually black, they can sometimes blend in with the black 

rings and cause a large gap in the edge-detected form of the 

arrow. However, human eyes can easily perceive the arrow 

because we can see where it occludes the lines of the target. 

We can give a computer the same information: instead of 

looking for where there is an arrow, we look for where part 

of the target is missing.  

 

Figure 7: Gap Detection 

We rely on the image of the target being correctly rectified 

and the rings of the target precisely detected. In order to 

detect gaps in each ring, we walk along the ring in a Canny 

edge detected image and mark areas where the edge is 

missing. We can ignore very small gaps and very large gaps, 

 

 

Figure 6: (a) Hough Circles (b) Hough Circles with binary search for largest circle (c) With Gaussian preprocessing 
(d) Rings estimated using Hough Circles (e) Rings estimated using template matching 

 



which are a result of blurring in the pre-processing step, and 

focus on gaps that are likely to be caused by arrows.  

Since arrows can cause our circular walks to deviate, we 

force the walks to stay within some distance of where we 

think the ring is actually located. Thus if the location of our 

rings are not precise, we will have many false-positive gaps 

(Figure 7). 

3.5 Arrow Detection 

Arrowhead intersection was a particularly difficult task, and 

one we had to make a lot of assumptions for initially. We 

tried many solutions in our attempt to solve the problem, but 

in the end, the simplest turned out to be the most elegant.  

Our first attempt was to use template matching to find 

sections of the photograph that were similar to the what an 

intersection of an arrow with a target face looked like. 

However, this was not successful as efficient template 

matching is not rotationally invariant, in addition to the 

complexity of varying backgrounds that take up most of the 

matching template (the arrowhead is really small and 

narrow).  

We also tried Harris corner detection, with the hopes that 

the intersection would appear as a corner that we could 

distinguish. However, as you can see in Figures 8a and 8b, 

Harris corner detection could not separate the intersection 

point from any of the other corners in the image, and 

because of the aliased edges of the circle that no amount of 

blurring could solve (Figure 8b uses a Difference of 

Gaussian with Canny and with a particularly low threshold), 

it ended up returning more circle edges than anything else.  

In the end, while the simplest method of using a Hough 

transform to find the lines with the right amount of 

parameter adjustment resulted in the best possible outcome 

for our contrived image (Figure 8f), we ended up finding out 

that correctly parameterizing a Difference of Gaussian for 

the real world images resulted in better arrow line detection. 

One of the issues we faced was finding a fine balance of the 

arrow shaft between hyperextension as a result of too much 

noise and hyperflexion as a result of too much blur non-

definition. 

In addition, when running Hough transform on the real 

world images, we end up with a significantly worse signal to 

noise ratio for lines, which means we had to do a lot of 

tweaking of parameters followed by post-processing and 

filtering to get it down to what we wanted (Figure 9). 

When examining the resulting over-detection of lines in our 

images (such as Figure 9), we noticed a two critical features 

we could take advantage of. The first was that there was a lot 

of noise outside of the square target paper. Since we 

effectively knew where the location of the center of the circle 

and its radius after rectification, we roughly could estimate 

the size of the bounding target paper. We then removed any 

line that didn’t at least one point inside the target bounding 

box. We realized that arrows may protrude outside of the 

 

 

Figure 8: (a) Harris Corner with Gaussian+Canny, (b) Harris Corner with Gaussian+Canny, (c) Harris Corner with DOG+Canny,  
(d) Hough Lines with no blurring+Canny, (e) Hough Lines with DOG+Canny, and (f) Hough Lines with Gaussian+Canny 

 



bounding box, and thus felt it would be useful to keep as 

much of that information as possible.  

 

Figure 9: Noisy Hough Lines 

The second feature we had to get rid of was a result of the 

resolution of the circles not being sufficient enough to 

prevent tangentially lines from appearing on the Hough 

transform results. Clearly, these lines would affect the overall 

score, and we needed to find of way of removing them. 

Again, we were able to take advantage of finding and 

knowing the circles. Any line less than a certain percentage 

of the radius that was tangential to a point on one of the 

circles and was close enough to that point on the circle was 

removed. 

Incorporating these two line noise reduction features, we 

were able to get much more usable results (Figure 10).  

 

Figure 10: Hough Lines Post-Filtering 

However, the main issue to the Hough transforms is that 

now, each arrow may have several lines of varying lengths 

and angles, not all of which are connected, and we’ll need to 

determine the best one relative to each arrow. 

3.6 Arrow Line and Gap Clustering 

Finding which lines correspond to which arrows is no trivial 

task. First, the perspective of the arrow isn’t straight on, the 

arrow can change width. Second, arrows may be parallel to 

each other. Third, arrows may be on the same line. Fourth, 

arrows may intersect. And finally, arrows may be extremely 

short, and be very difficult to distinguish from other random 

lines that may appear from arrow feathers. 

We ended up determining that clustering the arrows would 

provide for the best results. To cluster the arrows, we iterate 

through the set of filtered lines, and if the given line is within 

a certain score of the current set of clusters we have, 

combine it with the cluster. Otherwise, create a new cluster 

with that arrow. The score is calculated based on a weighted 

parameterization of the angle, the distance from the 

midpoint of the line to the midpoint of the cluster, and the 

shortest distance from the midpoint of the line to the 

averaged lines of the cluster.  

 

Figure 11: Line Clustered Arrows 

The result of the clusters turned out to be quite good (Figure 

11), although occasionally there would be an arrow feather 

line that was at a different enough angle to create a new 

cluster (green line in Figure 11), and occasionally an arrow 

that was overly long that was classified into two separate 

arrows (Figure 12). These are clearly problems, as having two 

separate clusters results in extra scored arrows.  

To combat these two problems, we introduce two different 

methods. The first method is to use the gaps we calculated 

earlier to help add points to see which lines are actually 



arrows, and which lines are more likely to be off-chance 

occurrences of feathers. For each pair of gaps, we calculate 

the score for the closest line (without considering clusters), 

and then assign those pair of gaps to the cluster that contains 

the line. The intuition is that you tend to have two lines for 

each edge of the arrow, but even if you don’t if you have a 

long enough line, you should go through multiple gaps. 

Finally, since gaps most likely occur along the main arrow, 

they are much more likely to be assigned to the main arrow 

cluster than the feather.  

 

Figure 12: Merged Gap and Line Clusters 

To score the gap to a line, we use weighted parameterization 

of the closest distance to the line segment (represents overall 

separation) and closest distance to the line (represents angle). 

Afterwards, we weigh each line in the cluster as 3 points to 2 

points for each gap pair, and if the score for the cluster does 

not exceed a threshold, we remove it (Figure 12). 

 

Figure 13: Separated Line and Gap Clusters 

However, this doesn’t fully solve the problem where two 

clusters are formed from one arrow (Figure 13). To fix this 

problem, we noticed that the only case where having two 

clusters form is bad is if they are indeed the same line. Thus, 

we calculate the best-fit line for each cluster to get the 

representative line for the cluster, loop through all of the 

points in the cluster to find the maximum closest ends of the 

new representative line, and rerun the original clustering 

algorithm until convergence (Figure 14).  

 

Figure 14: Reclustered Line and Gap Representation 

The introduction of these two solutions helped drastically 

improve detection on most of the problems we encountered 

when scoring. In addition, the added benefit of reducing 

each cluster down to one line allows us to have a nice way of 

representing the clustered arrow. 

3.7 Score 

Finally, once we have the lines, we can score it. Since we 

don’t have an accurate way of finding the arrow feathers, we 

naively assume that, given a line segment, the closer of the 

two points that define the segment is the intersection of the 

arrowhead (Figure 14). This isn’t necessarily the best 

solution, but it is a rare case when this does not hold. 

4. EVALUATION 

To test the performance of our system, we have collected 

images that simulate the typical use case of an archer using a 

mobile phone camera to take pictures at arbitrary angles. We 

have a collection of 95 images to evaluate our system. Each 

image contains 1 to 6 arrows on a target. We have divided 

them into 3 sets: Easy, Medium, and Hard (Figure ?). Easy 

images are taken of the target at a direct angle, while Hard 

images are taken from the side of the target at a more 



extreme angle. Because our algorithm relies on correct 

rectification, the angle of the image can make it very 

challenging for our system. When viewed at an angle, the 

arrows also do not seem to converge upon the center of the 

target, which makes it difficult to determine the orientation 

of an arrow.  

Since real life situations can be arbitrarily challenging, we 

have limited to scope of our problem to deal with cases 

where the arrows are not too close together. All of our 

training samples also use the same background and lighting 

conditions.  

  

  

  

Figure ?: Easy (top), Medium, and Hard (bottom) test examples.  

The performance of our system can be measured in two 

ways. First, we can see how many arrows the system was able 

to score correctly. We were able to detect a majority of 

arrows in Easy situations, but the more difficult situations 

threw us below a majority. 

 Number of 
Arrows Correct 

Total Percent 

Easy 53 62 85.5 

Medium 47 63 74.6 

Hard 47 119 39.4 

 

We then examined how many images out of the set our 

system was able to score correctly, meaning that the score 

was correct for all arrows on the image and did not include 

false positives.  

 Number of 
Images Correct 

Total Percent 

Easy 16 22 72.7 

Medium 12 23 52.1 

Hard 6 50 12.0 

 

Here, we show some results: 

 

 

 



 

 

 

 
 

5. CONCLUSION 

Our system can successfully detect and score arrows given an 

image taken from a standard mobile phone. The chance of 

success is heavily influenced by the angle at which the image 

is taken. When the angle sharpens, many factors come into 

play that challenge our system, such as rectification accuracy 

and arrow occlusion.  

While we initially relied on SIFT features for detection of 

arrows, we found better performance by using line and gap 

information to accurately locate arrows and eliminate false 

positives.  

Our system can further be improved by detecting more 

points for rectification and finding ways to separate clusters 

of arrows while joining together fragmented or occluded 

arrows. Moreover, for the rare instance where the actual 

intersection is further from the center than the closer of the 

two segment points, it would be useful to identify the ends 

of the arrows properly. 

Finally, we’d love to port this to a mobile device and that 

would be able to calculate the arrows in real time. 
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